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Abstract. In Moskowitz M., and R.Sacksteder, An extension of the Minkowski-
Hlawka theorem, Mathematika 56 (2010), 203-216, essential use was made of the
fact that in its natural linear action the real symplectic group, Sp(n,R), acts
transitively on R?" \ {0} (similarly for the theorem of Hlawka itself, SL(n,R)
acts transitively on R™ \ {0}). This raises the natural question as to whether
there are proper connected Lie subgroups of either of these groups which also
act transitively on R?" \ {0}, (resp. R™\ {0}). Here we determine all the
minimal ones. These are Sp(n,R) C SL(2n,R) and SL(n,C) C SL(2n,R)
acting on R?" \ {0}; on R*" \ {0}, they are Sp(2n,R) C SL(4n,R) and
SL(n,H)(= SU*(2n)) C SL(4n,R).
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1. Introduction

The article [6] is concerned with an extension of the following theorem of Hlawka.

Theorem (Minkowski-Hlawka). If vol(D) < ((n), then there exists a lattice I' in
R™ of vol(R"/T") =1 with DN T = {0}.

Here ¢ denotes the Riemann zeta function, R™ takes Lebesgue measure
and D is a domain in R™ star shaped about the origin. Of course, Hlawka’s result
can be expressed in terms of the group SL(n,R). Namely, if vol(D) < ((n),
then there exists a g € SL(n,R) with ¢D NZ" = {0} and in this form it was
reproved by both Siegel [10] and Weil [11]. In [6] the authors did similarly for the
symplectic group. Given a fixed choice of Haar measure for the ambient group,
the volume, V,, of a fundamental domain for the lattice Sp(n,Z) in Sp(n,R) was

calculated:V,, = \% kl;ll ((2k), and as a consequence,

1. If vol(D) > V,,, some lattice in R*" contains a non zero point of D.

2. If vol(D) < V,,, some lattice in R?*" contains only the zero point of D.
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3. If D is star shaped about the origin and vol(D) < ((2n)V,,, some lattice in
R?" contains only the zero point of D.

In that study essential use was made of the fact that in its natural linear
action the real symplectic group, Sp(n, R), acts transitively on R*"*\ {0} (similarly
for the theorem of Hlawka itself, SL(n, R) acts transitively on R™\{0}). This raises
the natural question as to whether there are proper connected Lie subgroups, G,
of either of these groups which also act transitively on R**\ {0}, (resp. R™\ {0}).

For n > 2, Sp(n,R) is indeed a proper connected Lie subgroup of SL(2n, R)
which acts transitively on R**\ {0}. Thus leaving open the case of SL(n,R), for
n odd, and Sp(n,R), for 2n even. However the same argument (see pg. 24 of
[1]) showing that SL(n,R) acts transitively on R™ \ {0} also proves SL(n,C)
acts transitively on C" \ {0} = R?* \ {0} and SL(n,H) acts transitively on
H™\ {0} =R*\ {0}

Our purpose here is to determine the minimal ones, i.e. those which contain
no proper connected Lie subgroup with the same property. Namely,

Theorem 1.1.  When n is odd, no connected Lie subgroup of SL(n,R) can act
transitively on R™\ {0}. When n = 2k is even, with k odd, both Sp(k,R) and
SL(k,C) act transitively on R* \ {0} and they are the minimal ones. When
k = 2m is even and n = 4m, both Sp(2m,R) C SL(4m,R) and SL(m,H)
(= SU*(m)) C SL(4m,R) act transitively on RY™\ {0} and they are the minimal
ones.

Presumably a similar study as in [6] could be made for SL(n,C) and SL(n,H).

2. Reduction of the problem.

In this section we reduce the question to the case of a non-compact simple Lie
group by proving Theorem 2.2 below.

Let G be any closed connected Lie subgroup of SL(n,R) acting transitively
on R™\ {0}. By Proposition 6.4.5 of [2] the Lie algebra of G is reductive, i.e.
g =13(g)D|g,g], where 3(g) is the center of g and the derived subalgebra, [g, g], is
semisimple and so G = Z(G)o - [G, G|, where Z(G), is the connected component
of the center of G and the derived subgroup, [G,G], is connected and semisimple.
Moreover, Z(G)y acts completely reducibly by [3]. By Mostow’s Theorem 6 of [7]
(which is equivalent to the Theorem of Section 6) we can assume, which we do
from now on, that the Cartan involution of G is the restriction of the usual Cartan
involution of SL(n,R). By a real reductive subgroup of SL(n,R) we always mean
a reductive self-conjugate subgroup of SL(n,R).

Lemma 2.1. Let G be a connected, non-compact, real reductive Lie subgroup
of GL(n,R) and K be a mazimal compact subgroup.! Then G acts transitively
on R™\ {0}, if and only if K acts transitively on the unit sphere, S"!.

1Since G is linear, K is actually compact
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Proof. Let G = KAN = KB be an Iwasawa decomposition of G (see [1]).
Since B is in real triangular form, let eq,...e, be the basis of R" that puts B
into this form consisting of vectors of norm 1. Then be; = A(b)e; for all b € B,
where A is a non-trivial element in Hom(B,R}). In particular, A(b) # 1 on B
and Be; = RJe;. Now it is clear that if K is transitive on the unit sphere then G
is transitive on R\ {0}. Conversely, assume G is transitive on R" \ {0}. Given
an arbitrary unit vector v, there is some g = kb so that g(e;) = v. That is,
kb(e1) = k(A(b)er) = v. Thus k(e) = Lb)v. Since K preserves the norm, ﬁv

A
also has norm 1. Hence =1 and so k(e;) =v. n

1
A(b)
Theorem 2.2.  Suppose G is a connected Lie subgroup of SL(n,R) which acts
transitively on R™ \ {0} and is minimal with respect to this property. Then G is
a non-compact simple Lie group.

Proof.  Let H be a subgroup of SL(n,R), acting transitively on R™\ {0}. As
above, we may assume H is a non-compact, real reductive group. By Lemma 2.1,
a maximal compact subgroup, K, acts transitively on the sphere S"~!. By [5],
Thm. I and Thm. I’ the group K is either simple, or, only when n is even, it
is possibly a finite quotient of the product of two compact simple groups K; and
K5. When this happens, Ky = SO(2) or SU(2) and K; is a simple group acting
transitively on S™71. Also, the subgroup of K corresponding to K; under the
quotient map acts transitively on S"! as well.

Let b = 3(h) ® hs be the Lie algebra of H, where 3(h) is the center
and b, = [h,bh] is the derived subalgebra. Recall that such a decomposition is
compatible with the Cartan decomposition h = £ & m, where € is the Lie algebra
of a maximal compact subgroup of H.

If K is simple, then €N 3(h) = {0}. It follows that there exists a non-
compact simple component g of h with a maximal compact subalgebra equal to
t. Let G be the connected subgroup of H with Lie algebra g. Then by [5], Thm.
I, a maximal compact subgroup of G acts transitively on S"~!. By Lemma 2.1,
the simple group G acts transitively on R™\ {0}.

Assume now that n is even and the maximal compact subgroup K is not
simple. If n = 2, then K = SO(2) and G = SL(2,R). If n > 4, then there are
the following possibilities for the Lie algebra of H:

(2.a) b = 3(h) ® b, with by simple, € = £ @ £ maximal compact in by and
tNs(h) = {0};

(2.6) b = 3(h) ® bs, with bg simple, ¢ maximal compact in hy and € = R
contained in 3(h) (this happens for example if H = Sp(k,R));

(2.c) h=13(h)®bh; Dby, with b; simple, ¢ maximal compact in b;, and €N3(h) =
{0} (this happens for example if H = Sp(k,1)).

We claim that there exists a non-compact simple subgroup G C H, acting
transitively on R™\{0}. In case (2.a) and case (2.b), such group G is the connected
subgroup generated by bh,. In case (2.c), G is the connected subgroup generated
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by b, for all even n > 6. For n = 6, the subgroup G is generated either by b
or by hs. In all cases, by [5], Thm. I, a maximal compact subgroup of G acts
transitively on S"~!  implying that G acts transitively on R™\ {0} . [ |

The next lemma shows that the Lie algebra g and the maximal compact
subgroup K uniquely determine G within SL(n,R).

Lemma 2.3. Let G and H be connected Lie subgroups of GL(n,R) which are
locally isomorphic and Kg and Ky be maximal compact subgroups of each. If Kqg
and Ky are isomorphic, by say ¢, then G and H are also isomorphic, by say .
By changing Ky via a conjugation by something in H we can arrange for ¢ to
be an extension of ¢.

Proof. Since Kg and Ky are isomorphic they must have the same fundamental
groups; I1;(Kg) = II;(Kg). On the other hand, since K is a retract of G
and similarly for H we know II,(G) = II;(K¢g) and 11, (H) = II;(Kpy) so that
II,(G) = 11I,(H). Let L be the common universal cover of both G and H, with
7o and 7wy the respective covering maps. Then L/II;(G) = G and L/1I,(H) = H
and since II;(G) = I1;(H) it follows that G = H (by say ).

Now consider the differentials of these isomorphisms d(¢) : ¢ — €y and
d(¢)) : g — bh. Since d(¢) is a Lie algebra isomorphism it takes a maximum
compact subalgebra of g onto one of h and since such things are conjugate we can
replace £y by a new maximal compact subalgebra of b so that d(v)(tg) =ty. =

3. Proof of Theorem 1.

Effective transitive actions of connected compact Lie groups on spheres have been
studied and classified by Montgomery-Samelson and Borel. We refer to the list
given in [4]:

1. n=2, K=S0(2);

2. n=2k+1, K =S0(2k+1);

2. n=17, K = (Go;

4. n=2k, k>1, K =S0(2k), U(k), SU(k);

5. n =4k, K =SO(4k), U(2k), SU(2k), Sp(k), Sp(k) - S*, Sp(k) - Sp(1);
5.a. n =16, K = Spin(9);

5.b. n =8, K = Spin(7);

with the only inclusions:

Go C SO(?),
SU(E) C U(k) C SO(2k);

Sp(k) C Sp(k) - S* € Sp(k) - Sp(1) C SO(4k);
Sp(k) C Sp(k) - S C U(2h);

SU(4) C Spin(7) € SO(8);

Spin(9) C SO(16);
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The inclusions SU(k) C U(k) C SO(2k) are given by equivariantly identifying
C* and R?* under the standard actions of U(k) and SO(2k); the inclusions
Sp(k) C Sp(k)-S' C Sp(k)-Sp(1) C SO(4k) are given by equivariantly identifying
H* and R* under the quaternionic representation pj, ® p; of Sp(k)-Sp(1) on HF
and the standard action of SO(4k) on R*  where p; denotes the standard action
of Sp(k) on H*.

The inclusion Go C SO(7) is given by the 7-dimensional representation of
G2, which is absolutely irreducible (see Samelson [9], Thm.E, pg.140) (a represen-
tation of a compact group K on a real vector space V is said to be absolutely
irreducible if it remains irreducible over C); the inclusion Spin(7) C SO(8) is
given by the 8-dimensional spin representation of Spin(7). Since 7 = 2-3 + 1
and 3 # 1,2 mod 4 such a representation is absolutely irreducible (see [9], Thm.E,
pg.140); the inclusion Spin(9) C SO(16) is given by the 16-dimensional spin repre-
sentation of Spin(9). Since 9 =2-4+41 and 4 # 1,2 mod 4 such a representation
is absolutely irreducible (see [9], Thm.E, pg.140).

Proof. Let G C SL(n,R) be a non-compact simple group acting transitively
on R"\ {0}. Then by Lemma 2.1, one of its maximal compact subgroups K
must appear in the above list. Further, by Lemma 2.3, the group G is completely
determined by K and its Lie algebra g. Now we are left to check which K in
the above list is a maximal compact subgroup of some non-compact simple group
G C SL(n,R), which in addition, is transitive on R™\ {0}.

Observe that if the K -action on R” is absolutely irreducible, then G # K©
(see Onishchik [8], Thm.1, pg.65).

As we already know, for every integer n the group SL(n,R) acts transitively
on R™\ {0} by its standard representation.

Let n = 2k + 1 be odd. We claim there exists no simple group, G, properly
contained in SL(2k + 1,R), which acts transitively on R**1\ {0}.

The group K = SO(2k + 1) is also a maximal compact subgroup of G =
SOg(2k + 1,1), but this group has no linear action on R?**1. If k = 3, the
compact group G acts transitively on S° via its 7-dimensional fundamental
representation. If a non-compact simple group G properly contained in SL(7,R)
were transitive on R”\ {0}, then one of its maximal compact subgroups would
satisfy Go € K C SO(7) and would act transitively on S® as well. Then either
K =Gy and G =G, or K =S0(7) and G = SL(7,R). Since the 7-dimensional
fundamental representation of Gs is absolutely irreducible, by the first observation
G # GY, and G = SL(7,R). We conclude, when n is odd, there are no proper
subgroups of SL(n,R) acting transitively on R™\ {0}.

Now we turn to even dimensional real vector spaces R?*, k > 1. Assume
first k£ odd. We claim there exists no simple group, G, properly contained in
Sp(k,R), which acts transitively on R\ {0}.

;From the compact groups K = SU(k) and K = U(k) we get

G = SL(k,C) C SL(2k,R), G = GL(k,C) C GL(2k,R),

G = Sp(k,R) C SL(2k,R).
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Each of the above non-compact groups acts transitively on R?* \ {0} via the
standard representation of GL(2k,R). Both SL(k,C) and Sp(k,R) are minimal,
SL(k,C) is the one of smallest dimension. In particular, no proper subgroup of
Sp(k,R) acts transitively on R?*\ {0}.

Assume now k£ = 2m even. We claim there exists no simple group G,
properly contained in Sp(2m,R), which acts transitively on R*"\ {0}. In this
case there are additional compact groups acting transitively on the sphere S#m~1!,

For K = Sp(m) C SU(2m), we get G = SU"(m) acting transitively on
R*™\ {0}. We have the inclusions

SU*(m) C SL(2m,C) C SL(4m,R), GL(2m,C) C GL(4m,R),
Sp(2m,R) C SL(4m,R),

where each of the above non-compact groups acts transitively on R*™\ {0}. Both
SU*(m) = SL(m,H) and Sp(2m,R) are minimal, SU*(m) = SL(m,H) is the
one of smallest dimension. In particular, no proper subgroup of Sp(2m,R) acts
transitively on R*™\ {0}.

It remains to show no other groups, G, act transitively on R™ \ {0}.
Consider Sp(m) C Sp(m)-S' C Sp(m)-Sp(1) C SO(4m). Since K = Sp(m)-Sp(1)
is a maximal compact subgroup of G'= Sp(m, 1) and G does not act on R*™ we
get nothing new from these cases.

For the transitive actions of Spin(7) and Spin(9) on the spheres S7 and S17,
respectively, we argue as in the case of Gy on S°. If a simple group G = K expp,
properly contained in SL(8,R) (resp. in SL(16,R)), were transitive on R®\ {0}
(resp. R\ {0}), then one of its maximal compact subgroups would satisfy
Spin(7) € K C SO(8) (resp. Spin(9) € K C SO(16)). If K = Spin(7) (resp.
K = Spin(9)), then G = Spin(7,C) (resp. G' = Spin(9,C), or G = Fy(_20)). This
is impossible because Spin(7,C) has no 8-dimensional real representations (resp.
Spin(16,C) and FY have no 16-dimensional real representation).

We conclude the discussion by remarking that U(2m) is also a maximal
compact subgroup of SO*(4m), which does not act on R*"  that Sp(4) is also
a maximal compact subgroup of EI, which does not act on R®, that SO(16) is
also a maximal compact subgroup of EVIII, and SU(8) is a maximal compact
subgroup of EV, which do not act on R'® = C®. Since we checked all compact
groups acting transitively on spheres, the proof of the theorem is complete. |
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