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1. Introduction

Let G be a complex simple Lie group having roots of different length. Fix a
triangular decomposition of g = LieG and the relevant objects (simple roots,
dominant weights, etc.). In particular, let ∆ be the set of all roots and θs the short
dominant root. The simple G-module with highest weight θs , denoted Vθs , is said
to be little adjoint. There are two series of little adjoint representations (associated
with G = Sp2n or SO2n+1 ) and two sporadic cases (associated with F4 and G2 ).
We give a uniform presentation of invariant-theoretic properties of the little adjoint
representations. Most of these properties follows from known classification results
in Invariant Theory. But our intention is to provide conceptual proofs whenever
possible. We also notice a new phenomenon; namely, a relationship between Vθs
and the adjoint representation of certain simple subalgebra of g .

Let Πs be the set of short simple roots and W (Πs) the subgroup of the Weyl
group W that is generated by the ”short” simple reflections. Let V0

θs
be the zero

weight space of Vθs . We prove that dimV0
θs

= #(Πs), NG(V0
θs

)/ZG(V0
θs

) ' W (Πs),
and the restriction homomorphism C[Vθs ] → C[V0

θs
] induces an isomorphism

C[Vθs ]
G ' C[V0

θs
]W (Πs) . This implies that C[Vθs ]

G is a polynomial algebra, of Krull
dimension #(Πs), and the quotient morphism πG : Vθs → Vθs//G = Spec (C[Vθs ]

G)
is equidimensional. If v ∈ V0

θs
is generic, then the stabiliser Gv is connected and

semisimple, and the root system of Gv consists of all long roots in ∆. We also
show that the orbit of highest weight vectors in Vθs is of dimension 2ht(θs) and
dimVθs = (h+ 1)·#(Πs), where h is the Coxeter number of G .

Let g(Πs) be the semisimple subalgebra of g whose set of simple roots is
Πs . Then rk g(Πs) = #(Πs) and W (Πs) is just the Weyl group of g(Πs). We give
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a conceptual explanation for the fact that Πs is a connected subset on the Dynkin
diagram, so that l := g(Πs) is actually simple. There is a connection between
Vθs and the adjoint representation of the group L = G(Πs). Namely, l can
naturally be regarded as a submodule of Vθs that contains V0

θs
, and the restriction

homomorphism C[Vθs ] → C[l] induces an isomorphism C[Vθs ]
G ' C[l]L . Using

the well-known properties of the adjoint representation [5], we then prove that the
null-cone N(Vθs) := π−1

G (πG(0)) is an irreducible complete intersection and Vθs
admits a Kostant-Weierstrass section (see Section 4 for details). All these results
are proved conceptually.

Let N(l) denote the set of nilpotent elements in l . If O ⊂ N(l) is an L-
orbit, then G·O is a G-orbit in N(Vθs). There is a striking relation between the
set of L-orbits in N(l) and the set of G-orbits in N(Vθs), which is proved case-
by-case. The assignment O 7→ G·O sets up a bijection between these two sets;
moreover, if O 6= {0} , then dimG·O/ dimO = h/hs , where hs is the Coxeter
number of l . Using a relation of Coxeter elements, we conceptually prove that
h/hs ∈ N .

In the Section 5, we shortly discuss more advanced topics related to Vθs
that are dealt with in [13, 15].

Main notation. Throughout, G is a connected simply-connected simple
algebraic group with LieG = g . Fix a triangular decomposition g = u ⊕ t ⊕ u− .
Then

– ∆ is the root system of (g, t), h is the Coxeter number of ∆, and W is
the Weyl group.

– ∆+ is the set of positive roots corresponding to u , θ is the highest root
in ∆+ , and ρ = 1

2

∑
µ∈∆+ µ .

– Π = {α1, . . . , αn} is the set of simple roots in ∆+ and ϕi is the
fundamental weight corresponding to αi . If γ ∈ ∆ and γ =

∑n
i=1 ciαi , then

ht(γ) =
∑

i ci is the height of γ .

– t∗Q is the Q-vector subspace of t∗ generated by the lattice of integral
weights and ( | ) is the W -invariant positive-definite inner product on t∗Q induced

by the Killing form on g . As usual, µ∨ = 2µ
(µ|µ)

is the coroot for µ ∈ ∆ and

∆∨ = {µ∨ | µ ∈ ∆} is the dual root system.

– If λ is a dominant weight, then Vλ stands for the simple G-module with
highest weight λ .

For α ∈ Π, we let rα denote the corresponding simple reflection in W . If α = αi ,
then we also write rαi

= ri . The length function on W with respect to r1, . . . , rn
is denoted by ` . For any w ∈ W , we set N(w) = {γ ∈ ∆+ | w(γ) ∈ −∆+} . It is
standard that #N(w) = `(w).

– the linear span of a subset M of a vector space is denoted by 〈M〉 .
Our main reference on Invariant Theory is [21].

Acknowledgements. I would like to thank the anonymous referee for several
helpful remarks and suggestions.
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2. First properties

Let g be a simple Lie algebra having two root lengths. We use subscripts ‘s‘ and
‘l‘ to mark objects related to short and long roots, respectively. For instance, ∆+

s

is the set of short positive roots, ∆ = ∆s t ∆l , and Πs = Π ∩ ∆s . Recall that
∆l = W ·θ , ∆s = W ·θs , and (θ|θ)/(θs|θs) = 2 or 3.

Let Wl be the subgroup of W generated by rγ , where γ ∈ ∆+
l . Let W (Πs)

be the subgroup of W generated by rα , where α ∈ Πs . Then W (Πs) is a parabolic
subgroup of W in the sense of the theory of Coxeter groups.

Proposition 2.1.

(i) W (Πs) = {w ∈ W | w(∆+
l ) ⊂ ∆+

l }.

(ii) W ' W (Πs) nWl .

Proof. (i) Obviously, rα(∆+
l ) ⊂ ∆+

l for any α ∈ Πs . Hence W (Πs) ⊂
{w ∈ W | w(∆+

l ) ⊂ ∆+
l } . On the other hand, if w(∆+

l ) ⊂ ∆+
l and w = w′rα is a

reduced decomposition, then N(w) ⊂ ∆+
s and the equality N(w) = rα(N(w′))∪{α}

shows that α is necessarily short. So, we can argue by induction on `(w).

(ii) Clearly, Wl is a normal subgroup of W , and Wl ∩W (Πs) = 1 by part
(i). Therefore, it suffices to prove that the product mapping W (Πs) ×Wl → W
is onto. We argue by induction on the length of w ∈ W . Suppose w 6∈ W (Πs)
and w = w1rβw2 ∈ W , β ∈ Πl , is a reduced decomposition. Then w = w1w2rβ′ ,
where β′ = w−1

2 (β) ∈ ∆l , and `(w1w2) < `(w). That is, all long simple reflections
occurring in an expression for w can eventually be moved up to the right.

Fix some notation, which applies to an arbitrary g-module V . Write P(V)
for the set of all weights of V . For instance, P(g) = ∆ ∪ {0} . Let Vµ denote the
µ-weight space of V and mV(µ) = dimVµ . If V = Vλ , then the multiplicity is
denoted by mλ(µ).

Proposition 2.2 (cf. [12, Prop. 2.8]).

(i) dimVθs = (h+ 1)mθs(0);

(ii) mθs(0) = #Πs ;

(iii) Vθs is an orthogonal G-module.

Proof. (i) It is clear that P(Vθs) = ∆s ∪ {0} and mθs(α) = 1 for all α ∈ ∆s .
Applying Freudenthal’s weight multiplicity formula [18, 3.8, Proposition D] to
mθs(0), we obtain

(θs+2ρ|θs)mθs(0) = 2
∑
α∈∆+

∑
t≥1

mθs(tα)(tα|α) = 2
∑
α∈∆+

s

mθs(α)(α|α) = 2
∑
α∈∆+

s

(α|α) .

Whence

(1 + (ρ|θ∨s ))mθs(0) = 2·#∆+
s = #∆s = dimVθs −mθs(0) .

As θ∨s is the highest root in the dual root system ∆∨ , we have (ρ|θ∨s ) = h− 1.
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(ii) By part (i), we have mθs(0) =
dimVθs −mθs(0)

h
=

#∆s

h
. Let c ∈ W

be a Coxeter element associated with Π. It is known that each orbit of c in ∆
has cardinality h and the number of orbits consisting of short roots is equal to
#(Πs), see [1, ch.VI, § 1, Prop. 33]. Hence #∆s = h·#Πs .

(iii) Since P(Vθs) = −P(Vθs) and mθs(µ) = mθs(−µ) for all µ ∈ P(Vθs),
we conclude that Vθs is self-dual. Furthermore, because V0

θs
6= 0, it cannot be

symplectic.

Remark 2.3. It was shown by Zarhin [22] that (h+ 1) dimV0 ≤ dimV for any g-
module V . Moreover, analysing his proof, one readily concludes that the equality
can happen only if each nonzero weight of V is a root, i.e., V is either g = Vθ or
Vθs . Thus, the adjoint and little adjoint modules are distinguished by the condition
that the ratio dimV/ dimV0 attains the minimal possible value.

For any µ ∈ ∆, set ∆(µ) = {γ ∈ ∆ | (γ|µ) 6= 0} . Consider the partition of
this set according to the sign of roots and of the scalar product:

∆(µ) = ∆(µ)+
>0 t∆(µ)+

<0 t∆(µ)−>0 t∆(µ)−<0 .

Here ∆(µ)+
>0 = {γ ∈ ∆+ | (γ|µ) > 0} , and likewise for the other subsets.

Since ∆(µ)+
>0 = −∆(µ)−<0 and ∆(µ)+

<0 = −∆(µ)−>0 , we obtain

#∆(µ)+ = #∆(µ)>0 . (2.1)

Let C(λ) denote the closure of the G-orbit of highest weight vectors in Vλ .

Proposition 2.4.

(i) If α ∈ Πs , then #(∆(α)+
>0) = ht(θs) and #(∆(α)+

<0) = ht(θs)− 1;

(ii) dimC(θs) = 2ht(θs).

Proof. (i) If α is simple, then rα
(
∆(α)+

>0\{α}
)

= ∆(α)+
<0 . Hence either of the

two equalities implies the other. Set dα = #
(
∆(α)+

>0

)
. Then #∆(α)+ = 2dα−1.

To compute dα , we look at these subsets for θs . Here

∆(θs)
+
>0 = ∆(θs)>0 = ∆(θs)

+.

Set σ = 1
2

∑
γ∈∆+ γ∨ . Then (σ|γ) = ht(γ) for any γ ∈ ∆. On the other hand, if

γ ∈ ∆+ \ {θs} , then (γ∨|θs) ∈ {0, 1} . Therefore

ht(θs) = (σ|θs) =
1

2

(
#(∆(θs)

+
>0) + 1

)
=

1

2

(
#(∆(θs)>0) + 1

)
=

1

2

(
#(∆(α)>0) + 1

)
=

1

2

(
#(∆(α)+) + 1

)
= dα .

In the last line, we have used Eq. (2.1) with µ = α and the fact that α and θs are
W -conjugate.

(ii) Let v ∈ Vθs be a highest weight vector. Then dimG·v =

1 + dimU−·v = 1 + #{γ ∈ ∆+ | θs − γ ∈ P(Vθs)} = 1 + #{γ ∈ ∆+ | (γ|θs) > 0} .

According to the proof of part (i), the last expression is equal to 2ht(θs).
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Remark 2.5. Let h∗(∆) denote the dual Coxeter number of ∆. By definition,
h∗(∆) = 1 + (ρ|θ∨). Notice that θ∨ is the short dominant root in ∆∨ and (ρ|θ∨)
is the height of θ∨ in ∆∨ . Therefore, h∗(∆∨) = 1 + (σ|θs) = 1 + ht(θs). This also
means that dimC(θs) = 2h∗(∆∨)− 2. This can be compared with the well-known
result that dimC(θ) = 2h∗(∆)− 2.

3. Generic stabilisers and the algebra of invariants

Set h := t ⊕ ( ⊕
µ∈∆l

gµ) ⊂ g . Obviously, it is a Lie subalgebra of g . Let H denote

the connected subgroup of G with Lie algebra h . Then rkH = rkG and H
is semisimple. The Weyl group of (h, t) is Wl . Let πG : Vθs → Vθs//G :=
SpecC[Vθs ]

G denote the quotient morphism. For any µ ∈ ∆, fix a nonzero element
eµ ∈ gµ .

Theorem 3.1.

(i) V0
θs

= (Vθs)
H ;

(ii) G·V0
θs

is dense in Vθs and h is a generic stationary subalgebra for (G : Vθs);

(iii) C[Vθs ]
G ' C[V0

θs
]W (Πs) ;

(iv) C[Vθs ]
G is a polynomial algebra and πG is equidimensional.

(v) All the fibres of πG are of dimension h· dimV0
θs

= h·#Πs .

Proof. (i) Since T ⊂ H , we have V0
θs
⊃ (Vθs)

H . On the other hand, if µ ∈ ∆l ,
then eµ·V0

θs
= 0.

(ii) By Elashvili’s Lemma [2, §1], G·V0
θs

is dense in Vθs if and only if there is
x ∈ V0

θs
such that g·x+V0

θs
= Vθs . To prove the last equality, take any µ ∈ ∆s and

consider eµ as the operator ẽµ : V0
θs
→ Vµθs . If it were zero operator, then all such

operators would be zero, since W ·µ = ∆s . That is, we would obtain V0
θs

= (Vθs)
G ,

which is absurd. Hence Ker ẽµ is a hyperplane in V0
θs

for any µ ∈ ∆s . It follows

that, for any x ∈ V0
θs
\
⋃
µ∈∆s

Ker ẽµ , we have gx = h and g·x = ⊕µ 6=0V
µ
θs

.

(iii) By part (ii), if x ∈ V0
θs

is generic, then the identity component of Gx

is H . Since the orbit G·x is closed for any x ∈ V0
θs

= (Vθs)
H [5], we may apply

a generalization of the Chevalley restriction theorem [7, Theorem 5.1]. It claims
that

C[Vθs ]
G ' C[V0

θs ]
NG(H)/H .

Since NG(H)/H = NG(T )H/H ' NG(T )/NH(T ) ' W/Wl ' W (Πs), we are
done.

(iv) Since G is connected and W (Πs) is finite, this follows from (iii) and
[9].

(v) This follows from (iv) and Prop. 2.2.
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Remark 3.2. a) The G-module Vθs is stable, i.e., the union of closed G-orbits
contains a dense open subset of Vθs . This follows from [16], since a generic
stationary subalgebra h is reductive; or, from [6], since Vθs is an orthogonal G-

module. The stability can also be derived from the equality G·V0
θs

= Vθs and the
fact that each G-orbit meeting the zero weight space is closed [5, Remark 11 on
p. 354].
b) The equality Vθs = V0

θs
⊕ g·x , which holds for almost all x ∈ V0

θs
, means that

V0
θs

is a Cartan subspace of Vθs in the sense of [3] and [11].

By Theorem 3.1(ii), the identity component of a generic stabiliser is conju-
gate to H . Below, we prove that generic stabilisers are connected, i.e., H itself is
a generic stabiliser.

In what follows, ( , )s stands for a nonzero G-invariant symmetric bilinear
form on Vθs . As we have proved, Hµ =: Ker ẽµ is a hyperplane in V0

θs
for any

µ ∈ ∆s . Our next goal is to study the hyperplane arrangement obtained in this
way. For each µ ∈ ∆s , fix a nonzero vector vµ ∈ V µ

θs
. Let {eµ, hµ, e−µ} be a

standard sl2 -triple in g corresponding to µ ∈ ∆+
s . In particular, µ(hµ) = 2. Set

sl2(µ) = 〈eµ, hµ, e−µ〉 .

Proposition 3.3.

(i) For any µ ∈ ∆+
s , we have Hµ = H−µ , and the restriction of ( , )s to Hµ

is non-degenerate; 〈eµ·v−µ〉 = 〈e−µ·vµ〉, and it is the orthogonal complement
to Hµ in V0

θs
.

(ii) Suppose that γ, µ ∈ ∆s and ν := γ − µ ∈ ∆l . Then Hγ = Hµ .

Proof. (i) We have e−µ·(eµ·v−µ) = −hµ·v−µ = µ(hµ)·v−µ = 2v−µ 6= 0. Also,
hµ·(eµ·v−µ) = [hµ, eµ]·v−µ + eµ(hµ·v−µ) = 0. It follows from these equalities
and the sl2 -theory that eµ·(eµ·v−µ) 6= 0. Thus, 〈v−µ, eµ·v−µ, eµ·(eµ·v−µ)〉 is a
3-dimensional simple sl2(µ)-module. Since eµ·(eµ·v−µ) is proportional to vµ , we
obtain 〈eµ·v−µ〉 = 〈e−µ·vµ〉 .

Since (eµ·v−µ, e−µ·vµ)s = −(e−µ·(eµ·v−µ), vµ)s 6= 0, the line 〈eµ·v−µ〉 is not
isotropic. Finally, 0 = (Hµ, eµ·v−µ)s . Hence Hµ = 〈eµ·v−µ〉⊥ . By the symmetry,
we conclude that Hµ = H−µ .

(ii) Up to a nonzero factor, we have [eµ, eν ] = eγ . Consequently, for any
v ∈ V0

θs
,

eγ·v = [eµ, eν ]·v = (eµeν − eνeµ)·v = −eν ·(eµ·v) .

This readily implies that Ker ẽγ = Ker ẽµ , i.e., Hγ = Hµ .

Let g(Πs) be the Lie subalgebra of g generated by g±α , α ∈ Πs . Then
g(Πs) is semisimple and its root system is ∆(Πs) := ∆ ∩ ZΠs . It is easily seen
that g(Πs) is the commutant of a Levi subalgebra of g . Obviously, Πs is a set of
simple roots for g(Πs) and W (Πs) is the Weyl group of g(Πs). Notice that ∆(Πs)
is a proper subset of ∆s . Let G(Πs) be the connected semisimple subgroup of G
with Lie algebra g(Πs).

Lemma 3.4. Vθs|G(Πs) contains the adjoint representation of G(Πs). If Ṽ is any

other simple G(Πs)-submodule of Vθs , then Ṽ ∩ V0
θs

= {0}.
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Proof. Consider the subspace

V0
θs ⊕ ( ⊕

µ∈∆(Πs)
Vµθs) ⊂ Vθs .

It is clear that it is a G(Πs)-submodule of Vθs , and using Proposition 2.2(ii) one
readily concludes that it is isomorphic to g(Πs). The complementary G(Πs)-
submodules are

⊕
µ∈∆+

s \∆(Πs) V
µ
θs

and
⊕

µ∈∆−s \∆(Πs) V
µ
θs

.

We shall identify the G(Πs)-module g(Πs) with the above submodule of
Vθs . Consider the commutative diagram

V0
θs

−−−→ g(Πs) −−−→ VθsyπW (Πs)

yπG(Πs)

yπG
V0
θs
//W (Πs)

g−−−→ g(Πs)//G(Πs)
f−−−→ Vθs//G

(3.1)

Here the arrows in the top row are embeddings and the vertical arrows are the
quotient morphisms. Recall that the W (Πs)-action on V0

θs
arises from the identifi-

cation W (Πs) ' W/Wl . The existence of g follows from the fact that W (Πs) can
also be regarded as a subquotient of G(Πs). By Theorem 3.1(iii), the composition
f◦g is an isomorphism. Furthermore, g is finite and surjective, and f is surjective.
Therefore, both f and g are isomorphisms. From this we deduce that action of
W (Πs) on V0

θs
is isomorphic to the reflection representation of the Weyl group of

G(Πs) on the Cartan subalgebra in g(Πs).

From these properties of diagram (3.1) we derive some further conclusions.

Proposition 3.5. 1. The Lie algebra g(Πs) is simple.

2. The generic stabiliser for the action (G : Vθs) is connected (and equal to
H ).

3. The set of hyperplanes {Hµ}µ∈∆+
s

coincides with {Hµ}µ∈∆(Πs)+ . All the
hyperplanes in the last set are different.

Proof. 1. As Vθs is a simple orthogonal G-module, C[Vθs ]
G has a unique

invariant of degree 2. On the other hand, the number of linearly independent
invariants of degree 2 in C[g(Πs)]

G(Πs) equals the number of simple factors of
g(Πs). Because the mapping f in (3.1) is an isomorphism, g(Πs) must be simple.

2. Let G∗ be a generic stabiliser for (G : Vθs). Without loss of generality,
assume that G∗ ⊃ H . If G∗ 6= H , then the finite group W (Πs) ' NG(H)/H acts
on V0

θs
non-effectively. But we know from diagram (3.1) that this is not the case.

3. The hyperplanes {Hµ}µ∈∆(Πs)+ are just the reflecting hyperplanes for
the reflection representation of W (Πs). Therefore they are all different. Take any
Hγ with γ ∈ ∆+

s \∆(Πs)
+ . Then there is a w ∈ W such that w·γ ∈ ∆(Πs). In

view of Proposition 2.1(ii), we may assume that w ∈ Wl . Write w = rβm . . . rβ1 ,
where βi ∈ ∆+

l . Then we get a string of short roots γ = ν0, ν1, . . . , νm = µ
such that νi+1 − νi ∈ ∆l . By Proposition 3.3(ii), Hνi = Hνi−1

for all i . Hence
Hγ = Hw·γ .
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Remark 3.6. A case-by-case verification shows that for any γ ∈ ∆+
s \∆(Πs)

+ there
is a sole long root β such that γ − β ∈ ∆(Πs), i.e., there is a string, as above,
with m = 1.

• g = sp2n . Here ∆(Πs)
+ = {εi − εj | 1 ≤ i < j ≤ n} , ∆+

s = {εi ± εj |
1 ≤ i < j ≤ n} , and ∆+

l = {2εi | 1 ≤ i ≤ n} . If γ = εk + εl (k < l), then
εk + εl = (εk − εl) + 2εl is the required decomposition.

• g = so2n+1 . Here ∆(Πs)
+ = {εn} , ∆+

s = {εi | 1 ≤ i ≤ n} , and ∆+
l = {εi ± εj |

1 ≤ i < j ≤ n} . If γ = εk (k < n), then εk = (εk − εn) + εn is the required
decomposition.

The cases of F4 and G2 are left to the reader.

4. The null-cone and Kostant-Weierstrass section

In this section, we compare invariant-theoretic properties of the representations
(G : Vθs) and (G(Πs) : g(Πs)).

Definition 1. The simple Lie algebra g(Πs) is called the simple reduction of the
little adjoint representation (G : Vθs).

To a great extent, invariant-theoretic properties of (G : Vθs) are determined by
its simple reduction. We have already proved that g(Πs)//G(Πs) ' Vθs//G , and
further results are presented below. To simplify notation, we set L = G(Πs) and
l = g(Πs). Recall that l is regarded as an L-submodule of Vθs .

Let N(Vθs) and N(l) denote the null-cones in Vθs and l , respectively, i.e.,
N(Vθs) = π−1

G (πG(0)) and N(l) = π−1
L (πL(0)). All elements of the null-cone are

said to be nilpotent.

Theorem 4.1.

(i) the variety N(Vθs) is irreducible;

(ii) there is e ∈ N(Vθs) such that dπG(e) is onto;

(iii) the ideal of the variety N(Vθs) in C[Vθs ] is generated by the basic G-
invariants.

Proof. (i), (ii). It follows from diagram (3.1) that N(Vθs)∩ l = N(l). It is also
known that N(l) is irreducible and dimN(l) = dim l − rk l = dim l − dimV0

θs
[5].

Let N1 be an irreducible component of N(Vθs). Then dimN1 = dimVθs−dimV0
θs

and
dimN1 ∩ l ≥ dimN1 + dim l− dimVθs = dimN(l) .

It follows that N1 ∩ l = N(l), i.e., each irreducible component of N(Vθs) contains
N(l). By [5], there is v ∈ N(l) such that dπL(v) is onto. It then follows from
properties of diagram (3.1) that dπG(v) is onto as well. Hence v is a smooth point
of the fibre π−1

G (πG(0)). Therefore, v lies in a unique irreducible component of
N(Vθs) and N(Vθs) is irreducible.

(iii) This follows from (i) and (ii) (cf. [5, Lemma 4 on p. 345]).

Remark 4.2. a) Using the Hilbert-Mumford criterion [21, § 5] and the structure of
weights of Vθs , one can give another proof of the irreducibility of N(Vθs).
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b) We have proved that πG is equidimensional and the fibre π−1
G (0) =

N(Vθs) is an irreducible reduced complete intersection. By a standard deformation
argument, this implies that the same properties hold for all the fibres of πG .

An affine subspace A of a G-module V is called a Kostant-Weierstrass
section (KW-section, for short), if the restriction of the quotient morphism
π : V → V//G to A yields an isomorphism π|A : A ∼−→ V//G . See [21, 8.8]
for details on KW-sections.

Theorem 4.3. The G-module Vθs has a KW-section.

Proof. Let e ∈ N(l) be an L-regular nilpotent element. Then dπL(v) is onto,
and hence dπG(v) is onto. Therefore e is a smooth point of N(Vθs). Since G·e
is conical, we can find a semisimple element x ∈ g such that x·e = e . Take an
x-stable complement to Te(N(Vθs)) in Vθs . Call it U . Then e+U is a KW-section
in Vθs . A standard argument for the last claim can be found in [10, Prop. 4] (see
also [21, 8.8]).

By Proposition 3.5(i), ∆(Πs) is an irreducible (simply-laced) root system.
Therefore the Coxeter number of ∆(Πs) is well-defined. Write hs for this number.

Proposition 4.4. Let c ∈ W be a Coxeter element associated with Π. Then
chs ∈ Wl and h/hs ∈ N.

Proof. By Proposition 2.1, we can write c = c1c2 , where c1 ∈ W (Πs) and
c2 ∈ Wl . Furthermore, c1 is a Coxeter element of W (Πs), and the semi-direct
product structure of W shows that ck = (c1)kc′2 for some c′2 ∈ Wl . Taking k = hs
or h , we obtain both assertions.

Definition 2. The integer h/hs is called the transition factor .

By our results for (G : Vθs) and well-known properties of simple Lie algebras, we
have

• dimVθs = (h+ 1)·#(Πs), dimN(Vθs) = h·#(Πs);
• dim l = (hs + 1)·#(Πs), dimN(l) = hs·#(Πs);

It follows that dimN(Vθs)/ dimN(l) equals the transition factor. Actually, the
relationship between these null-cones is much more precise and mysterious!

Theorem 4.5. Let O be a nilpotent L-orbit in l. The mapping O → G·O sets up
a bijection between the sets of nilpotent orbits N(l)/L and N(Vθs)/G. Moreover,

this mapping preserves the closure relation and
dim(G·O)

dimO
=

h

hs
for any nonzero

O ∈ N(l)/L.

Proof. Unfortunately, the proof relies on an explicit classification of orbits
in N(Vθs). (It is would be great to have a conceptual explanation!) The four
possibilities are gathered in Table 1.

The only non-trivial case is the first one. Here Par(n) stands for the set of all
partitions of n , and a classification of the nilpotent Sp2n -orbits in Vθs is obtained
in [19, § 3.2].
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g dimVθs θs h l = g(Πs) hs #(N(l)/L) g̃
1 sp2n 2n2−n−1 ϕ2 2n sln n #Par(n) sl2n
2 so2n+1 2n+ 1 ϕ1 2n sl2 2 2 so2n+2

3 F4 26 ϕ1 12 sl3 3 3 E6

4 G2 7 ϕ1 6 sl2 2 2 so8

Table 1: The little adjoint representations and their simple reductions

Remark 4.6. A case-by-case inspection shows that h/hs = h − ht(θs) = ht(θ) −
ht(θs) + 1. Again, it would be interesting to have an explanation for this.
Remark 4.7. For items 1–3 in Table 1, the little adjoint representation is the
isotropy representation of a symmetric space of certain over-group G̃ , i.e., it is
related to an involution of g̃ = Lie G̃ . The algebra g̃ is indicated in the last
column of Table 1. It is interesting to observe that in these cases the restricted
root system of the symmetric variety G̃/G is reduced and of type l (that is, of
type An−1 for item 1, etc.). Item 4 is related to an automorphism of order 3
of g̃ = so8 . Therefore, a classification of nilpotent G-orbits in Vθs can also be
obtained via a method of Vinberg [20].

For an arbitrary G-module V , set RG(V) = {v ∈ V | dimG·v is maximal} . It
is a dense open subset of V . The elements of RG(V) are usually called regular.
Consider the quotient morphism πG,V : V → V//G := SpecC[V]G . Set SG(V) =
{v ∈ V | dπG,V(v) is onto} . A classical result of Kostant [5, Theorem 0.1] asserts
that RG(g) = SG(g). Another proof is given in [10, § 1].

Proposition 4.8. We have RG(Vθs) = SG(Vθs).

Proof. 1. First, we notice that RG(Vθs) ⊂ SG(Vθs). This is a consequence of
Theorem 3.1, Remark 3.2(b), and [11, Corollary 1]. For, the theory developed in
[11] shows that the required inclusion always holds for the representations with a
Cartan subspace.

2. To prove the converse, we first note that RG(Vθs) ∩N(Vθs) = SG(Vθs) ∩
N(Vθs). For items 1–3 of Table 1, this follows from [19, Theorem 4]. Indeed, these
items are related to involutions of a group G̃ , and Sekiguchi’s theorem asserts that
such an equality holds if and only if the restricted root system of G̃/G is reduced
(cf. Remark 4.7). The last item of Table 1 is easy.

In order to reduce the problem to nilpotent elements, we use Luna’s slice
theorem (see [21, § 6]). If G·v 63 {0} , then there exists a generalised Jordan
decomposition v = s + n , which means that G·s is closed (s 6= 0) and Gs·n 3
{0} . Without loss of generality, we may assume that s ∈ V0

θs
. Modulo trivial

representations, the slice representation (Gs : Ns) associated with s is the direct
sum of little adjoint representations for the simple components of Gs ; and n is a
nilpotent element in Ns . It remains to observe that the slice theorem implies that
v ∈ RG(Vθs) ⇔ n ∈ RGs(Ns) and v ∈ SG(Vθs) ⇔ n ∈ SGs(Ns).

Remark 4.9. The null-cone N(Vθs) is an irreducible complete intersection, and it
follows from Theorem 4.5 that the complement of the dense G-orbit in N(Vθs)
is of codimension 2h/hs , which is ≥ 4. Therefore, N(Vθs) is normal. Moreover,
in this situation, the closure of any nilpotent G-orbit is normal! Again, the only
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non-trivial case is item 1 in Table 1. For this case, the normality of all nilpotent
orbit closures is proved in [8, Theorem 4].

5. Further properties and remarks

5.1. There is a rich combinatorial theory for ideals of the Borel subalgebra
b = t⊕ u in u , which is mainly due to Cellini and Papi (see e.g. [13, Sect. 2] and
references therein). In particular, there is a nice closed formula for the number
of such ideals. This formula has an analogue in the context of the little adjoint
representations.

Consider the B -stable space V+
θs

= ⊕µ∈∆+
s
Vµθs ⊂ Vθs . Then there is a

bijection between the B -stable subspaces of V+
θs

and the antichains in the poset
∆+ that consists of short roots [13, Prop. 4.2]. The common cardinality K of these
two sets is given as follows. Let m1 ≤ m2 ≤ · · · ≤ mn be the exponents of W and
l = #Πs . Then

K =
l∏

i=1

h+mi + 1

mi + 1
.

For items 1–3 in Table 1, i.e., if (θ|θ)/(θs|θs) = 2, there is a slightly different
formula:

K =
n∏
i=1

g +mi + 1

mi + 1
,

where g = #∆s/n , see [13, Theorem 5.5].

5.2. For a graded G-module M = ⊕iMi with dimMi < ∞ , the graded
character of M , chq(M), is the formal sum

∑
i ch(Mi)q

i ∈ Λ[[q]][q−1] . Here Λ is
the character ring of finite-dimensional representations of G . The graded character
of C[N(g)] was determined by Hesselink in 1980 [4]. A similar formula exists for
chq(C[N(Vθs)]). This is a particular instance of the theory of short Hall-Littlewood
polynomials developed in [15, Sect. 5].

Let us define a q -analogue of a generalised partition function Pq(ν) by the
expansion ∏

µ∈∆+
s

1

1− qeµ
=
∑
ν

Pq(ν)eν .

and for λ dominant, we set

mµ
λ(q) =

∑
w∈W

(−1)`(w)Pq(w(λ+ ρ)− (µ+ ρ)).

Then (see [15, Prop. 5.6])

chq(C[N(Vθs)]) =
∑

λ dominant

m0
λ(q) chVλ.

5.3. For any orthogonal G-module V , one can define a subvariety of V × V ,
which is called the commuting variety (of V ). Namely, if K is the Killing form on
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g and < , > is a G-invariant symmetric non-degenerate bilinear form on V , then
we consider the bilinear mapping

ϕ : V × V→ g,

where K(ϕ(v1, v2), s) :=< s·v1, v2 > , s ∈ g, v1, v2 ∈ V . By definition, E(V) :=
ϕ−1(0)red is the commuting variety. One of the first questions is whether E(V) is
irreducible.

Example. If V = g , then ϕ = [ , ] and E(g) is the usual commuting
variety, i.e., the set of pairs of commuting elements in g . A classical result of
Richardson [17] asserts that E(g) is irreducible. More generally, if g = g0⊕g1 is a
Z2 -grading, then g1 is an orthogonal G0 -module and ϕ : g1 × g1 → g0 is nothing
but the usual Lie bracket. However, the commuting variety E(g1) is not always
irreducible [14].

Theorem 5.1. The commuting variety E(Vθs) is irreducible.

Proof. It would be pleasant to have a case-free argument, in the spirit of
Richardson’s approach. But we can only provide a case-by-case proof, which runs
as follows. There are four pairs (G,Vθs):

(Sp(V),∧2
0V); (SO(V),V), dimV is odd; (F4,Vϕ1); (G2,Vϕ1).

For the first three cases, the irreducibility is proved in [14]. So, it remains to
handle the last one.

The commuting variety of V is determined by the tangent spaces to all
G-orbits in V , since (x, y) ∈ E(V) if and only if y ∈ (g·x)⊥ . It is known that the
G2 -orbits in the 7-dimensional module Vϕ1 are the same as SO7 -orbits. But the
commuting variety for (SO(V),V) is irreducible for any V .

Philosophically, the above proof (as well as any case-by-case proof) is not
satisfactory. One ought to argue as follows:

Our previous results suggest that invariant-theoretic properties of (G : Vθs)
are determined by properties of its simple reduction l = g(Πs). We also know,
after Richardson, that E(l) is irreducible. Therefore, it is reasonable to suggest
that the irreducibility of E(Vθs) can be deduced from that of E(l). That is, one
may try to prove directly that G·E(l) = E(Vθs).

5.4. The theory exposed in this article suggest that (almost) all results for the
adjoint representations should have analogues for the little adjoint representations.
Furthermore, the adjoint representations in the simply-laced case and the little
adjoint representations in multiply-laced case can be treated simultaneously, if we
agree that in the simply-laced case all the roots are short (hence Vθs = g , Πs = Π,
W (Πs) = W , Wl = {1} , etc.)
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