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Abstract. We improve the main results in the paper from the title using a
recent refinement of Bronshtein’s theorem due to Colombini, Orri, and Pernazza.
They are then in general best possible both in the hypothesis and in the outcome.
As a consequence we obtain a result on lifting smooth mappings in several
variables.
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1.

A recent refinement of Bronshtein’s theorem [5] and of some of its consequences
due to Colombini, Orri, and Pernazza [6] (namely theorem below) allows to
essentially improve our main results in [I0]; see theorem and corollary
below. The improvement consists in weakening the hypothesis considerably: In
[T0] we needed a curve ¢ to be of class

(i) C* in order to admit a differentiable lift with locally bounded derivative,
(ii) C*™ in order to admit a C*-lift, and

iii) C*™24 in order to admit a twice differentiable lift.
(iif)

It turns out that theorem [1.2] and corollary are in general best possible both
in the hypothesis and in the outcome. In theorem [1.4] and corollary [I.5] we deduce
some results on lifting smooth mappings in several variables.

Refinement of Bronshtein’s theorem. Bronshtein’s theorem [5] (see also Wak-
abayashi’s version [15]) states that, for a curve of monic hyperbolic polynomials

P(t)(x) = 2" + Z(—l)jaj(t)ﬂf”*j- (1)
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with coefficients a; € C*(R) (1 < j < n), there exist differentiable functions A;
(1 < j < n) with locally bounded derivatives which parameterize the roots of P.
A polynomial is called hyperbolic if all its roots are real.

The following theorem refines Bronshtein’s theorem [5] and also a result of
Mandai [T4] and a result of Kriegl, Losik, and Michor [§]. In [I4] the coefficients
are required to be of class C*" for C'-roots, and in [8] they are assumed to be
C3" for twice differentiable roots.

Theorem 1.1 ([0, 2.1]).  Consider a curve P of monic hyperbolic polynomials
(1). Then:

(i) If a; € C™(R) (1 < j < n), then there exist functions \; € C'(R)
(1 < j <n) which parameterize the roots of P.

(ii) If a; € C*™(R) (1 < j < n), then the roots of P may be chosen twice
differentiable.

Counterexamples (e.g. in [6, section 4]) show that in this result the assump-
tions on P cannot be weakened.

Improvement of the results in [10]. Let p : G — O(V) be an orthogonal
representation of a compact Lie group G in a real finite dimensional Euclidean
vector space V. Choose a minimal system of homogeneous generators oy, ..., 0,
of the algebra R[V]¢ of G-invariant polynomials on V. Define

d =d(p) == max{dego; : 1 <i<n},

which is independent of the choice of the o; (see [10, 2.4]).

If G is a finite group, we write V =V, & --- @&V} as orthogonal direct sum
of irreducible subspaces V;. We choose v; € V;\{0} such that the cardinality of
the corresponding isotropy group G,, is maximal, and put

k= k(p) == max{d(p), |G|/|G] : 1 < i < 1}.

The mapping ¢ = (01,...,0,) : V — R" induces a homeomorphism
between the orbit space V/G and the image o(V). Let c: R — V/G = o(V) CR"
be a smooth curve in the orbit space (smooth as a curvein R"). A curve ¢: R — V
is called lift of ¢ if co¢ = ¢. The problem of lifting curves smoothly over invariants
is independent of the choice of the o; (see [10, 2.2]).

Theorem 1.2.  Let p: G — O(V) be a representation of a finite group G. Let
d=d(p) and k = k(p). Consider a curve ¢: R — V/G = o(V) CR™ in the orbit
space of p. Then:

(i) If c is of class C*, then any differentiable lift ¢: R — V of ¢ (which always
exists) is actually C*.

(ii) If ¢ is of class C*¢, then there exists a global twice differentiable lift
c:R—=V of c.
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Proof. (i) Let ¢ be any differentiable lift of ¢. Note that the existence of ¢
is guaranteed for any C?-curve c, by [9]. In the proof of [I0, 8.1] we construct
curves of monic hyperbolic polynomials ¢ +— P;(t) which have the regularity of ¢
and whose roots are parameterized by t — (v; | g.c(t)) (g € G,,\G).

If ¢ is of class C*, then theorem [1.1[i) provides C"-roots of ¢ — Pi(t). By
the proof of [10, 4.2] we obtain that the parameterization t — (v; | g.c(t)) is C!
as well. Hence ¢ is a C1-lift of c. Alternatively, the proof of [L.1{i) in [6] actually
shows that any differentiable choice of roots is C*.

(i) Let ¢ be of class C**¢. The existence of a global twice differentiable
lift ¢ of ¢ follows from the proof of [I0, 5.1 and 5.2], where we use (i) instead of
10, 4.2]. n

Corollary 1.3.  Let p: G — O(V) be a polar representation of a compact Lie
group G. Let ¥ CV be a section, W(X) = Ng(X)/Za(X) its generalized Weyl
group, and ps, : W(X) — O(X) the induced representation. Let d = d(ps) and
k = k(ps). Consider a curve ¢c: R — V/G = a(V) CR™ in the orbit space of p.
Then:

(i) If c is of class C*, then there exists a global orthogonal C'-lift ¢ : R — V
of c.

(ii) If ¢ is of class C**¢, then there exists a global orthogonal twice differentiable
liftc:R—V of c. [ |

The examples which show that the hypothesis in are best possible also
imply that in general the hypothesis in [1.2] and cannot be improved.

On the other hand the outcome of [[L2] and [[.3] cannot be refined either: A
C*>- curve ¢ does in general not allow a Ct*-lift for any « > 0. See [7], [1], [4].
But see also [3] and [I0] remark 4.2].

Note that the improvement affects also [13, part 6].

Lifting smooth mappings in several variables. ;From theorem [1.2| we can
deduce a lifting result for mappings in several variables.

Theorem 1.4. Let p : G — O(V) be a representation of a finite group
G, d = d(p), and k = k(p). Let U C R? be open. Consider a mapping

f:U—=V/G=0a(V)CR" of cluss C*. Then any continuous lift f: U —V of
f s actually locally Lipschitz.

Proof. Let ¢: R — U be a C®-curve. By theorem [L.2[(i) the curve f oc admits
a C'-lift foc. A further continuous lift of f o c is formed by foc. By [12, 5.3]
we can conclude that foc is locally Lipschitz. So we have shown that f is locally
Lipschitz along C*-curves. By Boman [2] (see also [11} 12.7]) that implies that f
is locally Lipschitz. |

In general there will not always exist a continuous lift of f (for instance,
if G is a finite rotation group and f is defined near 0). However, if G is a finite
reflection group, then any continuous f allows a continuous lift (since the orbit
space can be embedded homeomorphically in V).
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Corollary 1.5. Let p : G — O(V) be a polar representation of a compact
connected Lie group G. Let X C V be a section, W(X) = Ng(X)/Za(X) its
generalized Weyl group, ps : W(X) — O(X) the induced representation, d =
d(ps), and k = k(ps). Let U C R? be open. Consider a mapping f:U — V/G =
(V) C R" of class C*. Then there exists an orthogonal lift f : U — V of f
which s locally Lipschitz.

Proof. The Weyl group W () is a finite reflection group, since G is connected. =
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