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Structure of the coadjoint orbits of Lie algebras
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Abstract. We study the geometrical structure of the coadjoint orbits of an
arbitrary complex or real Lie algebra g containing some ideal n . It is shown
that any coadjoint orbit in g∗ is a bundle with the affine subspace of g∗ as its
fibre. This fibre is an isotropic submanifold of the orbit and is defined only by
the coadjoint representations of the Lie algebras g and n on the dual space n∗ .
The use of this fact give a new insight into the structure of coadjoint orbits and
allow us to generalize results derived earlier in the case when g is a semidirect
product with an Abelian ideal n . As an application, a necessary condition of
integrality of a coadjoint orbit is obtained.
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1. Introduction

The structure of the coadjoint orbits of a Lie algebra which is a semidirect product
with an Abelian ideal is well understood and known due to papers of Rawnsley [13],
Baguis [1], Panyushev [10] and others [11, 12, 14]. According to [13], the coadjoint
orbits of a such semidirect product are classified by the coadjoint orbits of so-called
little-groups which are isotropy subgroups of some representations. In fact, the
fibre bundles having these coadjoint orbits as fibres, completely characterize the
coadjoint orbits of the semidirect product. Our paper is devoted to a generalization
of these results of Rawnsley for arbitrary Lie algebras. While in [13] and [1]
for calculations the exact multiplication formulas were used, our approach in the
general case is completely different.

Let G be a connected Lie group with a normal connected subgroup N and
let g and n be their Lie algebras. Since n is an ideal of g , the coadjoint action
of G on g∗ induces the G-action · on n∗ . The main result of the paper may be
formulated as follows (see Theorem 2.10):

∗Partially supported by the Ministry of Science and Innovation, Spain, under Project
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An arbitrary coadjoint orbit O in g∗ is a bundle O → P with some
affine subspace A ⊂ O ⊂ g∗ of dimension dimA = dim(G · ν) −
dim(N · ν) as its fibre, where ν = σ|n ∈ n∗ and σ ∈ A . The affine
subspace A is an isotropic submanifold of the orbit O with respect
to the canonical Kirillov-Kostant-Souriau symplectic structure on O
and A = {α ∈ g∗ : α|n = σ|n = ν, α|gν = σ|gν} , where gν is the
Lie algebra of the isotropy group Gν = {g ∈ G : g · ν = ν} . The
identity component N0

ν of the isotropy group Nν = N ∩Gν of ν acts
transitively on the affine subspace A ⊂ O .

(*)

The fact (*) generalizes results derived earlier in the case of semidirect prod-
ucts by Rawnsley [13]. Moreover, in this direction our aim is to give, on one hand,
a description of the geometrical structure of the coadjoint orbit O in terms of the
fibre bundle P . We show that P is a bundle with the orbit G · ν ⊂ n∗ as a base
and the fiber which is the union of coadjoint orbits of the little Lie algebra bν
(Proposition 2.9). The little Lie algebra bν is isomorphic to the quotient algebra
gν/nν , where nν = n ∩ gν , or its one-dimensional central extension. On the other
hand, we investigate in detail the structure of the isotropy subgroups with respect
to the coadjoint representations of the Lie algebra g and the algebra gν (Propo-
sition 2.18) and apply this to formulate necessary conditions for the integrality
of the coadjoint orbit of g in terms of the corresponding coadjoint orbit of gν
(isomorphic to the coadjoint orbit of the little Lie algebra bν ) (Proposition 2.19).
Remark also that the assumption that the affine subspace A is contained in N0

ν -
orbit of σ ∈ g∗ (so-called “Stages Hyppothesis”) was formulated by Marsden et
al. in [6] and is a sufficient condition for a general reduction by stages theorem.
In their monograph [7] this hypothesis was verified for all split extensions g of the
Lie algebra (ideal) n .

I thank the anonymous referees for a thorough reading of the manuscript
and a comprehensive list of suggestions that helped me to improve the presentation
(in particular, to prove Lemma 2.3 and Propositions 2.13, 2.18 in a much shorter
and clear way).

2. Coadjoint orbits and their affine subspaces defined by the ideal

2.1. Definitions and notation. Let g be a finite dimensional Lie algebra over
the ground field F , where F = R or C . For any subspace a ⊂ g (resp. V ⊂ g∗ )
denote by a⊥ ⊂ g∗ (resp. V ⊥ ) its annihilator in g∗ (resp. in g). It is clear that
(a⊥)⊥ = a . A subset A ⊂ g∗ will be called an affine k -subspace if it is of the
form A = σ + V where σ ∈ g∗ is an element and V ⊂ g∗ is a linear subspace
of dimension k . The direct and semi-direct products of Lie algebras are denoted
by × and n respectively. The direct sums of spaces are denoted by ⊕ . The
identity component of an arbitrary Lie group H is denoted by H0 . In the sequel,
ρ∗ stands for the dual representation of a representation ρ : H → End(V ) of the
Lie group H , i.e. ρ∗(h) = (ρ(h−1))∗ . We will write πj for the j -homotopy group
of a manifold. Also we will often use the following well known statement on the
topology of homogeneous spaces (see [9, Ch.1,§3.4]):
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Lemma 2.1. For a connected Lie group K and its closed subgroup H the
following holds: 1) if π1(K/H) = π2(K/H) = 0 then the Lie subgroup H is
connected, i.e. |H/H0| = 1, and π1(K) ' π1(H); 2) if π1(K) = 0 then
π1(K/H) ' H/H0 .

2.2. Coadjoint orbits and their isotropy groups. Let G be a connected real
or complex Lie group with a normal connected subgroup N ⊂ G (not necessary
closed). Denote by g and n the corresponding Lie algebras. Since the Lie group
N is a normal subgroup of G , we have

Ad(n)ξ − ξ ∈ n for all n ∈ N, ξ ∈ g. (1)

This fact is well known if the subgroup N is closed. To prove (1) in our general
case it is sufficient to remark that the curve n(exp(tξ)n−1 exp(−tξ)) is a curve in
N passing through the identity element. Note that if the Lie group G is simply
connected then the connected subgroup N is closed and the Lie groups N and
G/N are also simply connected [2, Ch.III, §6.6].

Let Ad∗ : G → End(g∗) be the coadjoint representation of the Lie group
G on the dual space g∗ . Since we shall consider also some subgroups of G , by
Ad∗(g) and ad∗(ξ) we shall denote only the operators on the space g∗ , by Ad(g)
and ad(ξ) the operators on the Lie algebra g . Remark that Ad∗(g) = (Ad(g−1))∗

and ad∗(ξ) = (ad(−ξ))∗ . Let Oσ(G) = {Ad∗(g)σ, g ∈ G} be the coadjoint orbit
of the Lie group G in g∗ through some point σ ∈ g∗ . The orbit Oσ(G) ⊂ g∗ is a
symplectic manifold with the symplectic Kirillov-Kostant-Souriau 2-form ω :

ω(σ)(ad∗(ξ)σ, ad∗(η)σ)
def
= 〈σ, [ξ, η]〉, where ξ, η ∈ g. (2)

Here the tangent space TσOσ(G) is identified, as usual, with the subspace ad∗(g)σ
of g∗ . We will say that a submanifold M ⊂ Oσ(G) is an isotropic submanifold of
the orbit Oσ(G) if for each point α ∈ M the tangent space TαM is an isotropic
subspace of TαOσ(G) with respect to the form ω , i.e. ω(α)(TαM,TαM) = 0.

Denote by Gσ the isotropy group of σ (with respect to the coadjoint
representation of G) and by gσ its Lie algebra. Then Oσ(G) ' G/Gσ . Put
Nσ = N ∩Gσ and nσ = n∩ gσ . The subgroup Nσ is a closed subgroup in N with
the Lie algebra nσ . By the definition,

gσ
def
= {ξ ∈ g : 〈σ, [ξ, g]〉 = 0} and nσ

def
= {y ∈ n : 〈σ, [y, g]〉 = 0}. (3)

Since the subalgebra n is an ideal of g , the adjoint representations of g
induce the representation ρ of g in n , the adjoint action Ad : G → End(g)
of G induces G-action on n : G × n → n , (g, y) 7→ Ad(g)y . For the dual
representation ρ∗ of g in n∗ we have: 〈ρ∗(ξ)µ, y〉 = 〈µ, ad(−ξ)y〉, where ξ ∈
g, µ ∈ n∗, y ∈ n. The corresponding G-action on n∗ is defined by the equation
〈g ·µ, y〉 = 〈µ,Ad(g−1)y〉 . The restriction of this action on the subgroup N ⊂ G is
its coadjoint action. It is easy to verify that the canonical projection Πg

1 : g∗ → n∗ ,
β 7→ β|n is a G-equivariant map with respect to these two actions of G on the
spaces g∗ and n∗ respectively:

Πg
1(Ad∗(g)β) = g · Πg

1(β), for all β ∈ g∗, g ∈ G.
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On the other hand, the canonical homomorphism π : g→ g/n induces the
canonical linear embedding π∗ : (g/n)∗ → g∗ . The following lemma is known. We
will often use it to identify the coadjoint orbits in the spaces (g/n)∗ and n⊥ ⊂ g∗

respectively.

Lemma 2.2. The canonical linear embedding π∗ : (g/n)∗ → g∗ maps each
coadjoint orbit Ob of the quotient Lie algebra b = g/n onto some coadjoint orbit
Og of g. This map defines a one-to-one correspondence between the set of all
coadjoint orbits in (g/n)∗ and the set of all coadjoint orbits in g∗ belonging to
the annihilator n⊥ ⊂ g∗ . Moreover, the restriction π∗ : Ob → Og of the map π∗

is a symplectic map, i.e. (π∗|Ob
)∗(ωg) = ωb , where ωg and ωb are the canonical

Kirillov-Kostant-Souriau symplectic 2-forms on the coadjoint orbits Og ⊂ g∗ and
Ob ⊂ b∗ respectively.

To prove the lemma it is sufficient to use the fact that π is a homomorphism
of Lie algebras and definition (2) of the canonical 2-form.

Fix an element σ ∈ g∗ and consider its restriction ν = σ|n ∈ n∗ . Denote by
Gν and Nν the isotropy groups of the element ν with respect to the · -action on
n∗ , by gν and nν the corresponding Lie algebras. It is clear that nν = n ∩ gν and
the subgroup Nν = N ∩Gν is a normal subgroup of Gν . Remark here, that Nν is
also the usual isotropy group for coadjoint action of the Lie group N on the dual
space n∗ .

Since [g, n] ⊂ n , by the definition,

gν
def
= {ξ ∈ g : ρ∗(ξ)ν = 0} = {ξ ∈ g : 〈ν, [ξ, n]〉 = 0} = {ξ ∈ g : 〈σ, [ξ, n]〉 = 0},

(4)

nν
def
= {y ∈ n : ρ∗(y)ν = 0} = {y ∈ n : 〈ν, [y, n]〉 = 0} = {y ∈ n : 〈σ, [y, n]〉 = 0},

(5)

and
Gν

def
= {g ∈ G : g · ν = ν} = {g ∈ G : (Ad∗(g)σ)|n = σ|n = ν}. (6)

Note that
Ad(Gν)(nν) = nν (7)

because Ad(Gν)(gν) = gν and Ad(G)(n) = n . Also by the identity Ad∗(G)(n⊥) =
n⊥ ,

Gν = {g ∈ G : Ad∗(g)(Aν) = Aν}, where (8)

Aν
def
= σ + n⊥ = {α ∈ g∗ : α|n = ν}. (9)

Remark also that
(ad∗(y))2(Aν) = 0 for all y ∈ nν (10)

because [nν , g] ⊂ n and [nν , n] ⊂ (kerσ ∩ n) by (5).

Our interest now focuses on the two orbits Oσ(Gν) ' Gν/Gσ and Oσ(Nν) '
Nν/Nσ in g∗ (through the element σ ). By the commutation relation [g, n] ⊂ n ,
the isotropy algebra nσ depends only on the restriction ν of σ (see (3)):

nσ
def
= {y ∈ n : 〈σ, [y, g]〉 = 0} = {y ∈ n : 〈ν, [y, g]〉 = 0}. (11)
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This Lie algebra and the corresponding connected Lie subgroup of Nν will be
denoted by nνν and N0

νν respectively. In other words, for each element α ∈ g∗

such that α|n = σ|n :

nα = nσ = nνν and N0
α = N0

σ = N0
νν . (12)

In particular, N0
νν is a closed subgroup of the Lie groups N and Nν . Moreover,

this subgroup is the connected component of the closed subgroup Nνν of Nν ⊂ N ,
where

Nνν = {n ∈ N : Ad∗(n)α = α for all α ∈ Aν} =
⋂
α∈Aν

Nα. (13)

The group Nνν (and its identity component N0
νν ) is a normal subgroup of the Lie

groups Nν and Gν because by definition (8) Ad∗(Gν)(Aν) = Aν .

Lemma 2.3. The orbit Oσ(N0
ν ) of the identity component N0

ν of the Lie group
Nν coincides with the affine subspace σ + (n + gν)

⊥ of the space g∗ .

Proof. The lemma was proved in our paper [8]. But here we give a new short
proof clarifying why this orbit has a linear structure. First of all, we will show
that ad∗(nν)σ = (n+gν)

⊥ . Indeed, as an immediate consequence of (4) we obtain
that gν = (ad∗(n)σ)⊥ and, consequently, (n + gσ) = (ad∗(gν)σ)⊥ because gσ is
the kernel of the linear map g→ g∗ , ξ 7→ ad∗(ξ)σ . Therefore

ad∗(nν)σ = ad∗(gν)σ ∩ ad∗(n)σ = ((ad∗(gν)σ ∩ ad∗(n)σ)⊥)⊥

= ((ad∗(gν)σ)⊥ + (ad∗(n)σ)⊥)⊥ = (n + gν)
⊥

because by (3) the space gσ = (ad∗(g)σ)⊥ is a subspace of the space gν =
(ad∗(n)σ)⊥ . It is clear that also ad∗(nν)α = (n + gν)

⊥ for all α ∈ Aν . Now
to complete the proof it is sufficient to note that by (10)

Ad∗(exp y)α = exp(ad∗(y))α = α + ad∗(y)α for y ∈ nν ,

i.e. Ad∗(exp(nν))α = α + (n + gν)
⊥ .

For the element σ ∈ g∗ denote by τ its restriction σ|gν . Using the pair of
covectors ν ∈ n∗ and τ ∈ g∗ν define the affine subspace Aντ ⊂ Aν ⊂ g∗ as follows:

Aντ = {α ∈ g∗ : α|n = ν, α|gν = τ} = σ + (n + gν)
⊥. (14)

It is clear that

dimAντ = codim (n + gν) = dim g− (dim n + dim gν − dim nν)

= dim(G/Gν)− dim(N/Nν) = dim(G/N)− dim(Gν/Nν).
(15)

Let Nfin
ν be the subgroup of Nν generated by all elements n ∈ Nν such that the

power (Ad(n))m ∈ Ad(N0
ν ) for some non-zero integer m ∈ Z . This group is a

closed Lie subgroup of Nν because it contains the identity component N0
ν of Nν .

Put
N st
ν = {n ∈ Nν : Ad∗(n)(Aντ ) = Aντ}. (16)

By Lemma 2.3 N0
ν ⊂ N st

ν . The following lemma describes the isotropy group N st
ν

of Aντ (and any affine subspace α + (n + gν)
⊥ with α ∈ Aν of Aν ).
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Lemma 2.4. For any vector ξ ∈ gν the map

χξ : Nν → F, χξ(n) = 〈ν,Ad(n)ξ − ξ〉

is a homomorphism of the Lie group Nν into the additive group F. We have

N st
ν =

⋂
ξ∈gν

kerχξ and N0
ν ⊂ Nfin

ν ⊂ N st
ν ⊂ Nν .

Proof. The Lie group Nν is a normal subgroup of Gν and, consequently,
by (1) Ad(n)ξ − ξ ∈ nν , i.e. the map χξ is well defined. For arbitrary elements
n1, n2 ∈ Nν ,

〈ν,Ad(n1n2)ξ − ξ〉 = 〈ν,Ad(n1)(Ad(n2)ξ − ξ) + (Ad(n1)ξ − ξ)〉
= 〈ν, (Ad(n2)ξ − ξ) + (Ad(n1)ξ − ξ)〉,

because n−1
1 · ν = ν . Thus the map χξ is a homomorphism.

Choose elements n ∈ Nν and α ∈ Aν . By definition of the Lie group
Nν the covector Ad∗(n)α − α belongs to the annihilator n⊥ of n . Therefore
Ad∗(n)α − α ∈ (n + gν)

⊥ if and only if 〈α,Ad(n−1)ξ − ξ〉 = 0 for all ξ ∈ gν or,
equivalently, χξ(n

−1) = 0 for all ξ ∈ gν . Thus N st
ν =

⋂
ξ∈gν kerχξ .

By Lemma 2.3 N0
ν ⊂ N st

ν and, therefore, χξ(N
0
ν ) = 0 for all ξ ∈ gν . Now,

if (Ad(n))m ∈ Ad(N0
ν ) for some m ∈ Z then

mχξ(n) = χξ(n
m) = 〈ν, (Ad(n))mξ − ξ〉 = 0 for all ξ ∈ gν .

Thus χξ(N
fin
ν ) = 0. The proof of the lemma is completed.

If N is an affine algebraic Lie group, then its adjoint representation N →
GL(n), n 7→ Ad(n)|n , is a F-morphism. In this case the affine algebraic group
Nν always has a finite number of connected (irreducible) components, and conse-
quently, Nfin

ν = Nν .

Corollary 2.5. If N is an affine algebraic Lie group then Ad∗(Nν)(Aντ ) =
Aντ , i.e. N st

ν = Nν .

By Lemma 2.3 the Lie group Ad∗(N0
ν ) acts transitively on Aντ and, con-

sequently, Aντ ' N0
ν /(Nσ ∩ N0

ν ). Since the affine space Aντ is contractible, by
Lemma 2.1 the isotropy group Nσ ∩ N0

ν is connected, that is, it is equal to N0
σ

(the identity component of Nσ ⊂ Nν ). Similarly, the group Nfin
ν acts transitively

on Aντ and, consequently,

Nfin
ν /N0

ν ' (Nfin
ν ∩Nσ)/N0

σ .

Also by Lemma 2.1,
π1(N0

ν ) ' π1(N0
σ)

because π1(Aντ ) = π2(Aντ ) = 0. Thus

Aντ ' N0
ν /N

0
σ = N0

ν /N
0
νν and Aντ ' Nfin

ν /(Nσ ∩Nfin
ν ). (17)
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Consider now the isotropy group Gν . The algebra gν is its tangent Lie algebra.
For the element τ = σ|gν denote by Gντ the isotropy group of τ ∈ g∗ν with

respect to the natural co-adjoint action of Gν on g∗ν , which we denote by Âd
∗
.

Let Oτ (Gν) ⊂ g∗ν be the corresponding Âd
∗
-orbit of Gν passing through the point

τ (the union of coadjoint orbits in g∗ν ). Then Oτ (Gν) ' Gν/Gντ . Taking into

account that the Âd-action of Gν on gν is determined by the Ad-action of G on
g , we obtain that the natural projection

Πg
2 : g∗ → g∗ν , β 7→ β|gν , (18)

is a Gν -equivariant map with respect to the coadjoint actions Ad∗ and Âd
∗

of
Gν . Hence

Oτ (Gν)
def
= {Âd

∗
(g)τ, g ∈ Gν} = Πg

2(Oσ(Gν)) = {(Ad∗(g)σ)|gν , g ∈ Gν} (19)

and
Gντ = {g ∈ G : (Ad∗(g)σ)|n = σ|n = ν, (Ad∗(g)σ)|gν = σ|gν = τ}. (20)

Since by definition, Ad∗(Gν)(n + gν)
⊥ = (n + gν)

⊥ , we have

Gντ = {g ∈ G : Ad∗(g)(Aντ ) = Aντ}. (21)

Therefore by (16) and by Lemma 2.4 the group Gντ contains the Lie group N st
ν

and its subgroups Nfin
ν and N0

ν (the identity component of Nν ). The Lie algebra
gντ of Gντ contains the Lie algebra nν . Remark also that by definition Gσ ⊂ Gντ

and gσ ⊂ gντ . Since N0
ν ⊂ G0

ντ ⊂ Gντ , the groups Ad∗(G0
ντ ) and Ad∗(Gντ ) act

transitively on the affine space Aντ , that is

G0
ντ/(Gσ ∩G0

ντ ) ' Gντ/Gσ ' N0
ν /N

0
σ ' Aντ (22)

and, consequently,

Gντ = N0
ν ·Gσ = Gσ ·N0

ν and gντ = nν + gσ. (23)

Moreover, applying Lemma 2.1 to the spaces in (22) we obtain that

Gσ ∩G0
ντ = G0

σ, π1(G0
ντ ) = π1(G0

σ) and Gντ/G
0
ντ ' Gσ/G

0
σ. (24)

Also G0
ντ = N0

ν · G0
σ = G0

σ · N0
ν . But the group Nν is a normal subgroup in Gν

and, consequently, the group N0
ν is a normal subgroup in G0

ντ ⊂ Gν . Since the
group N0

σ = N0
νν is a normal subgroup of Gν , this group is also a normal subgroup

of the groups Gσ , N0
ν and Gντ .

The group N0
ν ⊂ Gντ ′ is the same group for all τ ′ ∈ Πg

2(Aν) ⊂ g∗ν . The
union Aν =

⋃
τ ′∈Πg

2(Aν)Aντ ′ is the union of the orbits of the group N0
ν , the parallel

affine subspaces of Aν with the associated vector space (n + gν)
⊥ .

Remark that Oν(G) is a union of coadjoint orbits (isomorphic to Oν(N) '
N/Nν ) in the dual space n∗ and the group G acts transitively on the set of
these orbits. Moreover, by equation (15) the dimension of Aντ is equal to the
codimension of the coadjoint orbit Oν(N) ⊂ n∗ in the G-orbit Oν(G) ⊂ n∗ . The
affine space Aντ as the orbit Oσ(N0

ν ) ⊂ Oσ(G) is an isotropic submanifold of the
coadjoint orbit Oσ(G) because by (5) ω(σ)(ad∗(nν)σ, ad∗(nν)σ) = 〈σ, [nν , nν ]〉 = 0.
We have proved
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Proposition 2.6. The affine space Aντ (14) is an isotropic submanifold of the
coadjoint orbit Oσ(G) ⊂ g∗ containing the point σ and dimAντ = dimOν(G) −
dimOν(N). The Lie subgroups Ad∗(N0

ν ), Ad∗(Nfin
ν ), Ad∗(G0

ντ ) and Ad∗(Gντ ) of
Ad∗(G) preserve the affine subspace Aντ ⊂ g∗ . The actions of these groups on
Aντ are transitive. Moreover, the orbits of the action of Ad∗(N0

ν ) on the affine
subspace Aν ⊂ g∗ are the parallel affine subspaces with the associated vector space
(n+ gν)

⊥ . The group N0
νν is a normal subgroup of the Lie groups N0

ν ⊂ Gντ ⊂ Gν

and topologically N0
ν /N

0
νν ' (n + gν)

⊥ .

Definition 2.7. The affine subspace Aντ = σ + (n + gν)
⊥ contained in the

coadjoint orbit Oσ(G) ⊂ g∗ and denoted by A(σ, n), will be called the isotropic
affine subspace associated with the ideal n of g .

Remark 2.8. By relations (15), (17) and (23) for any σ ∈ g∗ the following
conditions are equivalent: 1) A(σ, n) = {σ} ; 2) dimA(σ, n) = 0; 3) gν + n = g ;
4) gσ = gντ ; 5) nν ⊂ gσ . Here, recall, ν = σ|n and τ = σ|gν .

Now we consider the orbit Oτ (Gν) ⊂ g∗ν in more details. We will show that
this orbit is the union of coadjoint orbits of some little Lie algebra. To this end, we
consider the kernel n\ν ⊂ nν of the restriction ν|nν , i.e. n\ν = ker ν ∩ nν . Remark
that n\ν = nν or dim(nν/n

\
ν) = 1. By (4)

[gν , n] ⊂ ker ν and [gν , nν ] ⊂ (gν ∩ n) ∩ ker ν = n\ν , (25)

so that the subspace n\ν is an ideal in gν . Moreover, since h·ν = ν , Ad(h)(nν) = nν
for all h ∈ Gν (see (7)) and, by the definition, 〈h · ν, y〉 = 〈ν,Ad(h−1)y〉 for y ∈ n ,
we have

Ad(h)(n\ν) = n\ν for all h ∈ Gν . (26)

As we remarked above (see (19)), the set Oτ (Gν) consists of the restrictions
(Ad∗(g)σ)|gν , where g ∈ Gν . But by definition of the Lie group Gν we have
(Ad∗(g)σ)|n = ν for any g ∈ Gν , that is, all elements of the orbit vanish on
the ideal n\ν of the Lie algebra gν . Consider the quotient algebra bν = gν/n

\
ν .

Since the connected subgroup of Gν corresponding to the subalgebra n\ν is not
necessarily closed in Gν , we will describe the coadjoint orbits of bν in terms of the
Lie group Gν .

Let πν : gν → bν be the canonical homomorphism. The dual map πν
∗ : b∗ν → g∗ν is

a linear embedding and identifies the dual space b∗ν naturally with the annihilator
(n\ν)

⊥ν ⊂ g∗ν of n\ν in g∗ν . By Lemma 2.2 and by relation (19) the set

Oτ = {(Ad∗(g)σ)|gν , g ∈ G0
ν} ⊂ b∗ν ⊂ g∗ν (27)

is a coadjoint orbit in b∗ν = (n\ν)
⊥ν passing through the element τ ∈ b∗ν ⊂ g∗ν . In

particular, Oτ (Gν) is the union of coadjoint orbits of the little Lie algebra bν .
This orbit Oτ (Gν) will be called a little-group orbit. Remark here that this group
and this orbit are the analog of Rawnsley’s the little-group and the little-group
orbit in the case of semidirect products (see [13])).

2.3. The bundle of little-group orbits. We retain the general case when n
is an arbitrary ideal of g and σ is an arbitrary element of g∗ . Any element σ ∈ g∗
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determines a pair (ν, τ), where ν = σ|n and τ = σ|gν . Such a pair is denoted
by Πg

12(σ). By the definition, Πg
12(σ1) = Πg

12(σ2) if and only if σ1, σ2 ∈ Aντ
for some ν ∈ n∗ and τ ∈ g∗ν . In this case the elements σ1, σ2 belong to the
same Ad∗(G)-orbit O in g∗ because the set Aντ is an orbit of the Lie subgroup
N0
ν ⊂ G . Therefore the Ad∗ -action of G on the coadjoint orbit O induces the

action of G on the set Πg
12(O). We will show that on the set Πg

12(O) there exists
a structure of a smooth manifold such that the map Πg

12|O is a G-equivariant
submersion. Remark also that for arbitrary τ0 ∈ g∗ν there exists some σ0 ∈ g∗

such that Πg
12(σ0) = (ν, τ0) if and only if τ0|nν = ν|nν . In this case such an element

τ0 ∈ g∗ν is called a g∗ν -extension of ν ∈ n∗ .

Let B be the G-orbit in n∗ with respect to the action · . Now we construct a
bundle of little-group orbits over the orbit B . This bundle is the bundle p : P → B
such that the fibre FP (ν) = p−1(ν) is an orbit of Gν in g∗ν passing through some
g∗ν -extension of ν ∈ n∗ and if g belongs to G and τ to FP (ν) then g.τ ∈ FP (g · ν)
is defined by 〈g.τ, ξ′〉 = 〈τ,Ad(g−1)ξ′〉 , where ξ′ ∈ gg·ν . It follows that G acts
transitively on P . We prove below that this bundle and this action are smooth.

The bundle of little-group orbits may be described in another way. Consider
the smooth bundle Pντ = G×Gν (Gν/Gντ ), the bundle associated to the principal
bundle with base G/Gν , total space G and fibre Gν/Gντ . Here ν denotes some
element of the orbit B and τ ∈ FP (ν). Then FP (ν) ' Gν/Gντ . The elements
of Pντ are orbits of Gν (on G × (Gν/Gντ )), where the right action of Gν is
given by (g, [h]).h′ = (gh′, [h′−1h]) with g ∈ G , h, h′ ∈ Gν ([h] = hGντ ∈
Gν/Gντ ). The element (g, [h]).Gν of Pντ , is identified with the point (gh).τ in
FP ((gh) · ν) ⊂ P . Defining p by p((g, [h]).Gν) = (gh) · ν and the action of G on
Pντ by g′.(g, [h]).Gν = (g′g, [h]).Gν makes p : (Pντ = P ) → B a smooth bundle
of little-group orbits over B = Oν(G). The following proposition generalizes
Proposition 1 from [13].

Proposition 2.9. There is a bijection between the set of bundles of little-group
orbits and the set of coadjoint orbits of G on g∗ .

Proof. Let p : P → B be a bundle of little-group orbits, take ν ∈ B , τ ∈ FP (ν)
and choose some extension σ ∈ g∗ with σ|n = ν ∈ n∗ and σ|gν = τ ∈ g∗ν . If Oσ
is the Ad∗(G)-orbit through σ in g∗ then it depends only on p : P → B but
not of the choices made because all extensions of (ν, τ) are elements of this orbit
(see (22)).

Conversely, let O be an Ad∗(G)-orbit in g∗ and σ a point of O with
σ|n = ν and σ|gν = τ . Construct the bundle of little-group over B , the orbit of
ν in n∗ , with fibre FP (ν), the Gν -orbit of τ ∈ g∗ν in g∗ν . This gives a bundle
depending only on O and not of the choices made. These two constructions are
the inverses of each other and set up the required bijection.

If we have an orbit Oσ = Oσ(G) in g∗ and the associated bundle p : P → B ,
then the following diagram (on the left) of G-equivariant maps is commutative.
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Recall that, by the definition, Πg
12(σ) = (σ|n, σ|gν ) = (ν, τ) and Πg

1(σ) = σ|n .

Oσ
Πg

12↓ ↘ Πg
1

P
p−→ B

G×Gν (Gν/Gσ)
Πg

12↓ ↘ Πg
1

G×Gν (Gν/Gντ )
p−→ G/Gν

(28)

As we remarked above, the fibres of Πg
12 are affine subspaces of g∗ whose associated

vector space are conjugated to (n+gν)
⊥ (in general there will be no natural origin

in Πg
12
−1

(ν, τ) = Aντ ). Thus the fibres of Πg
12 are the orbits on Oσ of the groups

conjugated to Gντ .

The map Πg
12 : Oσ(G)→ P is smooth because the map Πg

1 : Oσ(G)→ B is
a submersion and the left diagram is commutative. This fact can be established also
by identifying G-equivariantly the bundle P with Pντ = G×Gν (Gν/Gντ ). But by
the definition, Oσ ' G/Gσ and B ' G/Gν . Consider the space G×Gν (Gν/Gσ),
where the right action of Gν is given by (g, hGσ).h′ = (gh′, h′−1hGσ) with g in
G , h, h′ in Gν . The standard map

G×Gν (Gν/Gσ)→ G/Gσ, [(g, hGσ)]Gν 7→ ghGσ

is a G-equivariant diffeomorphism with respect to the natural left actions of G .
Therefore, using this identification, we obtain the following expressions for the
G-equivariant maps p,Πg

1,Π
g
12 : p([(g, hGντ )]Gν ) = ghGν ,

Πg
1([(g, hGσ)]Gν ) = ghGν , and Πg

12([(g, hGσ)]Gν ) = [(g, hGντ )]Gν .

It is clear that the diagram above (on the right) is also commutative and these
two diagrams are equivalent. Remark also that by Proposition 2.6 the fibre Aντ
is an isotropic submanifold of the coadjoint orbit Oσ(G). We have proved

Theorem 2.10. The map Πg
12 : Oσ(G) → P is a G-equivariant submersion

of the coadjoint orbit Oσ onto the bundle P of little-group orbits. This map is a
bundle with the total space Oσ , the base P and the affine space Aντ (the isotropic
submanifold of Oσ(G)) as its fibre. The commutative diagrams (28) are equivalent.

2.4. Isotropic affine subspaces of coadjoint orbits. As follows from Propo-
sition 2.6 each coadjoint orbit O of the Lie algebra g contains the isotropic affine
subspace associated with its ideal n . We will show below that any isotropic affine
subspace of the corresponding coadjoint orbit in b∗ν ⊂ g∗ν (see Lemma 2.2) deter-
mines some isotropic affine subspace of O .

Let Oσ = Oσ(G), where σ ∈ g∗ , be a coadjoint orbit in g∗ . Consider
also the coadjoint orbit Oτ in g∗ν (27) passing through the element τ ∈ g∗ν ,
where τ = σ|gν . To simplify the notation, this orbit Oτ = Oτ (G0

ν) of the
connected Lie group G0

ν will be considered as an orbit of the (closed) Lie subgroup
G•ν = G0

ν · Gντ of Gν , containing the whole isotropy subgroup Gντ . The σ -orbit
Oσ(G•ν) ⊂ Oσ(Gν) in g∗ is also connected because, by (23), G•ν = G0

ν ·Gσ . Recall
that Πg

2 denotes the natural Gν -equivariant projection g∗ → g∗ν , β 7→ β|gν defined
by (18).
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Proposition 2.11. Let σ ∈ g∗ be an arbitrary element and ν = σ|n , τ = σ|gν .
The restriction p2 = Πg

2|Oσ(G•ν) of the projection Πg
2 is a G•ν -equivariant submersion

of the orbit Oσ(G•ν) onto the coadjoint orbit Oτ in g∗ν . This map p2 : Oσ(G•ν)→
Oτ is a bundle with the total space Oσ(G•ν), the coadjoint orbit Oτ as its base and
the affine space Aντ ' Gντ/Gσ as its fibre. Moreover, p∗2(ω′) = ω|Oσ(G•ν) , where
ω′ and ω are the canonical Kirillov-Kostant-Souriau symplectic 2-forms on the
coadjoint orbits Oτ ⊂ g∗ν and Oσ(G) ⊂ g∗ respectively.

Proof. To prove the first part of the proposition it is sufficient to remark that

Oσ(G•ν) ' G•ν/Gσ, Oτ = Oτ (G•ν) ' G•ν/Gντ , Aντ ' Gντ/Gσ

and G•ν/Gσ = G•ν ×Gντ (Gντ/Gσ) with the standard right action of Gντ .

By G•ν -equivariance of the map p2 , we have p2∗(σ)(ad∗(ξ)σ) = âd
∗
(ξ)τ for

ξ, η ∈ gν . Then, by the definition, of the form ω′ ,

(p∗2ω
′)(σ)(ad∗(ξ)σ, ad∗(η)σ) = ω′(τ)(âd

∗
(ξ)τ, âd

∗
(η)τ) = τ([ξ, η]) = σ([ξ, η]).

Taking into account the expression (2) for ω at the point σ and G•ν -invariance of
the forms ω and ω′ , we complete the proof.

Remark 2.12. The proposition above admits the following moment map inter-
pretation. Indeed, the map JN : Oσ(G)→ n∗ , σ 7→ σ|n is an equivariant moment
map for the action of N on Oσ(G) induced by the coadjoint action of G on g∗ .
Then by (6) the set J−1

N (ν) = Aν∩Oσ(G) = Oσ(Gν) is a submanifold of Oσ(G). If
Nfin
ν = Nν , then by Proposition 2.6 the quotient space J−1

N (ν)/Nν ' Πg
2(Oσ(Gν))

is a reduced symplectic manifold. This manifold is the orbit Oτ (Gν) ⊂ b∗ν ⊂ g∗ν , a
union of coadjoint orbits (connected components) in the reduced Lie algebra b∗ν .
The reduced symplectic structure on Oτ (Gν) coincides with the canonical Kirillov-
Kostant-Souriau symplectic form on each connected component of Oτ (Gν).

Proposition 2.13. We retain the notation of Proposition 2.11. Suppose that
the coadjoint orbit Oτ ⊂ g∗ν contains the isotropic affine subspace I(τ) passing
through the point τ . The preimage I(σ) = p−1

2 (I(τ)), I(σ) ⊂ Oσ(G0
ν) ⊂ Aν , is

an isotropic affine subspace of the coadjoint orbit Oσ(G) passing through σ ∈ g∗

and dim I(σ) = dim I(τ) + dimAντ .

Proof. Since the map Πg
2 : g∗ → g∗ν is linear, the set Ĩ(σ) = (Πg

2)−1(I(τ))∩Aν
is an affine subspace of Aν = σ + n⊥ . Since I(τ) is a subset of the orbit
Oτ = Oτ (G0

ν), Πg
2(σ) = τ and the map Πg

2 is Gν -equivariant, we have that
for each element τ ′ ∈ I(τ) there exists an element σ′ ∈ Oσ(G0

ν) ⊂ Aν such that
Πg

2(σ′) = τ ′ . Therefore
(Πg

2)−1(τ ′) ∩ Aν = (σ′ + g⊥ν ) ∩ (σ′ + n⊥) = σ′ + (gν + n)⊥

and, consequently, the vector space associated with the affine space Ĩ(σ) con-

tains the vector subspace (gν + n)⊥ of the kernel of Πg
2 . Thus dim Ĩ(σ) =

dim I(τ) + dim(gν + n)⊥ . Moreover, Ĩ(σ) ⊂ Oσ(G0
ν) because by Proposition 2.6

each subset σ′ + (gν + n)⊥ of Ĩ(σ) is an Ad∗(N0
ν )-orbit contained in Oσ(G0

ν).
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Then, in particular, Ĩ(σ) ⊂ p−1
2 (I(τ)). Taking into account that by the defini-

tion p−1
2 (I(τ)) = (Πg

2)−1(I(τ)) ∩ Oσ(G0
ν), we obtain that p−1

2 (I(τ)) = Ĩ(σ). It
is an immediate consequence of Proposition 2.11 that p−1

2 (I(τ)) is an isotropic
submanifold of the coadjoint orbit Oσ(G).

Proposition 2.14. We retain the notation of Proposition 2.11. Suppose that
dimAντ = 0 and the quotient algebra bν = gν/n

\
ν , n\ν = ker(ν|nν ) is Abelian. Then

1) Oσ(G) = Oσ(N) and Oν(G) = Oν(N), where Oσ(G) and Oν(N) are the
coadjoint orbits of the Lie algebras g and n respectively;

2) the projection p1 : Oσ(G) → Oν(N), σ′ 7→ σ′|n , is a symplectic G-
equivariant covering map with the discrete fiber ' Nν/Nσ and gσ = gν ,
nσ = nν ;

3) if Nν = Nfin
ν , then p1 is a diffeomorphism, and, in particular, Gν = Gσ ,

Nν = Nσ .

Proof. Since N is a normal subgroup of G , the G-orbit Oν(G) is a union
of isomorphic N -orbits. These N -orbits are open subsets of Oν(G) because
dimOν(G) − dimOν(N) = dimAντ = 0. Then Oν(G) = Oν(N) because G
is connected.

By Proposition 2.11 dimOσ(Gν) = dimOτ (Gν) because Aντ = {σ} . Since
each connected component of Oτ (Gν) is a coadjoint orbit of the Lie algebra bν
which is Abelian, dimOτ (Gν) = 0. Thus the G-equivariant map p1 : Oσ(G) →
Oν(G) is a bundle with the discrete fibre Oσ(Gν). Taking into account the
identity Oν(G) = Oν(N) and the N -equivariance of the local diffeomorphism
p1 we obtain that TσOσ(G) = TσOσ(N), i.e. the orbit Oσ(N) is an open subset
of Oσ(G). Using the same arguments as above, we obtain that Oσ(G) = Oσ(N).
Since Oσ(G) ' N/Nσ and Oν(G) ' N/Nν , we have Oσ(Gν) ' Nν/Nσ . Since
dimOσ(G) = dimOν(G), dim gσ = dim gν . Thus gσ = gν because gσ ⊂ gν .

The local diffeomorphism p1 is symplectic with respect to the canonical
symplectic structures on the both coadjoint orbits. To prove this fact it is sufficient

to observe that TσOσ(G) = ad∗(n)σ , p1∗(σ)(ad∗(ξ)σ) = ãd
∗
(ξ)ν and σ([ξ, η]) =

ν([ξ, η]) for any ξ, η ∈ n (by N -equivariance of p1 ), and to use definition (2) of
the canonical symplectic form. Here p1∗(σ) denotes the tangent map TσOσ(G)→
TνOν(N) and ãd

∗
denotes the coadjoint representation of the Lie algebra n .

If Nν = Nfin
ν , then by Proposition 2.6 the group Ad∗(Nν) preserves the one-

point set Aντ = {σ} and, consequently, Nν = Nσ . Hence p1 is a diffeomorphism.

By Remark 2.8 dimAντ = 0 if and only if gν + n = g . Therefore it is
natural to consider now the pair n ⊂ g such that gµ+n = g for almost all µ ∈ n∗ .
To this end for a Lie algebra q by R(q∗) denote the set of all elements w ∈ q∗ such
that the isotropy algebra qw = {ξ ∈ q : ad∗(ξ)w = 0} has minimal dimension.
The set R(q∗) is open and dense in q∗ .
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Lemma 2.15. Suppose that gµ + n = g for all µ from some open subset of n∗ .
Then gν + n = g and dim gν = const for all ν ∈ R(n∗). Moreover, if for some
ν ∈ R(n∗) the quotient algebra bν = gν/n

\
ν is Abelian and Aν ∩ R(g∗) 6= ∅ then

for each ν1 ∈ R(n∗): (i) Aν1 ⊂ R(g∗); (ii) gν1 = gσ1 for each σ1 ∈ Aν1 ; (iii) the
Lie algebra gν1 is Abelian; (iv) there exists an Abelian Lie algebra a ⊂ gν1 such
that the Lie algebra g is a semidirect product of a and the ideal n, i.e. g = an n.

Proof. Since gµ + n = g for all µ from some open subset O of n∗ , there
exists an element ν0 ∈ R(n∗) ∩ O such that dim gν0 6 dim gµ , µ ∈ O . But by
the definition for each ν ∈ R(n∗) the isotropy algebra nν = gν ∩ n has constant
dimension and dim gν0 6 dim gν . Therefore gν + n = g and dim gν = dim gν0 .

If the quotient algebra bν = gν/n
\
ν is Abelian then the coadjoint orbit

Oτ ⊂ g∗ν is a one-point set {τ} and therefore gντ = gν . Let σ be an element
of non-empty set Aν ∩ R(g∗). By Remark 2.8, gντ = gσ . Similarly, gν1τ1 = gσ1 ,
where σ1 ∈ Aν1 and τ1 = σ1|gν1 , because gν1 + n = g for ν1 ∈ R(n∗). Hence

dim gσ1 = dim gν1τ1 6 dim gν1 = dim gν = dim gντ = dim gσ

because gν1τ1 ⊂ gν1 . But by definition dim gσ1 > dim gσ . Therefore gσ1 = gν1 and
Aν1 ⊂ R(g∗). The Lie algebra gσ1 is Abelian as an isotropy algebra of an element
in general position of the coadjoint representation (a theorem of Duflo-Vergne [4,
Prop. 1.11.7]). Hence the algebra gν1 = gσ1 is Abelian. Since gν1 + n = g , there
exists a subspace a ⊂ gν1 such that g is a direct sum of spaces a and n . The
subspace a is an Abelian subalgebra of g .

2.5. Integral orbits: a necessary but non sufficient condition. In this
subsection we will use the notation of the previous subsections, but suppose in
addition that the ground field F is the field R of real numbers.

First of all we will give an exposition of some results of Kostant [5, §§5.6,
5.7, Theorem 5.7.1] on the geometry of coadjoint orbits.

Let H be a connected Lie group with the Lie algebra h . Fix some covector
ϕ ∈ h∗ and consider the coadjoint orbit Oϕ = Oϕ(H) ' H/Hϕ in h∗ . We will
say that the coadjoint orbit Oϕ in the dual space h∗ is integral if its canonical
symplectic form is integral, i.e. this form determines an integral cohomology class
in H2(Oϕ,Z) ⊂ H2(Oϕ,R).

Denote by H]
ϕ the set (possibly empty) of all characters χ : Hϕ → S1 ⊂ C

such that dχ(e) = 2πi · ϕ|hϕ , where hϕ is the Lie algebra of the isotropy group
Hϕ . For such a character χ ∈ H]

ϕ ,

χ(exp ξ) = exp(2π i · 〈ϕ, ξ〉) for all ξ ∈ hϕ. (29)

Since the identity component H0
ϕ of Hϕ is generated by its neighborhood of the

unity, the restriction χ|H0
ϕ

is defined uniquely by equation (29). Therefore if

H]
ϕ is not empty then H]

ϕ is a π∗(Hϕ/H
0
ϕ)-principal homogeneous space, where

π∗(Hϕ/H
0
ϕ) is the group of S1 -valued characters of the quotient group Hϕ/H

0
ϕ . In

this case |H]
ϕ| = |π∗(Hϕ/H

0
ϕ)| [5].

Let H̃ be the connected simply connected Lie group with the Lie algebra
h , the universal covering group of the connected Lie group H and p̃ : H̃ → H
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be the corresponding covering homomorphism. Then Oϕ = H̃/H̃ϕ , where H̃ϕ

is the isotropy group of the element ϕ ∈ h∗ . By definition H̃ϕ = p̃−1(Hϕ) and

Hϕ ' H̃ϕ/D , where D is the kernel of p̃|H̃ϕ . The following Kostant’s theorem [5,

Theorem 5.7.1] is crucial for the forthcoming considerations.

Theorem 2.16 (B.Kostant). The orbit Oϕ in h∗ is integral if and only if the

character set H̃]
ϕ is not empty.

Remark that one can not formulate the integrality condition for the orbit
Oϕ only in terms of the connected Lie group H (defining this orbit) because as it

will be shown below (see Example 2.17) in the general case the characters χ ∈ H̃]
ϕ

are not constant on the closed discrete subgroup D of the center of H̃ϕ . In other

words, it is possible that H]
ϕ = ∅ while H̃]

ϕ 6= ∅ .

Example 2.17. Consider the connected Lie group H = SO(3) and its universal

covering group H̃ = SU(2) with the Lie algebra h = su(2). Using the invariant
scalar product 〈ϕ1, ϕ2〉 = −1

2
Trϕ1ϕ2 on h we can identify the spaces h and h∗ . It

is evident that for ϕ = diag(ib,−ib) ∈ su(2) with b ∈ R \ {0} the isotropy group

is H̃ϕ = {diag(eia, e−ia), a ∈ R} and the isotropy algebra is
hϕ = {diag(ia,−ia), a ∈ R} .

In particular, H̃ϕ contains the element −E = diag(−1,−1) ∈ SU(2) of the kernel
of the covering homomorphism p̃ : SU(2)→ SO(3). Under our identification of h
with h∗ the map (29) χ̃ : exp(hϕ)→ S1 , diag(eia, e−ia) 7→ e2πiab , is well defined if

and only if 2πb ∈ Z . Since the group H̃ϕ is connected, by Theorem 2.16, the orbit
Oϕ is integral if and only if the number 2πb is integer. For such a covector ϕ the
set H̃]

ϕ contains a unique element, the character χ̃ . But if the number 2πb is odd

then χ̃(−E) = −1. For such a covector ϕ the set H]
ϕ is empty while H̃]

ϕ 6= ∅ .
Indeed, in the opposite case for χ ∈ H]

ϕ we have by definition that χ ◦ p̃ ∈ H̃]
ϕ .

Therefore χ ◦ p̃ = χ̃ . But (χ ◦ p̃)(−E) = 1 while χ̃(−E) = −1, the contradiction.

The character χ|H0
ϕ

, χ ∈ H]
ϕ on H0

ϕ admits another interpretation in terms

of differential forms. Choose a contractible neighborhood U ⊂ H0
ϕ of the unity

for which all intersections U ∩ hU , h ∈ H0
ϕ are also (smoothly) contractible (one

uses, for instance, a convex set relative to any invariant Riemannian structure on
H0
ϕ ). The left H0

ϕ -invariant one-form θϕ with θϕ(e) = ϕ|hϕ on the Lie group H0
ϕ

is closed because, by the definition (3) of an isotropy algebra, ϕ([hϕ, hϕ]) = 0.
A character on H0

ϕ determined by (29) exists if and only if the one-form θϕ
is integral, i.e. θϕ ∈ H1(H0

ϕ,Z). In this case there exists a family of local
functions {fh : hU → R, h ∈ H0

ϕ} such that dfh = θϕ on the open subset hU
and fh1 − fh2 ∈ Z if h1U ∩ h2U 6= ∅ , h1, h2 ∈ H0

ϕ . By H0
ϕ -invariance of the form

θϕ the family {fh} determines the character on H0
ϕ if and only if fe(e) ∈ Z . Then

χ|hU = exp(2πifh).

Proposition 2.18. Let σ be an arbitrary element of g∗ , ν = σ|n and τ = σ|gν .
There is a bijection between the sets G]

ντ and G]
σ , where G]

ντ denotes the set of
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all characters χ : Gντ → S1 ⊂ C such that dχ(e) = 2πi · τ |gντ . This bijection is
induced by the restriction map χ 7→ χ|Gσ .

Proof. Note that τ = σ|gν and Gσ ⊂ Gντ . But gσ ⊂ gντ ⊂ gν , thus
τ |gσ = σ|gσ and by the definition for any χ ∈ G]

ντ we have χ|Gσ ∈ G]
σ . Therefore,

in order to prove the proposition it is sufficient to show that each character
ψ ∈ G]

σ admits an extension to some character χ ∈ G]
ντ . This extension is

unique because by (24) the groups Gντ/G
0
ντ and Gσ/G

0
σ are isomorphic and, in

particular, π∗(Gντ/G
0
ντ ) ' π∗(Gσ/G

0
σ).

Consider now a character ψ ∈ G]
σ . As the quotient space G0

ντ/G
0
σ '

Aντ is contractible, it follows from the spectral sequence of a fiber bundle that
H1(G0

ντ ,Z) ' H1(G0
σ,Z). By the above, there exists a character χ0 ∈ (G0

ντ )
]

which is an extension of the character ψ|G0
σ
. Moreover, χ0(hgh−1) = χ0(g) for any

(fixed) h ∈ Gντ and for all g ∈ G0
ντ . To prove this fact it is sufficient to note that

the map G0
ντ → S1 , g 7→ χ0(hgh−1) is a character and for ξ ∈ gντ by (20) we have

χ0(h(exp ξ)h−1) = χ0(exp(Ad(h)ξ)) = exp(2π i · 〈τ,Ad(h)ξ〉)
= exp(2π i · 〈τ, ξ〉) = χ0(exp ξ).

Taking into account that Gντ = Gσ · G0
ντ , G0

ντ ∩ Gσ = G0
σ (see (23)) and

ψ|G0
σ

= χ0|G0
σ

we obtain that the map χ : Gντ → S1 , χ(hg) = ψ(h)χ0(g), where
h ∈ Gσ and g ∈ G0

ντ , is well defined. This map determines a character on Gντ

because χ0(hgh−1) = χ0(g) for all h ∈ Gσ ⊂ Gντ and g ∈ G0
ντ . Finally, χ belongs

to the set G]
ντ because χ|G0

ντ
= χ0 .

Remark that Proposition 2.18 generalizes Rawnley’s Proposition 2 from [13].

Proposition 2.19. Let σ ∈ g∗ and ν = σ|n . An integrality of the coadjoint
orbit Oτ ⊂ g∗ν is a necessary condition for an integrality of the coadjoint orbit
Oσ ⊂ g∗ . In general, this condition is not sufficient for an integrality of Oσ .

Proof. If the form ω on Oσ = Oσ(G) is integral, then its restriction ω|Oσ(G•ν)

to the submanifold Oσ(G•ν) ⊂ Oσ(G) is also integral. Since by Proposition 2.11
the map p2 : Oσ(G•ν)→ Oτ is a locally trivial fibering with a contractible fibre, the
affine space Aντ , this map induces an isomorphism H2(Oτ ,Z)→ H2(Oσ(G•ν),Z).
Since by Proposition 2.11 p∗2(ω′) = ω|Oσ(G•ν) , the canonical symplectic form ω′ on
Oτ is integral and we obtain the first assertion of the proposition.

Remark also that the first assertion of the proposition follows also from
Proposition 2.18. Indeed, we can assume without restricting the generality that
G is a connected and simply connected Lie group with the Lie algebra g . By
Theorem 2.16, the character set G]

σ is not empty. By Proposition 2.18, G]
ντ 6= ∅ .

Let G̃0
ν be the universal covering group of the connected group G0

ν (with the Lie
algebra gν ). By Theorem 2.16 the coadjoint orbit Oτ is integral if and only

if (G̃0
ν)
]
τ 6= ∅ . However, the covering homomorphism G̃0

ν → G0
ν induces the

homomorphism (G̃0
ν)τ → (G0

ν)τ and, consequently, (G̃0
ν)
]
τ 6= ∅ if (G0

ν)
]
τ 6= ∅ .

Therefore (G̃0
ν)
]
τ 6= ∅ , because G]

ντ 6= ∅ and (G0
ν)τ is an open subgroup of Gντ .
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The second assertion of the proposition will be proven in the next subsection
showing that the converse is not necessarily true. More precisely, we will construct
a Lie algebra g which is a semi-direct product of some Lie subalgebra k ⊂ g and
an Abelian ideal n and choose two coadjoint orbits Oτ ⊂ g∗ν and Oσ ⊂ g∗ which
are not integral simultaneously while τ = σ|gν .

2.6. Lie algebras with Abelian ideals. In this subsection we will construct
a connected and simply connected Lie group G and some coadjoint orbit Oσ(G)
in g∗ such that the set (G0

ντ )
] is empty while the coadjoint orbit Oτ = Oτ (G0

ν) is
integral. Then by Proposition 2.18 the set G]

σ is also empty, i.e. the orbit Oσ(G)
is not integral.

Let K be a connected and simply connected Lie group with the Lie algebra
k , and for k in K and f in the dual k∗ of k , let Ad∗ denote the coadjoint action
of K on k∗ . If δ is a representation of K on a real, finite-dimensional space V ,
let dδ be the corresponding tangent representation of k .

We can form the semi-direct product G = Knδ V using the representation
δ and identifying V with its group of translations. Then the Lie group G can
be taken as a Cartesian product K × V with multiplication (k1, v1)(k2, v2) =
(k1k2, k

−1
2 · v1 + v2) for kj ∈ K , vj ∈ V and the algebra g = kndδ V of G can be

taken as k⊕ V with the Lie bracket

[(ζ1, y1), (ζ2, y2)] = ([ζ1, ζ2], ζ1 · y2 − ζ2 · y1)

for ζj in k and yj in V . Here kj · vj = δ(kj)(vj) and ζj · yj = dδ(ζj)(yj). Since
(k, v)−1 = (k−1,−k · v), the adjoint action of G on g is given by

Ad (k, v)(ζ, y) = (Ad(k)ζ, k · (y − ζ · v)). (30)

The dual g∗ of g can be identified with k∗ ⊕ V ∗ and the coadjoint action Ad∗(g)
of g ∈ G on g∗ is defined by the following expression

〈Ad∗(k, v)(f ′, ν ′), (ζ, y)〉 = 〈Ad∗(k)f ′, ζ〉+ 〈ν ′, (Ad(k−1)ζ) · v〉+ 〈k · ν ′, y〉, (31)

where f ′ is in k∗ and ν ′ in V ∗ ; also, by the definition, 〈k · ν ′, y〉 = 〈ν ′, k−1 · y〉 .
Note that all above formulas for semidirect products are standard up to notation.

The subgroup N = {(e, v) ∈ G, v ∈ V } is a normal commutative subgroup
of G with the Lie algebra n = {(0, y), y ∈ V } . The Ad-action (30) of G on n
induces the action of G on n∗ : (k, v) · ν = k · ν . Therefore for ν ∈ n∗ = V ∗

Gν = {(k, v) ∈ K nδ V, k · ν = ν} and gν = {(ζ, y) ∈ kndδ V, ζ · ν = 0},

that is Gν = Kν nδ V and gν = kν ndδ V , where Kν is the isotropy group of
ν ∈ V ∗ with Lie algebra kν = {ζ ∈ k : ζ · ν = 0} . Here, by the definition,
〈ζ · ν, y〉 = 〈ν,−ζ · y〉 .

It is easy to verify using (31) that Gν is the stabilizer of the affine subspace
Aν = {(f, ν), f ∈ k∗} .

Putting σ = (f, ν) and τ = σ|gν , we obtain that τ = (ϕ, ν), where ϕ = f |kν .
By definition (20), the Lie group

Gντ = {(k, v) ∈ Kν nδ V :
(
Ad∗(k, v)(f, ν)

)
|gν = (f, ν)|gν}

= {(k, v) ∈ Kν nδ V : (Ad∗(k)f)|kν = f |kν},
(32)
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because k · ν = ν , ζ · ν = 0 and Ad(k)ζ ∈ kν for all k ∈ Kν , ζ ∈ kν . In particular,
ζ · v ∈ ker ν if v ∈ ker ν . In other words, Gντ = Kνϕ nδ V , where

Kνϕ = {k ∈ Kν : 〈ϕ,Ad(k−1)ζ〉 = 〈ϕ, ζ〉, ∀ζ ∈ kν}. (33)

Suppose now that the group Kν is connected. Let K̃ν be its universal
covering group with the covering homomorphism p̃ν : K̃ν → Kν . Then G̃ν =
K̃ν nδ̃ V is the universal covering group of Gν , where the semi-direct product is
determined by the representation δ̃ = δ ◦ p̃ν . Since the group Gν is connected, the
coadjoint orbit Oτ ⊂ g∗ν is the orbit Oτ (Gν) ' Gν/Gντ . But this orbit is also an

orbit of G̃ν , that is Oτ ' G̃ν/(G̃ν)τ . It is easy to verify using expressions similar

to (31) and (32) that (G̃ν)τ = (K̃ν)ϕ nδ̃ V , where (K̃ν)ϕ = p̃−1
ν (Kνϕ).

Now we will establish bijections between the sets (G̃ν)
]
τ and (K̃ν)

]
ϕ , G]

ντ and
K]
νϕ using Rawnsley’s formula [13, Eq.(2)]. Indeed, for any character ψ ∈ K]

νϕ

the function χ(k, v) = ψ(k) exp(2πi〈ν, v〉) on the group Gντ = Kνϕ nδ V is a
character because k · ν = ν . By (29) this character χ is a unique extension of
ψ such that χ ∈ G]

ντ . Thus there is a bijection between G]
ντ and K]

νϕ . Using

similar arguments one establishes a bijection between (G̃ν)
]
τ and (K̃ν)

]
ϕ because

(G̃ν)τ = (K̃ν)ϕnδ̃ V . By Proposition 2.18 and Theorem 2.16, the orbit Oτ (Gν) is

integral and the orbit Oσ(G) is not integral if and only if (G̃ν)
]
τ 6= ∅ and G]

ντ = ∅
or, equivalently, (K̃ν)

]
ϕ 6= ∅ and K]

νϕ = ∅ . Remark also that the coadjoint orbit
Oϕ in k∗ν passing through the point ϕ is isomorphic to the homogeneous spaces

Kν/Kνϕ and K̃ν/(K̃ν)ϕ simultaneously.

Example 2.20. Now we consider a connected and simply connected alge-
braic Lie group K = SU(3) and its representation δ : SU(3) → End(gl(3,C)),
δ(k)(v) = kvkt , in the space V of all complex matrices of order three (consid-
ered as a real space). Here kt denotes the transpose of a matrix k ∈ SU(3).
Using the nondegenerate 2-form 〈v1, v2〉 = Re Tr v1v2 on V we identify the space
V with dual V ∗ . Under this identification the dual representation δ∗ is given by
δ∗(k)(v) = (kt)−1vk−1 . It is clear that for the covector ν = E , where E is the iden-
tity matrix, the isotropy group H = Kν is the group SO(3) = SO(3,C)∩ SU(3).

Its universal covering group H̃ = K̃ν is isomorphic to SU(2). But as we
showed above (see Example 2.17) there is an element ϕ ∈ h∗ = k∗ν such that

H̃]
ϕ = (K̃ν)

]
ϕ 6= ∅ while H]

ϕ = K]
νϕ = ∅ . Thus, as we proved above, (G̃ν)

]
τ 6= ∅

while G]
ντ = ∅ , that is the condition of Proposition 2.19 is not sufficient.

Remark 2.21. The Rawnsley’s assertion [13, Corollary to Prop.2] claims that
an arbitrary coadjoint orbit Oσ in the dual space g∗ of the semidirect product
g is integral if and only if the coadjoint orbit Oϕ ' Kν/Kνϕ in k∗ν is integral.
From Example 2.20 it follows that in general this assertion is not true. The gap in
the proof of this assertion [13, Corollary to Prop.2] consists in an illegal using of
Kostant’s theorem 2.16 (with the not necessary simply connected group H = Kν ).
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