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Abstract. We prove a general combinatorial formula yielding the intersection
number cw

u,v
of three particular Λ-minuscule Schubert classes in any Kac-Moody

homogeneous space, generalising the Littlewood-Richardson rule.
The combinatorics are based on jeu de taquin rectification in a poset defined by
the heap of w .
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1. Introduction

Schubert calculus is an old important problem. Its main focus is the computa-
tion of the structure constants (the Littlewood-Richardson coefficients) in the cup
product of Schubert classes in the cohomology of a homogeneous space. Schu-
bert calculus is now well understood in many aspects (see for example [Bor53],
[Dem74], [BeGeGe73], [Dua05]) but several problems remain open. In particular a
combinatorial formula for the Littlewood-Richardson coefficients is not known in
general. The most striking example of such a formula is the celebrated Littlewood-
Richardson rule computing these coefficients for Grassmannians using jeu de taquin
(see Section 2). An equivalent version of this rule was conjectured by D.E. Lit-
tlewood and A.R. Richardson in [LiRi34 ] and proved by M.P. Schützenberger in
[Sch77]. For a historical account, the reader may consult [VLe01]. Generalisation
to minuscule and cominuscule homogeneous spaces of classical types were proved
by D. Worley [Wor84] and P. Pragacz [Pra91]. Recently, this rule has been ex-
tended to exceptional minuscule homogeneous spaces by H. Thomas and A. Yong
[ThYo08].

In this paper, we largely extend their rule to any homogeneous space X for
certain cohomology classes called Λ-minuscule classes (see Definition 2.1). For X
minuscule, any cohomology class is Λ-minuscule. We even prove this rule in many
cases where the space X is homogeneous under a Kac-Moody group.
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Let us be more precise and introduce some notation. Let G be a Kac-
Moody group and let P be a parabolic subgroup of G. Let X be the homogeneous
space G/P . A basis of the cohomology group H∗(X,Z) is indexed by the set of
minimal length representatives W P of the quotient W/WP where W is the Weyl
group of G and WP the Weyl group of P . Let us denote by σw the Schubert
class corresponding to w ∈ W P . The Littlewood-Richardson coefficients are the
constants cwu,v defined for u and v in W P by the formula:

σu ∪ σv =
∑

w∈WP

cwu,vσ
w.

Let D(P ) be the set of simple roots α such that the root space corresonding to
−α does not belong to the Lie algebra of P , and let us denote by Λ the dominant
weight associated to P , defined by 〈Λ, α∨〉 = 1 if α ∈ D(P ) and 〈Λ, α∨〉 = 0 if
α 6∈ D(P ). Following D. Peterson, we define special elements in W P called Λ-
minuscule (See Definition 2.1). These elements have the nice property of being fully
commutative: they admit a unique reduced expression up to commuting relations.
In particular, they have a well defined heap which is a colored poset, the colors
being simple roots (See Definition 2.3. This was first introduced by X.G. Viennot
in [Vie86]. We use J. Stembridge’s definition in [Ste96]. Heaps were reintroduced
in [Per07] as Schubert quivers). One of the major points we shall use here to define
our combinatorial rule is the fact proved by R. Proctor [Pro04] that these heaps do
have the jeu de taquin property (see Section 2). In particular, given two elements
u and v in W smaller than a Λ-minuscule element w 1, we define combinatorially
using jeu de taquin an integer twu,v (see Proposition 2.7). We make the following
conjecture:

Conjecture 1.1. For w a Λ-minuscule element and u and v in W smaller
than w , we have the equality cwu,v = twu,v .

Following [ThYo08], we extend these considerations to Λ-cominuscule ele-
ments (see Definition 2.1) defined using Λ-minuscule elements in the Langlands
dual group. In Definition 2.12, we define some integers mw

u,v ; if u, v, w are Λ-
minuscule, this definition gives mw

u,v = 1, by Lemma 2.9. We extend the previous
conjecture as follows:

Conjecture 1.2. For w a Λ-cominuscule element and u and v in W smaller
than w , we have the equality cwu,v = mw

u,vt
w
u,v .

Our inspiration in the work of H. Thomas and A. Yong is very clear with
these conjectures. The first evidences for them are the Littlewood-Richarson rule
(i.e. Conjecture 1.1 is true for X a Grassmannian) and the result of H. Thomas
and A. Yong [ThYo08] proving that conjectures 1.1 and 1.2 are true for X a
minuscule or a cominuscule homogeneous space. Our main result is a proof of these

1Here, as shall be explained in Proposition 2.4, the word smaller is to be understood either
for the weak left Bruhat order or for the strong Bruhat order. In fact, these two orders coincide
on the interval [e, w] taken with respect to the weak order.
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conjectures in many cases including all finite dimensional homogeneous spaces X .
Indeed, we define for w a Λ-minuscule or Λ-cominuscule element of the Weyl
group the condition of being slant-finite-dimensional (see Definition 3.1). This
includes all Λ-minuscule or Λ-cominuscule elements in the Weyl group W of a
finite dimensional group G. Our main result is the following:

Theorem 1.3. Let G/P be a Kac-Moody homogeneous space where P corre-
sponds to the dominant weight Λ. Let u, v, w ∈ W be Λ-(co)minuscule. Assume
that w is slant-finite-dimensional. Then we have cwu,v = mw

u,vt
w
u,v .

Let us observe here that we restrict the statement to slant-finite dimensional
elements essentially for technical reasons: this simplifies a lot the combinatorics
involved and allows us to find easily generators of the cohomology algebra.

The strategy of proof is very similar to the one of H. Thomas and A.
Yong but we add two powerful ingredients: first we prove a priori that jeu de
taquin numbers twu,v as well as modified jeu de taquin numbers mw

u,vt
w
u,v define a

commutative and associative algebra (see Subsection 2.0.2). As an example of the
strength of this fact, we will reprove that in classical (co)minuscule homogeneous
spaces the modified jeu de taquin coefficients are equal to the intersection numbers,
assuming that only very few intersection numbers are known. For example, to
reprove the case of Grassmannians we only need to assume that we know the
cohomology ring of the 4-dimensional Grassmannian G(2, 4): see Lemma 4.4. We
believe that this was not possible only with the arguments of H. Thomas and
A. Yong. Our main use of this result is to conclude that we only need to prove
Conjectures 1.1 and 1.2 for a system of generators of the cohomology.

Another powerful tool is the decomposition of any Λ-minuscule element into
a product of so-called slant-irreducible elements and the classification, by Proctor
and Stembridge, of the irreducible ones. We are thus able to reduce the proof of
Theorem 1.3 to the classical cases plus a finite number of exceptional ones: see
Subsection 3.

To prove theorem 1.3 we need two more ingredients already contained in
[ThYo08]: the fact that our rule is compatible with the Chevalley formula and a
Kac-Moody recursion which enables to boil the computation of certain Littlewood-
Richardson coefficients down to the computation of other Littlewood-Richardson
coefficients in a smaller group. This idea of recursion was contained in the work
of H. Thomas and A. Yong [ThYo08], however we had to adapt their proof in the
general Kac-Moody situation. This is done in Subsection 2.

Before describing in more details the sections in this article, let us remark
that, even if Λ-(co)minuscule elements may be rare in certain homogeneous spaces,
our result can be applied to compute an explicit presentation of the cohomology
ring of adjoint varieties and thus to compute all their Littlewood-Richardson
coefficients. This is done in [ChPe09].

In Section 2, we define Λ-minuscule elements, Λ-cominuscule elements and
the combinatorial invariants twu,v and mw

u,v . We state our main conjecture. We
prove that this conjecture is compatible with the Chevalley formula and define an
associative and commutative algebra using these combinatorial invariants. We also
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define the notion of Bruhat recursion and prove that the Littlewood-Richardson
coefficients cwu,v satisfy Bruhat recursion. In Section 3, we define the notion of slant-
finite-dimensional elements and state our main result. We explain our strategy to
prove Theorem 1.3. We prove several lemmas implying that the two products (the
cup product and the combinatorial product) are equal. In Section 4, we prove
by a case by case analysis that Theorem 1.3 holds for simply laced Kac-Moody
groups. In type A, Lemma 4.4 gives a very short proof (using the fact that our
combinatorial product is commutative and associative) of the classical Littlewood-
Richardson rule. In Section 5, we explain how, using foldings, we can deduce
Theorem 1.3 in the non simply laced cases, using the simply laced case. We will
need in particular to make involved computations to deal with a single coefficient
in one case related to F4 .

Acknowledgement: We would like to thank Gérald Gaudens and Antoine
Touzé for discussions about topology of infinite dimensional spaces. Both authors
are thankful to the Max-Planck Institut in Bonn for providing ideal research
conditions, and Pierre-Emmanuel Chaput thanks the University of Nantes for
giving a grant.

Convention: We work over an algebraically closed field of characteristic
zero. We will use several times the notation in [Bou54] especially for labelling the
simple roots of a semisimple Lie algebra. Given a Coxeter group W , we denote by
≤ the weak left order on W , as defined in [BjBr05, Definition 3.1.1]. Any graph
will be called a Dynkin diagram (of the corresponding Kac-Moody group G). If
the group G is finite dimensional, the Dynkin diagram is called finite.

2. Jeu de taquin

2.1. The jeu de taquin property.

Jeu de taquin is a combinatorial game encoding all Schubert intersection
numbers for (co)minuscule varieties, as it was shown by H. Thomas and A. Yong
in [ThYo08]. For the convenience of the reader we recall their definition of the jeu
de taquin. Let P be a poset which we assume to be bounded below, meaning that
for any x ∈ P the set {y : y ≤ x} is finite. Elements of P will be called boxes.
Recall that a subset λ of a poset P is an order ideal if for x ∈ λ and y ∈ P we
have the implication (y ≤ x ⇒ y ∈ λ). We denote by I(P ) the set of finite order
ideals of P . For λ ⊂ ν two finite order ideals in P we denote by ν/λ the pair
(λ, ν). Any such pair is called a skew shape. A standard tableau T of skew shape
ν/λ is an increasing bijective map ν \ λ → [1, d], where d is the cardinal of the
set theoretic difference ν \ λ .

Consider x ∈ λ and maximal in λ among the elements that are below some
element of ν \λ . We associate another standard tableau jx(T ) (of a different skew
shape) arising from T : let y be the box of ν \ λ with the smallest label, among
those that cover x. Move the label of the box y to x, leaving y vacant. Look
for the smallest label of ν \ λ that covers y and repeat the process. The tableau
jx(T ) is outputted when no more such moves are possible. A rectification of T is
the result of an iteration of jeu de taquin slides until we terminate at a standard
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tableau which shape is an order ideal. By the assumption that P is bounded below
this will occur after a finite number of slides.

According to Proctor [Pro04], we will say that P has the jeu de taquin
property if the rectification of any tableau does not depend on the choices of the
empty boxes used to perform jeu de taquin slides.

2.2. Jeu de taquin poset associated with a Λ-(co)minuscule element.

Let us first recall some results of Proctor and Stembridge. Let A be a
symmetrisable generalised Cartan matrix, D the corresponding Dynkin diagram
(whose associated Weyl group does not need to be finite), and G be the associated
symmetrisable Kac-Moody group (see [Kac90]). Let (̟i)i∈I be the set of funda-
mental weights and let W be the Weyl group of A with generators denoted by
si . Note that W acts on the root system R(A) of A, and since the Weyl group
of the dual root system R(tA) is isomorphic to W in a canonical way, W also acts
on R(tA). The fundamental weights of R(tA) will be denoted by ̟∨

i . According
to Dale Peterson [Pro99a, p.273] we give the following definition:

Definition 2.1. Let Λ =
∑

iΛi̟i be a dominant weight.

• An element w ∈ W is Λ-minuscule if there exists a reduced decomposition
w = si1 · · · sil such that

∀k ∈ [1, l] , siksik+1
· · · sil(Λ) = sik+1

· · · sil(Λ)− αik . (1)

• w is Λ-cominuscule if w is (
∑

Λi̟
∨
i )-minuscule.

• We will write that w is Λ-(co)minuscule when we mean that w is ei-
ther Λ-minuscule or Λ-cominuscule. We denote by Wm the set of all Λ-
(co)minuscule elements of W .

• w is fully commutative if all the reduced expressions of w can be deduced
one from the other using commutation relations.

By [Ste01, Proposition 2.1], any Λ-minuscule element is fully commutative.
Since the property of being fully commutative depends on W only, and not on
the underlying root system, Λ-cominuscule elements are also fully commutative.
Moreover [Ste01, Proposition 2.1] shows the following:

Proposition 2.2. If condition (1) holds for one reduced expression of w , then
it holds for any reduced expression of w .

For the convenience of the reader we recall the definition of the heap of w
given by Stembridge [Ste96, Paragraph 2.2] (except that we reverse the order):

Definition 2.3. Let w ∈ W be fully commutative and let w = si1 · · · sil be a
reduced expression. The heap H(w) of w is the set [1, l] ordered by the transitive
closure of the relations “p is smaller than q” if p > q and sip and siq do not
commute. We write p ≺ q if p is smaller than q in H(w).
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As Stembridge explains, the full commutativity implies that the heap is
well-defined up to isomorphisms of posets.

Let us denote by P the parabolic subgroup associated to the dominant
weight Λ and let W P be the set of minimal length representatives of the quotient
W/WP (here WP is the Weyl group of P ). Stembridge moreover shows the fol-
lowing (he shows this for Λ-minuscule elements, the statement for Λ-cominuscule
elements follows because it only depends on the Weyl group):

Proposition 2.4. Let w be Λ-(co)minuscule. There is an order-preserving
bijection between the set of order ideals of H(w) and the interval [e, w] in W P for
the Bruhat order (see [BjBr05, Definition 2.1.1]). In particular, the Bruhat order
and the weak left order coincide on [e, w].

The bijection maps an ideal λ = {n1, . . . , nk} with ni 6≺ nj for i < j to
the element u = sin1

· · · sink
: see [Ste96, Theorem 3.2]. The fact that Bruhat

order and weak left order coincide on [e, w] is stated in [Ste96, Theorem 7.1] only
for minuscule homogeneous spaces but the proof of this fact, given page 383, is
identical for Λ-minuscule elements. From Proposition 2.2 and Proposition 2.4 we
deduce the following important remark:

Remark 2.5. If we have the inequality x ≤ w and w is Λ-(co)minuscule, then
x is also Λ-(co)minuscule. Moreover, if x ∈ W P and x is smaller than w for the
Bruhat order, then x ≤ w .

Proposition 2.6. Let w ∈ W be Λ-(co)minuscule. The poset H(w) has the
jeu de taquin property.

Proof. If w is Λ-minuscule, by [Ste01, Corollary 4.3], H(w) is a d-complete
poset (the precise definition of d-completeness is given in [Pro99a, Section 3]).
By [Pro04, Theorem 5.1], any d-complete poset has the jeu de taquin property,
proving the proposition. Since the definition of the heap H(w) does not involve
the root system, the same property holds for w a Λ-cominuscule element.

Proposition 2.7. Let w ∈ W be Λ-(co)minuscule and let λ, µ, ν be order ideals
in H(w). Then the number of tableaux of shape ν/λ which rectify to a standard
tableau U of shape µ does not depend on the given standard tableau U of shape
µ. Denote by tνλ,µ(W ) this number: we have tνλ,µ(W ) = tνµ,λ(W ).

When W will be clear from the context, the notation tνλ,µ(W ) will be
simplified to tνλ,µ .

Proof. In [ThYo08, Section 4], the authors study properties of the jeu de taquin
on so-called (co)minuscule posets, which are a very special class of posets with the
jeu de taquin property. In fact they use two main properties of these posets, namely
the jeu de taquin property and the fact that there is a order-reversing involution
on these posets. However, this involution is used only for results involving the
Poincaré duality. As one readily checks, Proposition 4.2(b-c), Theorem 4.4, its
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Corollary 4.5 and the first equality of Corollary 4.7 are still true for any poset
enjoying the jeu de taquin property. The last two statements are the two claims
of the proposition.

Remark 2.8. As the proof shows, a similar result holds for any poset having
the jeu de taquin property.

We now prove an easy combinatorial lemma for Λ-(co)minuscule elements.

Lemma 2.9. Let Λ be a fundamental weight with corresponding simple root
αΛ . Let w = sα1 · · · sαl

a reduced expression of an element in W . Let i ∈ [1, l].
If w is Λ-minuscule then the root αi cannot be shorter than αΛ , and if w is
Λ-cominuscule then αi cannot be longer than αΛ .

Proof. It is enough to consider the case when w is Λ-minuscule. Write
w = sα1 · · · sαl

and assume on the contrary that there exists an integer i such that
(αi, αi) < (αΛ, αΛ). Let then i0 be the maximal such integer. Since 〈Λ, α∨

i0
〉 = 0

(in fact Λ is fundamental and αi0 6= αΛ ), we have 1 = 〈si0+1 · · · sl(Λ), α
∨
i0
〉 =

−
∑

i>i0
〈αi, α

∨
i0
〉 , so there exists i > i0 such that 〈αi, α

∨
i0
〉 < 0. Since αi0 is

shorter than αi we have 〈αi, α
∨
i0
〉 < −1. Furthermore, for any j > i0 , we have the

inequalities (αi0, αi0) < (αΛ, αΛ) ≤ (αj , αj) thus αj 6= αi0 and 〈αj , α
∨
i0
〉 ≤ 0. This

contradicts the above equality
∑

i>i0
〈αi, α

∨
i0
〉 = −1.

Remark 2.10. Let w be a Λ-(co)minuscule element and let D be the sub-
diagram of the Dynkin diagram made of simple roots appearing in a reduced
expression of w . Let A be the generalised Cartan matrix associated to D , then
with arguments similar to those in the previous lemma one can show that: for any
couple i < j , if ai,j 6= 0, then one of the equalities ai,j = −1 or aj,i = −1 holds.

We now recall some notation of [Pro99b] and [Ste01], and introduce some
new ones. If D is a Dynkin diagram and d ∈ D , then we say that (D, d) is
a marked diagram. A D-colored poset is the data of a poset P and a map
c : P → D satisfying the condition: if sc(i)sc(j) 6= sc(j)sc(i) , then i ≤ j or j ≤ i in
P . To such a poset is associated an element w of the Weyl group of D defined by
w =

∏
p∈P sc(p) , where the order in this product is any order compatible with the

partial order in P . We say that P is d-(co)minuscule if w is Λ-(co)minuscule
for Λ the fundamental weight corresponding to d . In the sequel, we shall assume
that the element w corresponding to the poset P is Λ-(co)minuscule.

If P is a D -colored poset with coloring function c : P → D , α ∈ D and
i is an integer, we denote by (α, i) ∈ P the unique element p, if it exists, such
that c(p) = α and such that #{q ≤ p : c(q) = α} = i. In particular, for each α
in c(P ), (α, 1) ∈ P is the minimal element colored by α . The set of all elements
of the form (α, 1) is an ideal in P called the rooted tree of P and denoted by
T . The map α 7→ (α, 1) establishes a bijection from c(P ) to T which is a poset,
thus yielding a partial order on c(P ). We say that P is slant-irreducible if each
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color in c(P ) which is non maximal with respect to this order is the color of at
least two elements in P . In [Pro99b] and [Ste01], the D -colored slant-irreducible
d-minuscule posets are classified for any marked Dynkin diagram (D, d). If P is
a D -colored poset, with d ∈ D the color of a unique element in P that we denote
by p, and P ′ is a D′ -colored poset with a minimal element p′ with color d′ , then
a slant product of P and P ′ is the disjoint union P ′ ∐P . In this disjoint union
the poset relation is defined by setting, for x, y ∈ P ′ ∐ P , x � y if x, y ∈ P ′ and
x � y in P ′ , or if x, y ∈ P and x � y in P , or finally if x ∈ P , y ∈ P ′ , x � p
and y � p′ . It is colored by the Dynkin diagram obtained from the disjoint union
of D′ and D , connecting d′ and d . All posets are some slant products of some
slant-irreducible posets.

If (pi)i∈[1,k] are elements of a poset P , we denote by 〈(pi)i∈[1,k]〉 the ideal
generated by (pi)i∈[1,k] .

2.3. Conjecture on a general Littlewood-Richardson rule.

We now are in position to state a conjecture relating the Schubert calculus
and the jeu de taquin. Let Λ be a dominant weight in a root system R . Let
X = G/P be the homogeneous space corresponding to Λ (namely G correspond
to the root system R , and P ⊂ G is the standard parabolic subgroup characterised
by the fact that its Lie algebra contains the root space corresponding to −α , for
α a simple root, if and only if 〈Λ, α∨〉 = 0), WP be the Weyl group of P , and
W P the set of minimum length representatives of the coset W/WP . We denote
by D the Dynkin diagram of G; as a set this is the set of simple roots of G. Let
(σw)w∈WP denote the basis of the cohomology of G/P dual to the Schubert basis
in homology (see [Kum02, Proposition 11.3.2]). We denote by cwu,v the integer
coefficients such that σu ∪ σv =

∑
cwu,vσ

w . Note the following:

Fact 2.11. If w ∈ W is Λ-(co)minuscule then w ∈ W P .

Proof. We may assume that w is Λ-minuscule. Write a length additive
expression w = vp with v ∈ W P and p ∈ WP . Since p ∈ WP , we have p(Λ) = Λ.
By Proposition 2.2, this implies p = e; thus w ∈ W P .

On the other hand, let w ∈ W be Λ-(co)minuscule and u, v ∈ W be less
or equal to w . To u and v we can associate order ideals λ(u), λ(v) of the poset

H(w) of w by Proposition 2.4. Recall the definition of t
H(w)
λ(u),λ(v) in Proposition 2.7;

this number will be simply denoted by twu,v .

Definition 2.12. Let D(Λ) denote the set of simple roots α such that 〈Λ, α∨〉 >
0. If u = sα1 · · · sαl

is a reduced expression we define

m(u) :=
∏

i∈[1,l],α∈D(Λ),
(α,α)>(αi,αi), i�(α,1)

(α, α)

(αi, αi)
,

were (·, ·) is any W -invariant scalar product. Let u, v ≤ w ∈ W . We denote by
mw

u,v the number m(w)/(m(u) ·m(v)).
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Our main conjecture is that the numbers twu,v , corrected with mw
u,v , compute

the intersection numbers:

Conjecture 2.13. Let w ∈ W be Λ-(co)minuscule and u, v ∈ W with u, v ≤
w . Then the Schubert intersection number cwu,v is equal to the jeu de taquin
combinatorial number mw

u,v · t
w
u,v .

By [ThYo08] this conjecture holds for G/P a (co)minuscule homogeneous
space and Theorem 3.2 proves it when G/P is a finite dimensional homogeneous
space. Our strategy of proof is essentially the same as in [ThYo08]: we argue that
the numbers cwu,v and mw

u,v · t
w
u,v both satisfy some identities (this holds for any

G/P ), and then we check in the particular case of finite dimensional varieties that
these identities together with a small number of equalities cwu,v = mw

u,v · t
w
u,v imply

the theorem. The identities are:

• The numbers mw
u,v · twu,v satisfy the same identity as the identity on the

numbers cwu,v implied by the Chevalley formula: see Subsection 2.

• A Kac-Moody recursion which is a general procedure drawing down the
computation of some numbers cwu,v (resp. twu,v ) for G/P to the computation
of the similar numbers for a quotient H/Q with H a Levi subgroup of G:
see Subsection 2.

• Jeu de taquin defines an algebra with basis indexed by all Λ-(co)minuscule
elements which is commutative and associative (and will turn out to be,
once the theorem is proved, isomorphic with a quotient of H∗(G/P )): see
Subsection 2.0.2.

The last point was not used in [ThYo08]. We will see that it simplifies a
lot our argument, since it implies that to prove the theorem it is enough to show
some Pieri formulas. The statement corresponding to the Chevalley formula is
well-known; we prove the two other fundamental results in the general context of
Kac-Moody groups.

2.4. Reduction to the fundamental cases.

Let G1 ⊂ G2 be an inclusion of Kac-Moody groups defined by an inclusion
of their Dynkin diagrams (in particular we have an inclusion of the maximal torus
T1 of G1 in the maximal torus T2 of G2 ). Let Λ2 be a dominant weight for G2 and
Λ1 its restriction to T1 . We have an inclusion of the corresponding Weyl groups
W1 ⊂ W2 and of the homogeneous spaces G1/P1 ⊂ G2/P2 where Pi is associated
to Λi for i ∈ {1, 2} .

Proposition 2.14. With the above notation, let u, v and w be elements in W1

such that u, v ≤ w . Assume that w is Λ1 -(co)minuscule. We have cwu,v(G1/P1) =
cwu,v(G2/P2). Moreover we have twu,v(W1)m

w
u,v(W1) = twu,v(W2)m

w
u,v(W2).

Proof. The claim for the coefficients t and m follows from the fact that the
heap of w does not depend on whether we consider w as an element of W1 or W2 .
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Let i : G1/P1 → G2/P2 denote the natural inclusion. Observe that w
(and thus also u and v ) is Λ2 -(co)minuscule. To prove the proposition it is
enough to use the fact i∗ preserves the cup product: in fact, we have the equality
i∗(σx(G2/P2)) = σx(G1/P1) with x = u, v or w . Thus the equality i∗(σu(G2/P2)∪
σv(G2/P2)) = σu(G1/P1) ∪ σv(G1/P1) holds. Expanding these products with the
coefficients cwu,v yields the result.

Using this proposition, we see that that the coefficients cwu,v(G/P ) resp.
mw

u,v(W ) or twu,v(W ) do not depend on G/P resp. W , allowing us to simplify the
notation into cwu,v resp. mw

u,v or twu,v .

Corollary 2.15. If Conjecture 2.13 holds when P is a maximal parabolic sub-
group, then it holds in general.

Proof. Let u, v, w ∈ W and assume w is Λ-(co)minuscule. Write Λ =
∑

Λi̟i ,
with ̟i the fundamental weights. Let D(Λ) ⊂ D be the set of indices i such that
Λi > 0. By [Pro99b, Proposition page 65] we can write w as a commutative
product w =

∏
i∈D(Λ) wi where the supports of all the wi ’s are disjoint and if αi

is the simple root with 〈̟i, α
∨
i 〉 > 0, we have αi ∈ Supp(wi). In the same way we

write u =
∏

i∈D(Λ) ui and v =
∏

i∈D(Λ) vi . It follows that m(w) =
∏

m(wi), that

mw
u,v =

∏
mwi

ui,vi
and that twu,v =

∏
twi
ui,vi

. Moreover by Proposition 2.14 we have
cwu,v =

∏
cwi
ui,vi

. Thus assuming that cwi
ui,vi

= mwi
ui,vi

·twi
ui,vi

we get cwu,v = mw
u,v ·t

w
u,v .

2.5. Chevalley formula in the (co)minuscule case.

From now on, without loss of generality, we assume that Λ is a fundamental
weight. In other words, P is a maximal parabolic subgroup and Pic(G/P ) has
rank one. We denote by αΛ the simple root corresponding to the fundamental
weight Λ i.e. such that 〈Λ, α∨

Λ〉 = 1.

Let w ∈ W and i ∈ I such that l(sαi
w) = l(w) + 1. We denote by

m(w, i) the integer (αΛ, αΛ)/(αi, αi) if (αΛ, αΛ) > (αi, αi) and we set m(w, i) = 1
otherwise.

Proposition 2.16. If sαi
w is length additive and Λ-(co)minuscule, then the

coefficient of the class σsαi
w in the product σw ∪ σsαΛ is m(w, i).

Thus, Conjecture 2.13 is true when u or v has length one.

Proof. Recall the Chevalley formula

σsαΛ ∪ σw =
∑

α: l(sαw)=l(w)+1

〈w(Λ), α∨〉σsαw.

This follows from [Kum02, Theorem 11.1.7(i) and Remark 11.3.18]. We only want
to compute the coefficient of σsαw in σsαΛ ∪σw for sαw a Λ-(co)minuscule element
thus we may in the sequel assume that α is simple (this comes from the fact
that weak and strong Bruhat order coincide for Λ-(co)minuscule elements, see
Proposition 2.4).
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Assume first that sαw is Λ-minuscule. This means by definition that
〈w(Λ), α∨〉 = 1. Thus we only have to prove that (αΛ, αΛ) ≤ (α, α). This follows
from Lemma 2.9.

Assume now that sαw is Λ-cominuscule. This means that 〈α,w(Λ∨)〉 =
1, and therefore 〈w−1(α),Λ∨〉 = 1. By the following Lemma 2.17 we have
〈Λ, w−1(α∨)〉 = (αΛ, αΛ)/(α, α). Since sαw is Λ-cominuscule, by Lemma 2.9 the
root α cannot be longer than αΛ so this integer is m(w, i) and the proposition is
proved.

Lemma 2.17. Let α, β be simple roots and w ∈ W . Then

〈w(α), ̟∨
β 〉 · (β, β) = 〈̟β, w(α

∨)〉 · (α, α).

Proof. We prove this by induction on the length of w . If w = e, then both
members of the equality equal (α, α) if α = β and 0 otherwise. Assume that

〈w(α), ̟∨
β 〉 · (β, β) = 〈̟β, w(α

∨)〉 · (α, α).

and let γ be a simple root. Since 〈̟β, γ
∨〉 (resp. 〈γ,̟∨

β 〉) is by definition the
coefficient of β∨ (resp. β ) in γ∨ (resp. γ ), these coefficients are 1 if γ = β and
0 otherwise. If γ 6= β , then 〈sγw(α), ̟

∨
β 〉 = 〈w(α), ̟∨

β 〉 and 〈̟β, sγw(α
∨)〉 =

〈̟β, w(α
∨)〉 , so the lemma is still true for sγw . Moreover 〈sβw(α), ̟

∨
β 〉 =

〈w(α), ̟∨
β 〉 − 〈w(α), β∨〉 and 〈̟β, sβw(α

∨)〉 = 〈̟β, w(α
∨)〉 − 〈β, w(α∨)〉 . Since

〈w(α), β∨〉 · (β, β) = 〈β, w(α∨)〉 · (α, α) = (w(α), β), the lemma is again true for
sβ · w .

2.6. Recursions.

Let us now introduce the notion of recursion, which is our essential inductive
argument, and was introduced in [ThYo08]. Recall that we assume that Λ is
fundamental and P is the associated parabolic subgroup.

2.0.1. Bruhat and taquin recursions

For x ∈ W P let [x] ∈ G/P denote the corresponding T -fixed point. Recall that,
as a set, the Dynkin diagram D is the set of simple roots of G.

Definition 2.18. Let x ∈ W be a Λ-(co)minuscule element.

• Let D(x) ⊂ D defined by α ∈ D(x) if and only if 〈x(Λ), α∨〉 ≥ 0.

• Let Hx ⊂ G be generated by the subgroups SL2(α) of G for α ∈ D(x).

• Let Qx ⊂ Hx be the stabiliser of [x] in Hx .

• Let Wx ⊂ W be generated by the simple reflections sα for α ∈ D(x).

• We denote by Wx ·x ⊂ W the subset of all elements of the form yx for some
y ∈ Wx .
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Let x be a Λ-(co)minuscule element and let H(x) be its heap. We define
the peaks of H(x) to be the maximal elements in H(x) with respect to the partial
order (see [Per07] for more combinatorics on these peaks and some geometric
interpretations). Denote by Peak(x) the set of peaks in H(x). Recall that we
denote by c : H(x) → D the coloration of the heap.

Proposition 2.19. We have D(x) = D \ c(Peak(x)).

Proof. Remark that it is enough to prove this statement for Λ-minuscule
elements: the corresponding statement for Λ-cominuscule elements will follow by
taking the dual root system.

Take x = sβ1 · · · sβn a reduced expression for x. We have for any index
i ∈ [1, n−1] the equality sβi

· · · sβn(Λ) = sβi+1
· · · sβn(Λ)−βi . If α ∈ c(Peak(x)) we

may assume that β1 = α and we have sα(sβ2 · · · sβn(Λ)) = x(Λ) = sβ2 · · · sβn(Λ)−
α . We get

〈x(Λ), α∨〉 = 〈sβ2 · · · sβn(Λ), α
∨〉 − 〈α, α∨〉 = 1− 2 = −1 ,

therefore α 6∈ D(x).

Now consider a simple root α not in c(Peak(x)) and keep the reduced
expression x = sβ1 · · · sβn for x. We have

〈x(Λ), α∨〉 = 〈Λ, α∨〉 −
n∑

i=1

〈βi, α
∨〉.

If α is not in the support of x, then for all i we have 〈βi, α
∨〉 ≤ 0 thus 〈x(Λ), α∨〉 ≥

0 and α ∈ D(x). If α is in the support of x, let j be the minimal index such that
βj = α . Since α ∈ c(Peak(sβj

· · · sβn)), the first case yields 〈sβj
· · · sβn(Λ), α

∨〉 =
−1. Since α is not a peak of x, there exists i < j such that 〈βi, α

∨〉 < 0, thus
〈x(Λ), α∨〉 ≥ 〈sβj

· · · sβn(Λ), α
∨〉+ 〈βi, α

∨〉 ≥ 0. Therefore α ∈ D(x).

Let w be a Λ-(co)minuscule element with w ≥ x and denote by H(w) its
heap.

Corollary 2.20. The element w is in Wx · x provided that
c(H(w)−H(x)) ∩ c(Peak(x)) = ∅.

Fact 2.21. Qx is a parabolic subgroup of Hx .

Proof. Let α be a positive root of Hx . We can write

α =
∑

i∈D(x)

niαi,

with ni ≥ 0. By definition of D(x) it follows that 〈x(Λ), α∨〉 ≥ 0. Since the set of
weights of the SL2(α)-representation generated by the weight line Lx of weight x
is the interval [x(Λ), sα(x(Λ))], it therefore contains weights of the form x(Λ)−nα
with n ≥ 0. On the other hand, the root space gα maps a vector of weight ̟ to
a vector of weight ̟ + α . Therefore gα kills Lx .
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Summing up, we have proved that for all positive roots α of Hx , gα kills
Lx . This implies that the standard Borel subgroup Bx of Hx stabilises [x], so
that Bx ⊂ Qx , and Qx is a parabolic subgroup of Hx .

Let us now prove a result on the length of elements of the form wx with x
a Λ-(co)minuscule element and w ∈ (Wx)

Qx .

Lemma 2.22. Let w ∈ (Wx)
Qx .

(ı) We have wx ∈ W P .

(ıı) We have l(wx) = l(w) + l(x).

Note that in particular, in the situation of the above lemma, we have x ≤ wx.

Proof. Let us prove this result for a Λ-minuscule element first. The result
for a Λ-cominuscule element follows since all these properties depend only on the
Weyl group and thus not on the orientations of the arrows in the Dynkin diagram.
By [Hu90, Propositions 1.10 and 5.7], we have the characterisation

W P = {w ∈ W / w(α) > 0 for all positive roots α of G satisfying 〈Λ, α∨〉 = 0}.

Recall also [Hu90, Proposition 5.6] that for u ∈ W we have l(u) = |Inv(u)| where
Inv(u) is the set of inversions of u defined by Inv(u) = {α > 0 / u(α) < 0}. From
the characterisation of W P above it follows that for u ∈ W P we have

Inv(u) = {α > 0 / u(α) < 0 and 〈Λ, α∨〉 > 0}.

(ı) Let α be a positive root with 〈Λ, α∨〉 = 0, we need to prove that wx(α)
is positive. Because x ∈ W P , we have x(α) > 0. Assume first that x(α) is a root
of Hx . Since 〈x(Λ), x(α)∨〉 = 0, w ∈ WQx

x , and x(α) is a root of Hx , we have
w(x(α)) > 0. If x(α) is not a root of Hx , then it has a positive coefficient on a
simple root not in the root system of Hx . But as w ∈ Wx , the root w(x(α)) has
the same coefficient on that root and wx(α) > 0.

(ıı) We have the inequality l(wx) ≤ l(w) + l(x). To prove the converse
inequality, we prove the following inclusion (and thus equality) on the set of
inversions:

Inv(x) ∪ x−1(Inv(w)) ⊂ Inv(wx).

We will also prove that the first two sets are disjoint proving the result.

Let α a positive root with 〈Λ, α∨〉 > 0 and x(α) < 0. Assume that x(α)
is in the root system of Hx . We may write x(α) as a linear combination of
positive roots in Hx with non positive coefficients. Thus by definition of Hx , we
get 〈x(Λ), x(α)∨〉 ≤ 0. But we have the equality 〈x(Λ), x(α)∨〉 = 〈Λ, α∨〉 > 0
a contradiction. This implies, by the same argument as in the end of (ı) that
wx(α) < 0. Thus Inv(x) ⊂ Inv(wx).

Let β a positive root of Hx with w(β) < 0 and 〈x(Λ), β∨〉 > 0. We have
〈Λ, x−1(β)∨〉 > 0 thus x−1(β) > 0 and x−1(β) ∈ Inv(wx). The second inclusion
follows. The sets Inv(x) and x−1(Inv(w)) are disjoint since by our proof x(Inv(x))
is disjoint from the root system of Hx while x(x−1(Inv(w))) = Inv(w) is contained
in that root system.
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Definition 2.23. Let x ∈ W . We say that x is a Bruhat recursion resp. a
taquin recursion if for all u, w ∈ (Wx)

Qx · x with u ≤ w and w a Λ-(co)minuscule
element, and for all v ≤ w , the following holds:

cwu,v(G/P ) =
∑

s∈[e,wx−1]

cwx−1

ux−1,s(Hx/Qx) · c
sx
x,v(G/P )

resp. twu,v(W )mw
u,v(W ) =

∑

s∈[e,wx−1]

twx−1

ux−1,s(Wx)m
wx−1

ux−1,s(Wx) · t
sx
x,v(W )msx

x,v(W ) .

Let us make two comments on this definition. First, by Definition 2.18, x(Λ) is
a dominant weight for the group Hx . Moreover, by assumption we have ux−1 ∈
(Wx)

Qx and the expression u = (ux−1)x is length-additive by Lemma 2.22 (so that
in particular x ≤ u). Since u is Λ-minuscule, Proposition 2.2 implies that ux−1

(as an element in Wx ) is x(Λ)-minuscule. The same holds for wx−1 , giving sense
to the numbers cwx−1

ux−1,s
. Second, by Remark 2.5, if x is not Λ-(co)minuscule, then

the above statements are empty.

Remark 2.24. We shall consider the special case of recursion when x has a
unique peak: see Lemma 3.8.

Proposition 2.25. Let x ∈ W be Λ-(co)minuscule. Then x is a taquin
recursion.

Proof. We start with the same formula involving only the taquin terms:

twu,v(W ) =
∑

s∈[e,wx−1]

twx−1

ux−1,s(Wx) · t
sx
x,v(W ).

This formula was proved by Thomas and Yong in the more restrictive setting
of cominuscule recursion (see [ThYo08, Theorem 5.5]). Their proof adapts here
verbatim.

We need to include the mw
u,v terms. For u a Λ-minuscule element, we

have, by Lemma 2.9, the equality m(u) = 1 and the result follows. For u a
Λ-cominuscule element, we may by Lemma 2.9 rewrite m(u) as follows:

m(u) =
∏

a∈H(u)

(αΛ, αΛ)

(c(a), c(a))
.

In particular we get for mw
u,v(W ) an expression independent of αΛ and thus

independent of W . It only depends on the heaps of u , v and w :

mw
u,v(W ) =

∏

a∈H(u)

(c(a), c(a))
∏

a∈H(v)

(c(a), c(a))

∏

a∈H(w)

(c(a), c(a))
(2)

Now we remark that for u′ ∈ Wx with u = u′x, the heap H(u) of u is the union
of the heaps H(x) and H(u′). In particular this gives m(u) = m(ux−1)m(x) so
mw

u,v = mwx−1

ux−1,sm
sx
x,v and the result follows.
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2.0.2. A Λ-(co)minuscule element defines a Bruhat recursion

Let B be a Borel subgroup of G and U− an opposite unipotent subgroup (see
[Kum02, Page 215] for more details). Given w ∈ W P we denote by Xw resp. Xw

the closure of the B -orbit resp. U− -orbit in G/P through the point wP/P in
G/P . For u ∈ WQx

x we define similarly the subvarieties Yu and Y u of Hx/Qx .
By Definition 2.18, Qx is the stabiliser of [x] in Hx , so that the orbit map
Hx → G/P, h 7→ h · [x] factors into a closed immersion Hx/Qx → G/P , that
we denote by i.

Lemma 2.26. Let x be Λ-(co)minuscule and let u, w ∈ (Wx)
Qx . We have

Xux ∩Xwx = i(Y u ∩ Yw), as subvarieties of G/P .

Proof. For v ∈ W P recall that [v] ∈ G/P denotes the corresponding T -
fixed point, and define similarly [u] ∈ Hx/Qx for u ∈ WQx

x . Let U(x) ⊂ B
resp. U(w) ⊂ Bx denote the unipotent subgroups corresponding to x resp.
w . We have Xx = U(x) · [e] thus x ∈ U(x) · [e] , from which it follows that
U(w) · x ⊂ U(w)U(x) · [e] = Xwx . Since i([e]) = [x] and i is Hx -equivariant, it
follows that i(Yw) ⊂ Xwx . Similarly we have i(Y u) ⊂ Xux . Thus we have an
injection i : Y u ∩ Yw → Xux ∩Xwx .

The intersection Y u∩Yw resp. Xux∩Xwx is non-empty if and only if u ≤ w
resp. ux ≤ wx. By Lemma 2.22, the products ux and wx are length-additive,
so these conditions are equivalent. Assume these intersections are non empty. By
[Kum02, Lemma 7.3.10], they are both transverse and irreducible, so that, by
Lemma 2.22, the intersections Y u ∩ Yw and Xux∩wx have the same dimension,
namely l(w)− l(u) if they are non empty, and thus the lemma is proved.

For u ∈ (Wx)
Qx , let us denote by τu resp. τu the Schubert class in the

homology group H∗(Hx/Qx,Z) resp. its dual in H∗(Hx/Qx,Z).

Lemma 2.27. Let x be Λ-(co)minuscule and let u, w ∈ (Wx)
Qx . We have

σux ∩ σwx = i∗(τ
u ∩ τw), in H∗(G/P ).

Proof. We still denote by σux the restriction of the cohomology class σux to
Xwx . We choose a reduced expression w for wx and denote by q : X̃w → Xwx the
Bott-Samelson resolution associated to this expression (see for example [Kum02,
Chapter 7]). Recall that, since the expression is reduced, the morphism q is
birational. We denote by p its inverse which is a rational morphism. Observe that
p is defined at [wx].

Since X̃w is smooth, homology and cohomology are identified via Poincaré
duality and moreover the cup product identifies with the intersection product in
the Chow ring. We assume that u ≤ w , since otherwise the terms of the lemma
both equal 0. In this case [wx] ∈ Xux ∩Xwx and we define X̃ux = p(Xux ∩Xwx).
We claim that [X̃ux] = q∗σux ∈ H∗(X̃w). Note that q∗σux is characterised by the
equality 〈q∗σux, γ〉 = 〈σux, q∗γ〉 for all γ ∈ Hl(ux)(X̃w,Z). To prove our claim, we

use the fact that H2l(ux)(X̃w) has a basis consisting of the classes [X̃v] where X̃v

is the Bott-Samelson subvariety of X̃w defined by the subword v of w and the
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length of v is l(ux). The claim is now implied by the fact that the intersection
X̃ux ∩ X̃v is a reduced point if q(X̃v) = Xux and is empty otherwise. Indeed, first
remark that q(X̃v) is a Schubert variety. We may thus use Lemma 7.1.22 and
Lemma 7.3.10 in [Kum02]. If dim q(X̃v) < l(u) + l(x) then q(X̃v) will not meet
Xux and we are done. If dim q(X̃v) = l(u) + l(x), then q(X̃v) can meet Xux only
if q(X̃v) = Xux , in which case they meet transversely at [ux]. Moreover, since p
is defined at [ux], it follows that 〈[X̃ux], [X̃v]〉 = 1 in this case.

Remark that because q is birational, we have the equality q∗[X̃w] = σwx .
Since furthermore p is defined at [wx], we have the equality q∗[X̃

ux] = [Xux∩Xwx].
Applying projection formula we get:

σux ∩ σwx = q∗(q
∗σux ∩ [X̃w]) = q∗([X̃

ux]) = [Xux ∩Xwx].

The same argument gives τu∩ τw = [Y u∩Yw] and the lemma follows from Lemma
2.26.

Theorem 2.28. Let x be Λ-(co)minuscule, let u, w ∈ (Wx)
Qx and let v ∈ W P .

Then we have
cwx
ux,v(G/P ) =

∑

s∈[e,w]

cwu,s(Hx/Qx) · c
sx
x,v(G/P ).

In other words, x is a Bruhat recursion.

Proof. The proof goes as in [ThYo08]. Let x, u, v, w ∈ W be as in the
hypothesis of the theorem.

The left hand side of the equality in Lemma 2.27 is
∑

v c
wx
ux,v(G/P )σv , and

the right hand side is equal to i∗
∑

s c
w
u,s(Hx/Qx)τs . By Lemma 2.27 again, we

have the equalities i∗τs = σx ∩ σsx =
∑

v c
sx
x,v(G/P )σv , so the right hand side

is
∑

v,s c
w
u,s(Hx/Qx) · c

sx
x,v(G/P )σv . Equating the coefficient of σv we get the

theorem.

2.7. System of posets associated with a dominant weight.

Contrary to the situation of [ThYo08], to compute the intersection numbers
in a general homogeneous space, it will more convenient not to use only one poset
but a system of posets (we will deal for example in Lemma 4.13 with seven posets
at the same time instead of writing seven times the same proof for each poset).
Therefore it is necessary to show that the notion of ideals, of skew ideals, of
tableaux, and of rectification make sense for a system of posets.

Let J be a poset. A J -system P of posets is the data of a poset Pi for each
i in J and an injective morphism of posets fi,j : Pi → Pj for all pairs (i, j) with
i ≤ j , such that fi,j(Pi) is an order ideal in Pj and fj,k ◦ fi,j = fi,k if i ≤ j ≤ k .
We assume that J and each Pi ’s are bounded below. Thus if λ ⊂ Pi is an order
ideal and i ≤ j then fi,j(λ) ⊂ Pj is also an order ideal in Pj , and we consider
the order in the set S := {(λ, Pi) : λ is an order ideal in Pi} generated by the
relations (λ, Pi) ≤ (fi,j(λ), Pj) for i ≤ j . The set of order ideals of the system P
is by definition the direct limit of S . This means that an ideal in P is represented
by some ideal λ ⊂ Pi for some i ∈ J , and we identify the ideal λ ⊂ Pi with the
ideal fi,j(λ) ⊂ Pj , for each j ∈ J such that i ≤ j .
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A skew ideal is a pair (ν, λ) of order ideals of P such that λ ⊂ ν ; it will
be denoted by ν/λ . A tableau T in P of skew shape ν/λ , where ν/λ is a skew
ideal, is a list of compatible tableaux in each of the Pi where ν is defined, of skew
shape νi/λi .

We say that P has the jeu de taquin property if each Pi has this property.
Let Ti be a tableau of skew shape λi/νi in Pi , let i ≤ j , and denote by Tj :=
fi,j(Ti). If Ri (resp. Rj ) denotes the rectification of Ti (resp. Tj ) in Pi (resp.
Pj ), then note that Rj = fi,j(Ri) (informally, the rectification of a tableau does
not depend on what is above this tableau). Therefore the rectification of a tableau
in the system of posets P is well-defined as a tableau in P . Moreover an analogue
of Proposition 2.7 holds in this context, thus defining the integer tνλ,µ for three
order ideals in P .

Recall that Λ is a dominant weight in a root system with Weyl group W .
We now show that Λ defines a system of posets with the jeu de taquin property.
Let J be the set of Λ-(co)minuscule elements in W , equipped with the weak
Bruhat order (which coincides with the strong Bruhat order). If v, w ∈ J and
v ≤ w , then we may write w = si1 · · · sik · v , thus the heap H(v) of v embeds
naturally in H(w) as an order ideal of H(w). This gives a map fv,w and defines
the system PΛ associated with Λ. Note that the set of order ideals of PΛ is the
set of heaps of Λ-(co)minuscule elements in W . We refer to the pictures (5) in
Subsection 3 for pictures of such posets.

We will use the following convention when dealing with Conjecture 2.13 :

Notation 2.29. Given a Dynkin diagram D , let G be the associated Kac-
Moody group. Let Λ be a dominant weight and let P be a D -colored system of
posets contained in PΛ . We say that Conjecture 2.13 holds for P if it holds for
the homogeneous space G/P defined by the weight Λ and for all u, v, w ∈ W P

corresponding to ideals in P via Proposition 2.4.

If λ, µ, ν are ideals in P , we say that Conjecture 2.13 holds for λ, µ, ν if is
holds for the elements u, v, w in W P corresponding to λ, µ, ν .

2.8. Algebra associated with a system of posets having the jeu de taquin
property.

Using the jeu de taquin, we now define a Z-algebra H(P) attached to any
system of posets P having the jeu de taquin property. As a Z-module, H(P) is
just a free Z-module with basis {xλ} indexed by all order ideals λ of P . We then
define a product on H(P) by

xλ ∗P xµ :=
∑

ν

tνλ,µxν ,

where tνλ,µ is the integer defined in Proposition 2.7. If T ′ is a tableau of skew
shape ν/λ , we denote by xT ′ := xν and say that T ′ is relative to λ . We also write
T ′
 T when the rectification of T ′ is a standard tableau T . Our definition of the

algebra H(P) may thus be rewritten as xλ ∗P xµ :=
∑

T ′
 T xT ′ , where the sum

runs over all T ′ relative to λ and where T is a fixed standard tableau of shape µ .
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Proposition 2.30. Let P be a system of posets having the jeu de taquin prop-
erty. Then the algebra H(P) with the product ∗P is commutative and associative.

Proof. The commutativity of H(P) amounts to the fact that tνλ,µ = tνµ,λ , which
is proved in Proposition 2.7. Let us prove that H(P) is associative.

So let λ, µ, ν be order ideals. We choose standard tableaux U and V ,
of shapes µ and ν , and labelled respectively with the indices {1, . . . , |µ|} and
{|µ|+ 1, . . . , |µ|+ |ν|} . If γ is a standard tableau, let sh(γ) denote its shape. By
definition, we have

(xλ ∗P xµ) ∗P xν =
∑

U ′
 U,V ′′

 V

xV ′′ (3)

where U ′ is relative to λ and V ′′ to λ ∪ sh(U ′). Since by definition we have
xµ ∗P xν =

∑
V ′
 V xV ′ , where V ′ is relative to µ , and since for each such V ′ ,

U ∪ V ′ is a standard tableau, we also have by definition

xλ ∗P (xµ ∗P xν) =
∑

V ′
 V,W ′

 U∪V ′

xW ′ (4)

where V ′ is relative to µ and W ′ is relative to λ .

We finish the proof of the proposition exhibiting a bijection between the
set of pairs (U ′, V ′′) in (3) and the set of pairs (V ′,W ′) in (4). We hope that
the following scheme will help following the argument (the order ideals λ, µ, ν
correspond to the shapes: circle, rectangle, triangle).

U

U

U ′

V

V

V ′

V ′′

W

W ′

Given a pair (U ′, V ′′) as in (3), we may consider the standard skew tableau
W ′ = U ′∪V ′′ . While performing the rectification of W ′ , we get at each step a union
of two tableaux which are obtained from U ′ and V ′′ applying suitable jeu de taquin
slides. At the end, the rectification W of W ′ is a standard tableau W = U1 ∪ T1 ,
with U1 (resp. T1 ) obtained by jeu de taquin slides from U ′ (resp. V ′′ ). Therefore,
U1 = U , and V1 rectifies to V . Therefore, if we set V ′ = V1 , we get a pair (V

′,W ′)
in (4). The inverse of this bijection is given by setting U ′ (resp. V ′′ ) to be the
tableau made of all elements of W with labels less or equal to |µ| (resp. bigger
than |µ|). We thus have proved that (xλ ∗P xµ) ∗P xν = xλ ∗P (xµ ∗P xν).

In the situation of a system of posets P associated to a dominant weight Λ
as defined in Section 2.0.2, we define a perturbation of this product by the numbers
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mν
λ,µ as follows:

xλ ⊙ xµ :=
∑

ν

tνλ,µm
ν
λ,µxν .

Using Equation (2) of the proof of Proposition 2.25, we obtain:

Corollary 2.31. Let P be a system of posets having the jeu de taquin property.
Then the algebra H(P) with the product ⊙ is commutative and associative.

We therefore have a purely combinatorially-defined algebra H(P). On the
cohomology side there is also a natural algebra with basis indexed by the Λ-
minuscule (resp. Λ-cominuscule) elements of W , because of the following fact
(here we denote by Wmi resp. Wco the set of Λ-minuscule resp. Λ-cominuscule
elements).

Fact 2.32. The Z-modules
⊕

w 6∈Wmi
Z · σw and

⊕
w 6∈Wco

Z · σw are ideals in
H∗(G/P ).

Proof. Let v ∈ W P be non Λ-(co)minuscule and let x ∈ H∗(G/P ). We
want to show that σv ∪ x is a linear combination of some σw ’s with w non Λ-
(co)minuscule but w ∈ W P . To this end we may assume that x is a Schubert
cohomology class of degree d ; thus x ≤ hd (h denotes the degree 1 Schubert
cohomology class).

Write σv∪x =
∑

cwσ
w , and let w be such that cw > 0. Thus the coefficient

of σw in σv · hd is positive. Thus v is smaller than w in the strong Bruhat
order. By Remark 2.5, if w is Λ-(co)minuscule, then we have v ≤ w and v is
Λ-(co)minuscule. A contradiction.

Fact 2.33. Let w1, . . . , ws ∈ W . Then the Z-module
⊕

∀i,w 6≤wi
Z · σw is an

ideal in H∗(G/P ). We denote by H∗
(wi)

(X) the corresponding quotient algebra.

Proof. For all i ∈ [1, s], if v ≥ u and u 6≤ wi , then v 6≤ wi . Thus the argument
is the same as for the previous fact.

3. Main result and strategy for the proof

3.1. Statement of the main result.

Let X = G/P be a homogeneous space and let W resp. Λ denote the
Weyl group of G resp. the dominant weight associated to P . Denote by D the
Dynkin diagram of G. Let w ∈ W be Λ-(co)minuscule. As in Definition 2.3 we
associate to w a heap H(w). By [Pro99b, Proposition A] (see also the end of
Subsection 2), we may decompose H(w) into a disjoint union of so-called slant
products of irreducible heaps that we denote by (Hi)0≤i≤k . We also denote by
D(Hi) = c(Hi) ⊂ D the Dynkin diagram corresponding to Hi .
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Definition 3.1. Let w ∈ W be Λ-(co)minuscule. We say that w is slant-
finite-dimensional if all the Dynkin diagrams D(Hi) are Dynkin diagrams of finite-
dimensional algebraic groups, in other words D(Hi) belongs to

{An, Bn, Cn, Dn, E6, E7, E8, F4, G2}

for all i.

Our main result is the following.

Theorem 3.2. Let G/P be a Kac-Moody homogeneous space where P corre-
sponds to the dominant weight Λ. Let u, v, w ∈ W be Λ-(co)minuscule. Assume
that w is slant-finite-dimensional. Then we have cwu,v = mw

u,vt
w
u,v .

3.2. Definition of some systems of posets.

In order to prove Theorem 3.2 we may assume, thanks to Corollary 2.14,
that P is a maximal parabolic subgroup of G. The proof of Theorem 3.2 will be
done by induction on the rank of G, considering the different possible cases for the
irreducible component H0(w) of H(w) containing the minimal element of H(w).

We denote D0(w) = c(H0(w)) ⊂ D the set of colors of this component
and X0 the homogeneous space corresponding to the marked Dynkin diagram
(D0(w),Λ).

For the basic definitions concerning posets, we refer the reader to Subsection
2. We fix a marked Dynkin diagram (D0,Λ) which has no cycle, and we consider
a system of Λ-(co)minuscule D0 -colored posets that we denote by P0 . We denote
by I0 the poset indexing this system, so that for all i ∈ I0 we are given a Λ-
(co)minuscule D0 -colored poset P0(i). The choice of Λ equips D0 with the
structure of a poset, because we set d1 ≤ d2 in D0 if d1 and Λ belong to the
same connected component of D0−{d2} . We assume that any α ∈ D0 is the color
of at least one element in P0(i) for each i in I0 , thus the rooted tree of P0(i) is
equivalent, as a poset, with D0 .

We denote by S0 the set of maximal elements in D0 . For each α ∈ S0 we
suppose we are given a marked Dynkin diagram (Dα,Λα) and a Λα -(co)minuscule
Dα -colored poset Pα , and we now define a system of posets P which consists
essentially in making the slant product of the Pα ’s with P0 in a specific way.
More precisely, let D be the Dynkin diagram obtained from the disjoint union of
D0 and the Dα ’s for α ∈ S0 , where we connect α ∈ S0 with Λα ∈ Dα with an
arbitrary number of edges. The colors of P will be the elements of D .

The system P is indexed by the set J0 of triples (i, S1, S2) where i ∈ I0
and (S1, S2) are subsets of S0 with S0 \ S1 ⊃ S2 . This index set is itself a poset
if we set (i, S1, S2) ≤ (j, T1, T2) if i ≤ j , S1 ⊂ T1 and S2 ⊂ T2 .

To any subset S1 ⊂ S0 and i ∈ I0 we associate the subposet P0(i, S1) of
P0(i) which is the maximal subposet such that all the colors α in S0 \ S1 occur
only once in P0(i, S1) (in other words P0(i, S1) consists of all the elements in
P0(i) which are not bigger or equal to some element (α, 2) with α ∈ S0 − S1 ).
Thus if (i, S1) ≤ (j, T1) then P0(i, S1) ⊂ P0(j, T1), and P0(i, S0) = P0(i). We
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define P(i, S1, S2) to be the slant product of P0(i, S1) and the posets Pα for
α ∈ S2 , where the poset Pα is attached to P0(i, S1) on the unique node colored
by α in P0(i, S1). By [Pro99b, Proposition A], P(i, S1, S2) is Λ-minuscule (resp.
Λ-cominuscule) if P0(i, S1) is Λ-minuscule (resp. Λ-cominuscule) and Λα is not
shorter (resp. longer) that α . Moreover for (i, S1, S2) ≤ (j, T1, T2) we obviously
have an injection P(i, S1, S2) ⊂ P(j, T1, T2), so that P is indeed a system of
Λ-(co)minuscule D -colored posets.

Notation 3.3. We denote by PP0,(Pα) the system of posets constructed above.

Example 3.4. In the following array we give explicitly the system of posets
obtained when P0 contains only one element which is the heap of the maximal
Schubert cell in D7/P6 . Note that in this case S0 = {1, 7} . Since I0 has only one
element we abbreviate P(i, S1, S2) into P(S1, S2). In the pictures we represent
the rooted tree with solid dots and solid diamonds (for the maximal elements), we
represent the elements which must belong to an ideal in order for this ideal to be
slant-irreducible with ⊗, and the other elements are depicted with hollow dots.
The posets Pα for α ∈ S0 are represented by angular sectors.

P({1, 7}, ∅) = P({7}, ∅) P({7}, {1}) P({1}, ∅) = P(∅, ∅)

(5)

P(∅, {1}) P({1}, {7}) = P(∅, {7}) P(∅, {1, 7})

Let α ∈ S0 . An element λ ∈ I(P) is by definition a pair (λ, (i, S1, S2))
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where (i, S1, S2) ∈ J0 and λ is an ideal in P(i, S1, S2). We will write λ ∩ Pα 6= ∅
to mean that α ∈ S2 and λ ∩ Pα 6= ∅ (this intersection is in P(i, S1, S2)). The
next remark follows directly from the above definitions:

Remark 3.5. Let λ ∈ I(P) such that λ ∩ Pα 6= ∅ . Then (α, 1) ∈ λ and
(α, 2) 6∈ λ .

We also consider the Kac-Moody homogeneous spaces defined by the marked
Dynkin diagram (D0,Λ) resp. (D,Λ). We denote them by X0 resp. X . Let
W be the Weyl group corresponding to D , and for each triple (i, S1, S2) let
wi,S1,S2 ∈ W be the Λ-(co)minuscule element whose heap is the Λ-(co)minuscule
poset P(i, S1, S2). We denote by H∗

t (X) the truncation H∗
{wi,S1,S2

}(X) of H∗(X)

obtained with the elements wi,S1,S2 (see Fact 2.33) for all triples (i, S1, S2).

3.3. Partial reduction to indecomposable posets.

In the rest of this subsection P0, S0, (Pα),P, X,H∗
t (X) are as above. We

explain here how to reduce the proof of our main Theorem to checking some
identities involving generators contained in P0 and elements in whole poset P .
We make the following assumption:

Assumption 3.6. For any marked Dynkin diagram (D′, d′) and any D′ -colored
d′ -minuscule poset, Conjecture 2.13 holds as soon as D′  D .

We will give some lemmas which help comparing H∗(P) with H∗
t (X). Note

that these two Z-modules have a basis indexed by the same set, namely the set of
ideals of P . Thus, in order to simplify notation, we will identify these Z-modules
and denote by x · y resp. x⊙ y the product in H∗

t (X) resp. H∗(P).

Moreover, H∗(P0) is naturally a Z-submodule of H∗(P), but not a subal-
gebra. For x, y ∈ H∗(P0) ⊂ H∗(P), the products x · y and x⊙ y will denote the
products in H∗(P).

Notation 3.7. For α ∈ S0 we denote by λα = 〈(α, 1)〉 the ideal in P0 , and we
define the cohomology class σα = σλα ∈ H∗(P0).

We now make use of Theorem 2.28.

Lemma 3.8. Let λ ∈ I(P).

1. Let α ∈ D and let i be an integer. Assume that σλ · ση = σλ ⊙ ση for
η = 〈(α, i)〉. Then cνλ,µ = tνλ,µ ·m

ν
λ,µ for µ, ν ∈ I(P) such that (α, i) ∈ µ and

(α, i+ 1) 6∈ ν .

2. In particular, assume that α and i are such that for each poset P in the
system P the number of elements of P colored by α is not bigger than i,
and that σλ · σµ = σλ ⊙ σµ for µ = 〈(α, i)〉. Then σλ · σµ = σλ ⊙ σµ if
(α, i) ∈ µ.



Chaput and Perrin 39

3. Let α ∈ S0 and assume σλ · σα = σλ ⊙ σα . Then cνλ,µ = tνλ,µ ·m
ν
λ,µ if µ ⊃ λα

and ν ∩ Pα 6= ∅.

4. Let α ∈ S0 and assume σλ · σα = σλ ⊙ σα . Then σλ · σµ = σλ ⊙ σµ for µ
such that µ ∩ Pα 6= ∅.

Proof. Let λ ∈ I(P) and let α, i as in the first point, and let µ, ν ∈ I(P) such
that µ ⊃ 〈(α, i)〉 and (α, i+ 1) 6∈ ν .

Let x resp u, w be the elements in W corresponding to the ideals 〈(α, i)〉
resp. µ, ν . Since 〈(α, i)〉 has only one peak namely (α, i), by Corollary 2.20
and the assumption on µ and ν , we have u, w ∈ Wx · x. By assumption 3.6,
Conjecture 2.13 holds for posets colored by D − {α} . Thus for s ∈ Wx we have
cwx−1

ux−1,s
= twx−1

ux−1,s
· mwx−1

ux−1,s
. Moreover the hypothesis that σλ · σx = σλ ⊙ σx says

that csxx,λ = tsxx,λ ·m
sx
x,λ for s ∈ Wx . Thus by Theorem 2.28 and Proposition 2.25 it

follows that cwu,λ = twu,λ ·m
w
u,λ . This proves the first point.

The second point follows because under the hypothesis for any ideal µ we
have (α, i+ 1) 6∈ µ .

For the third point, let µ ∈ I(P) such that µ ⊃ λα and let ν such that
ν∩Pα 6= ∅ . By the definition of the system of posets P , this implies that (α, 1) ∈ ν
and (α, 2) 6∈ ν . By the first point we have cνλ,µ = tνλ,µ ·m

ν
λ,µ .

For the fourth point, let µ ∈ I(P) such that µ∩Pα 6= ∅ . We observe that if
ν ∈ I(P) contains µ , then µ and ν meet the conditions of the third point. Thus
we have cνλ,µ = tνλ,µ ·m

ν
λ,µ for all ν containing µ , so σλ · σµ = σλ ⊙ σµ .

Lemma 3.9. Let λ ∈ I(P) such that σλ · σ = σλ ⊙ σ for σ ∈ H∗(P0). Then
σλ · σ = σλ ⊙ σ for σ ∈ H∗(P).

Proof. Assume σ = σµ . If µ ∈ I(P0), then σµ ∈ H∗(P0) and we have the
result by assumption. Let us assume that µ ∈ I(P) − I(P0). Then there exists
α ∈ S0 such that µ ∩ Pα 6= ∅ . Thus we conclude thanks to Lemma 3.8(4).

Definition 3.10. We denote by π : H∗(P) → H∗(P0) the linear morphism
mapping σλ to itself if λ ∈ I(P0) and to 0 otherwise.

Let (γi) be a sequence of elements in H∗(P0). We denote by 〈(γi)〉 the
subspace π(A) of H∗(P0), where A ⊂ H∗(P) is the subalgebra generated by the
γi ’s. For d an integer we denote by 〈(γi)〉d the classes of 〈(γi)〉 of degree at most
d . Finally let Hd ⊂ H∗(P) denote the space of linear combinaisons of σλ for
λ ∈ I(P)−I(P0) such that there exists α ∈ S0 with deg(σα) ≤ d and λ∩Pα 6= ∅ .

Lemma 3.11. Let (γi)i∈[1,k] be elements in H∗(P0) and d an integer. Assume
that

• For all i and all σ ∈ H∗(P0) we have σ · γi = σ ⊙ γi .

• For each α in S0 with deg(σα) ≤ d, we have σα ∈ 〈(γi)〉.
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Then for all σ in H∗(P) and for all τ in H∗(P) such that π(τ) ∈ 〈(γi)〉d and
τ − π(τ) ∈ Hd we have σ · τ = σ ⊙ τ .

Proof. By Lemma 3.9 we have the equality σ · γi = σ ⊙ γi for general
σ ∈ H∗(P). In particular a polynomial expression in the γi ’s is the same whether
it is computed with the product · or ⊙. If P is a polynomial and σ ∈ H∗(P) we
moreover have σ · P (γi) = σ ⊙ P (γi).

We then prove by induction on d′ ≤ d that if α ∈ S0 with deg(σα) ≤ d′

and σ ∈ H∗(P), then
σ · σλ = σ ⊙ σλ if λ ⊃ λα.

Let d′ ≤ d be an integer and let α such that deg(σα) = d′ . Let P be a polynomial
such that σα = π(P (γ1, . . . , γk)) (such a P exists because of the hypothesis that
σα ∈ 〈(γi)〉). We therefore have P (γ1, . . . , γk) = σα+

∑
m∈M xmσ

λm with λm some
elements in I(P)− I(P0). For each m in M , since λm 6∈ I(P0), λm must contain
some element λβ with β ∈ S0 and deg(σβ) < d′ and by induction hypothesis
σ · σλm = σ ⊙ σλm . Thus from σ · P (γi) = σ ⊙ P (γi) we get σ · σα = σ ⊙ σα .
By recursion with respect to λα (Lemma 3.8(4)) it follows that σ · σλ = σ ⊙ σλ if
λ ∩ Pα 6= ∅ and we are done.

We thus have proved that if σ ∈ H∗(P) and τ ′ ∈ Hd then σ · τ ′ = σ ⊙ τ ′ .
Let finally τ ∈ H∗(P) such that π(τ) ∈ 〈(γi)〉d and τ − π(τ) ∈ Hd , and let
σ ∈ H∗(P) be arbitrary. Let P be a polynomial such that P (γi) = τ + τ ′ with
τ ′ ∈ Hd . Since σ ·P (γi) = σ⊙P (γi) and we since already know that σ ·τ ′ = σ⊙τ ′ ,
we deduce σ · τ = σ ⊙ τ .

We now specialise this lemma.

Lemma 3.12. Let (γi)i∈[1,k] be elements in H∗(P0). Assume that

• For all i and all σ ∈ H∗(P0) we have σ · γi = σ ⊙ γi .

• For each α in S0 , we have σα ∈ 〈(γi)〉.

Then for all σ in H∗(P) and for all τ in H∗(P) such that π(τ) ∈ 〈(γi)〉, we have
σ · τ = σ ⊙ τ .

Lemma 3.13. Let (γi)i∈[1,k] be elements in H∗(P0) such that:

• For all i and for all σ ∈ H∗(P0) we have γi · σ = γi ⊙ σ .

• γ1, . . . , γk generate H∗(P0) (namely 〈γ1, . . . , γk〉 = H∗(P0)).

Then for all σ, τ ∈ H∗(P) we have σ · τ = σ ⊙ τ .

For σ ∈ H∗(P) let us denote by σ·n resp. σ⊙n the n-th power of σ
computed with the product · resp. ⊙.

Lemma 3.14. Let σ, γ1, . . . , γk ∈ H∗(P0) and d an integer such that we have:

• ∀τ ∈ H∗(P0) , γ
i · τ = γi ⊙ τ .
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• ∀n ≤ d , σ·n = σ⊙n .

Then for any polynomial P (X,X1, . . . , Xn) of degree at most d− 1 in X we have
the relation

σ · P (σ, γ1, . . . , γk) = σ ⊙ P (σ, γ1, . . . , γk).

In particular P (σ, γ1, . . . , γk) itself does not depend on the choice of one of
the two products.

Proof. We may assume that P = XnQ(X1, . . . , Xk) with n ≤ d − 1. By
Lemma 3.9, Q(γ1, . . . , γk) does not depend on the product and we have σ ·
Q(γ1, . . . , γk) = σ ⊙Q(γ1, . . . , γk). Thus we may compute

σ · P (σ, γ1, . . . , γk) = σ · σ·n ·Q(γ1, . . . , γk) = σ·(n+1) ·Q(γ1, . . . , γk)
= σ⊙n+1 ⊙Q(γ1, . . . , γk) = σ ⊙ (σ⊙n ⊙Q(γ1, . . . , γk)
= σ ⊙ P (σ, γ1, . . . , γk).

Lemma 3.15. Let λ, µ ∈ I(P0), and assume the following:

(ı) ∀ν ∈ I(P0) we have cνλ,µ = mν
λ,µt

ν
λ,µ .

(ıı) For all α in S0 , we have either

µ ⊃ λα and σλ · σα = σλ ⊙ σα or
λ ⊃ λα and σµ · σα = σµ ⊙ σα.

Then σλ · σµ = σλ ⊙ σµ .

Proof. The lemma amounts to the fact that ∀ν ∈ I(P) we have cνλ,µ = mν
λ,µt

ν
λ,µ .

This holds by assumption if ν ∈ I(P0). Otherwise there exists a simple root α in
S0 such that ν∩Pα 6= ∅ . By (ıı) we may assume that µ ⊃ λα and σλ·σα = σλ⊙σα .
The result follows by the third part of Lemma 3.8.

We now prove some results which allow induction on the degree.

Notation 3.16. Let λ, ν ∈ I(P) and let d be an integer. We define

• λ∩P0 the ideal in P defined by the system (λ∩P0)(i, S1, S2) = λ(i, S1, S2)∩
P0(i).

• Aλ,d = {µ ∈ I(P0) : deg(µ) = d, σλ · σµ 6= σλ ⊙ σµ} .

• Aν
λ,d = {µ ∈ I(P0) : deg(µ) = d, cνλ,µ 6= tνλ,µ ·m

ν
λ,µ} .

Lemma 3.17. Let d be an integer and λ ∈ I(P). Assume that for all µ ∈ I(P0)
with deg(µ) ≤ d, we have σλ · σµ = σλ ⊙ σµ . Then, for all µ ∈ I(P) such that
deg(µ ∩P0) ≤ d, we have σλ · σµ = σλ ⊙ σµ .
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Proof. Let µ ∈ I(P) such that deg(µ ∩ P0) ≤ d . Let α ∈ S0 . If µ ∩ Pα 6= ∅
then µ ⊃ λα , so deg(λα) ≤ d and thus by assumption σλ · σα = σλ ⊙ σα . By
Lemma 3.8(4) we deduce that σλ · σµ = σλ ⊙ σµ . If µ ∩ Pα = ∅ for all elements
α ∈ S0 , then µ ∈ I(P0) and this equality is true by assumption.

Recall from Proposition 2.16, that combinatorial and cohomological Cheval-
ley formulas coincide.

Lemma 3.18. Let λ ∈ I(P) be a fixed ideal and d be an integer.

(ı) Assume that for all µ ∈ I(P0) such that deg(µ) < d we have σλ · σµ =
σλ ⊙ σµ and that #Aλ,d ≤ 1. Then Aλ,d = ∅.

(ıı) More specifically, let ν ∈ I(P) be another ideal and assume that for all
µ ∈ I(P0) such that deg(µ) < d we have cνλ,µ = tνλ,µ ·mν

λ,µ and that #Aν
λ,d ≤ 1.

Then Aν
λ,d = ∅.

Proof. Let us prove (ı). Let λ, d be as in the lemma. By Lemma 3.17, we have
σλ · σµ = σλ ⊙ σµ as soon as deg(µ ∩ P0) < d . Let µ ∈ I(P0) with deg(µ) = d .
By Proposition 2.16, the d-th powers of h computed in H∗

t (X) and H∗(P) are
equal. We have the following properties:

• By Chevalley formula the coefficient of σµ in hd is positive.

• If µ 6∈ I(P0) then deg(µ ∩P0) < d and so σλ · σµ = σλ ⊙ σµ .

• By Proposition 2.16, hd · σλ = hd ⊙ σλ .

Let H ⊂ Hd(X) ⊗ Q be the set of classes σ such that σλ · σ = σλ ⊙ σ . This
vector subspace contains the hyperplane generated by the σµ ’s for µ 6∈ Aλ,d or
µ 6∈ I(P0). Moreover it contains hd which by the first point does not belong to
this hyperplane. Thus H = Hd(X)⊗Q. The proof of (ıı) is similar.

Recall that X0 is the homogeneous space associated to the marked Dynkin
diagram (D0,Λ).

Lemma 3.19. Let σλ be a fixed Schubert class and d be an integer.

(ı) Assume that dimHd(X0) ≥ dimHd+1(X0) and assume that σλ · σµ =
σλ ⊙ σµ for any µ ∈ I(P0) such that deg(µ) ≤ d. Assume moreover that X0 is
finite dimensional. Then for any µ ∈ I(P) such that deg(µ ∩ P0) ≤ d + 1, we
have σλ · σµ = σλ ⊙ σµ .

(ıı) Assume there exists a subset C of I(P0) such that for all µ ∈ C we have
σλ ·σµ = σλ⊙σµ . Assume furthermore that the natural map given by multiplication
by h: ⊕

µ∈I(P0)d,
µ6∈C

Z · σµ →
⊕

µ′∈I(P0)d+1,

µ′ 6∈C

Z · σµ′

is surjective and that σλ ·σµ = σλ⊙σµ for µ ∈ I(P0) such that deg(µ) ≤ d. Then
for any µ in I(P) such that deg(µ ∩P0) ≤ d+ 1 we have σλ · σµ = σλ ⊙ σµ .
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Proof. (ı) Denote the maps induced by multiplication by the class of degree
1 by hd : Hd(X0,Q) → Hd+1(X0,Q) and by κd : Hd(P0,Q) → Hd+1(P0,Q).
If 2d ≥ dim(X0), then by Lefschetz Theorem (see for example [Laz04, Theorem
3.1.39]), hd is surjective. If 2d < dim(X0) again by Lefschetz Theorem hd is
injective and hence, under hypothesis (ı), surjective. It follows that the induced
quotient map Hd

t (X0) → Hd+1
t (X0) is also surjective. Since this map identifies

with κd , κd is surjective.

Now we consider µ ∈ I(P) such that deg(µ) = d + 1. By Lemma 3.17,
we have σλ · σµ′

= σλ ⊙ σµ′

if deg(µ′ ∩ P0) ≤ d . Thus, if µ 6∈ I(P0), we
have σλ · σµ = σλ ⊙ σµ , the result is proved. Assume µ ∈ I(P0). Since κd is
surjective, there exists ρ ∈ Hd(P0) such that h · ρ = σµ + τ , where τ is a linear
combinaison of some σµ′

with µ′ ∈ I(P) − I(P0) and deg(µ′) = d + 1, so that
σλ · τ = σλ ⊙ τ . By Proposition 2.16, we have h · (σλ · ρ) = h ⊙ (σλ · ρ) and by
assumption σλ · ρ = σλ ⊙ ρ. We thus have h · (σλ · ρ) = h ⊙ (σλ ⊙ ρ). Thus
σλ · (h · ρ) = σλ ⊙ (h · ρ), and we get σλ · σµ = σλ ⊙ σµ .

Finally, by Lemma 3.17 again, we have σλ · σµ = σλ ⊙ σµ if deg(µ ∩P0) ≤
d+ 1.

(ıı) In this case the proof is as for (ı).

We end this subsection with a lemma specific to the finite dimension and
even specific to the minuscule and cominuscule case. This lemma corresponds to
Lemma 5.8.(iii) in [ThYo08]. In the following lemma we assume that the longest
element wP in W P is Λ-(co)minuscule. This is equivalent to saying that Λ itself
is (co)minuscule. We define P0 as the heap of wP .

Lemma 3.20. Let λ and µ be two ideals in P0 and assume that for all ideals
ν in P0 except one we have cνλ,µ = tνλ,µ ·m

ν
λ,µ , then we have cνλ,µ = tνλ,µ ·m

ν
λ,µ for

all ν .

Proof. This lemma is a consequence of the fact the homological product and
the combinatorial product coincide when we multiply two classes of complementary
degree. In other words, if λ is an ideal in P0 , then there exists a unique ideal λc in
P0 of degree deg(P0)−deg(λ) such that for any µ with deg(µ) = deg(P0)−deg(λ),
we have

σλ · σµ = δµ,λc · [pt] = σλ ⊙ σµ

where [pt] ∈ HdimX(X) is the cohomology class corresponding to a point. This
result was proved in [ThYo08, Corollary 4.7].

Let us prove the lemma. Let m = deg(P0)− (deg(λ) + deg(µ)) and h the
hyperplane class. We have

σλ · σµ =
∑

ν⊂P0
deg(ν)=deg(P0)−m

cνλ,µσ
ν and σλ ⊙ σµ =

∑

ν⊂P0
deg(ν)=deg(P0)−m

tνλ,µm
ν
λ,µσ

ν .

By the discussion above, we have σ · τ = σ ⊙ τ for any classes σ and τ such that
deg(σ) + deg(τ) = deg(P0). Because deg(hm · σλ) + deg(µ) = deg(P0), we have

(hm · σλ) · σµ = (hm · σλ)⊙ σµ = (hm ⊙ σλ)⊙ σµ.
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But this is also equal to

hm ·(σλ ·σµ) =
∑

ν⊂P0
deg(ν)=deg(P0)−m

cνλ,µ(h
m ·σν) and hm⊙(σλ⊙σµ) =

∑

ν⊂P0
deg(ν)=deg(P0)−m

tνλ,µm
ν
λ,µ(h

m⊙σν).

As for all ν of degree deg(P0)−m the class hm · σν = hm ⊙ σν is non zero, and
because cνλ,µ = tνλ,µ ·m

ν
λ,µ for all ν but one we get the result.

3.4. Strategy for the proof of the main Theorem.

We now reduce the proof of Theorem 3.2 to some tractable cases. So let
D be a Dynkin diagram with Weyl group W , Λ a dominant weight, X the
corresponding Kac-Moody homogeneous space, and let u, v, w be Λ-(co)minuscule
elements in W . By Corollary 2.15 we may assume that Λ is a fundamental weight;
let d ∈ D be the corresponding node.

Recall that if (D, d) is a marked Dynkin diagram and w is a Λd -(co)minus-
cule element, we denote by P0(w) the slant-irreducible component of H(w) con-
taining the minimal element (d, 1) of H(w) and we denote by D0(w) ⊂ D the set
of colors of P0(w).

The heap of w is a slant product of P0(w) and some Pα ’s. We first prove
Theorem 3.2 in the simply laced case. Arguing by induction, we may assume that
Theorem 3.2 holds for each Pα and for any u′, v′, w′ with w′ ≤ w and D0(w

′)  
D0(w) (formally, the induction is on the pair (D,D0(w))). Note moreover that
P0(w), being slant-irreducible, must fall in one of the cases of [Pro99b] and its
associated Dynkin diagram must correspond to a finite-dimensional Kac-Moody
group (by our assumption). In the following array, we indicate, depending on
P0(w), which lemma allows to finish the proof.

P0(w) as in Proctor’s case D0(w) Lemma
1 An 4.4
2 Dn 4.5

3 (f = 1 ; g = 2 ; 2 ≤ h ≤ 4) Eh+4 4.7, 4.9, 4.12
4 (f ≥ 2 ; h = 1) Dn 4.3

4, 5, 6, 7 (f = 2 ; 2 ≤ h ≤ 4) E4+h 4.6, 4.8, 4.11
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 (3 ≤ f ≤ 4 ; h = 2) Ef+4 4.10, 4.13

15 E7 4.10

Once Theorem 3.2 is proved in case D0(w) is simply laced, we prove it in general
thanks to Lemmas 5.5, 5.6, 5.9 and 5.14. We end this section with the following
notations we shall use in the sequel:

Notation 3.21. A generator γ of the algebra H∗(P) will be called a good
generator if γ · σ = γ ⊙ σ for all classes σ in H∗(P).



Chaput and Perrin 45

4. Simply laced case

4.1. Generators for the cohomology.

For the convenience of the reader, we reproduce here arguments of our
paper [ChMaPe08] on well known fact concerning the cohomology of a rational
finite dimensional homogeneous space G/P . As we have seen we may assume that
P is maximal. The cohomology with coefficients in a ring k will be denoted by
H∗(X, k).

First, we recall the Borel presentation of the cohomology ring with rational
coefficients. Let W (resp. WP ) be the Weyl group of G (resp. of P ). Let P
denote the weight lattice of G. The Weyl group W acts on P . We have

H∗(G/P,Q) ≃ Q[P]WP /Q[P]W+ ,

where Q[P]WP denotes the ring of WP -invariant polynomials on the weight lattice,
and Q[P]W+ is the ideal of Q[P]WP generated by W -invariants without constant
term (see [Bor53, Proposition 27.3] or [BeGeGe73, Theorem 5.5]).

Recall also that the full invariant algebra Q[P]W is a polynomial algebra
Q[Fe1+1, . . . , Femax+1], where e1, . . . , emax is the set E(G) of exponents of G. If
d1, . . . , dmax denote the exponents of a Levi subgroup L(P ) of P , we get that
Q[P]WP = Q[I1, Id1+1, . . . , Idmax+1], where I1 represents the fundamental weight
̟P defining P . Geometrically, it corresponds to the hyperplane class.

Each W -invariant Fei+1 must be interpreted as a polynomial relation be-
tween the WP -invariants I1, Id1+1, . . . , Idmax+1 . We now state the following asser-
tion which we believe holds true but we did not find any reference for it.

Assertion 4.1. If ei is also an exponent of L(P ) the semi-simple part of P ,
the relation Fei+1 allows the elimination of Iei+1 . In particular, one gets the
presentation by generators and relations,

H∗(G/P,Q) ≃ Q[I1, Ip1+1, . . . , Ipn+1]/(Rq1+1, . . . , Rqr+1),

where {p1, . . . , pn} = E(L(P ))− E(G) and {q1, . . . , qr} = E(G)−E(L(P )).

We will only use the following weakened assertion for (G,P ) in one of the
following cases:

• (G,P ) with G/P a (co)minuscule homogeneous space, or

• (G,P ) with G/P a (co)adjoint homogeneous space (see [ChPe09] for a
definition of (co)adjoint homogeneous spaces), or

• (G,P ) with G/P isomorphic to E7/P2 , E8/P1 or E8/P2 .

Assertion 4.2. Let (G,P ) be in the above list and let P0 be a system of posets
whose order ideals are associated to elements of W P . Then the combinatorial
algebra H∗(P0) is generated by elements of degree {p1 + 1, . . . , pn + 1} with
{p1, . . . , pn} = E(L(P ))− E(G).
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We prove this assertion in the appendix.

In the rest of this section, we shall use this assertion to prove that the Z-
module isomorphism H∗(P) → H∗

t (X) is an algebra isomorphism. Because the
two algebra structure are associative and because of the results of the previous
section, we only need to check that the generators of H∗(P0) are good generators.

4.2. Type Dn : Quadrics.

Let us start with the case of quadrics. Thus we consider the system of
̟1 -minuscule Dn -colored posets P0 given by the following maximal element:

σn−1 τn−1

We have S0 = {n−1, n} . For i ∈ {n−1, n} , let (Di, di) be a marked Dynkin
diagram and Pi be any di -minuscule Di -colored poset. Set P = PP0,{Pn−1,Pn} .
Recall Notation 2.29 concerning our main conjecture.

Lemma 4.3. With the above notation, assume that Conjecture 2.13 holds for
Pn−1 and Pn , and for any λ, µ, ν in I(P) as soon as D0(ν)  Dn . Then
Conjecture 2.13 holds for P.

Proof. Let us define the degree n − 1 ideals λn−1 = 〈(αn−1, 1)〉 and µn−1 =
〈(αn, 1)〉 in P0 . The corresponding Schubert classes are denoted by σn−1 and by
τn−1 . Let {γ1, γn−1} be a set of generators of the cohomology ring of the quadric,
with deg(γi) = i and γi = σδi for δi ∈ I(P) an ideal of cardinal i. The variety
Dn/P1 has dimension 2(n− 1), the dimensions of Hd(Dn/P1) are

d d 6= n− 1 n− 1
dimHd(Dn/P1) 1 2

Recall from Example 3.4 our convention that an ideal ν ∈ I(P) can be
slant-irreducible only if it contains all the nodes depicted with the symbol ⊗. In
our case, this means that ν ⊃ P0 . Thus, because by assumption the conjecture
holds for any λ, µ, ν ∈ I(P) with D0(ν)  Dn , we have cνδi,λ = tνδi,λ ·m

ν
δi,λ

as soon
as ν 6⊃ P0 .

By Proposition 2.16, γ1 is a good generator (see Notation 3.21). For γn−1 ,
by Lemma 3.19, we have the equality γn−1 · σλ = γn−1 ⊙ σλ for any class σλ

with deg(λ ∩ P0) ≤ n − 2. Let σλ be a class of degree n − 1. We have
cνδn−1,λ

= tνδn−1,λ
· mν

δn−1,λ
for ν 6⊃ P0 . Thus we are only left with the equality

cνδn−1,λ
= tνδn−1,λ

· mν
δn−1,λ

for ν = P0 . But in this case we are reduced to the
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same computation in the quadric and the result follows, for example by Poincaré
duality. For higher degrees we use Lemma 3.19. We therefore have proved that
γn−1 · σλ = γn−1 ⊙ σλ .

We thus have proved that γ1 and γn−1 are good generators, from which
the lemma follows thanks to Lemma 3.13.

4.3. Type An .

In this case, we consider the system of ̟p -minuscule An -colored posets P0

given by the poset of a Grassmannian G(p, n+ 1):

τn−p+1

τ 3

τ 2σ2

σp

σ1

We have S0 = {1, n} . For i ∈ {1, n} , let (Di, di) be a marked Dynkin
diagram and Pi be any di -minuscule Di -colored poset. Set P = PP0,{P1,Pn} .

Lemma 4.4. With the above notation, assume that Conjecture 2.13 holds for
P1 and Pn , and for any λ, µ, ν in I(P) as soon as D0(ν)  An . Then Conjecture
2.13 holds for P.

Proof. By Proposition 2.16, we may assume n ≥ 2, by irreducibility of P0 we
may then assume n ≥ 3 and by Lemma 4.3, we may assume that n ≥ 4.

Let us define the degree i ideals λi = 〈(αp+1−i, 1)〉 for i ∈ [1, p] and
µi = 〈(αp+i−1, 1)〉 for i ∈ [1, n + 1 − p] in P0 . The corresponding Schubert cells
are denoted by σi and by τ i . Take (γi)i∈[1,p] a set of generators of the cohomology
ring of the Grassmannian, with deg(γi) = i and write γi = σδi for δi ∈ I(P).

Since by assumption the conjecture holds for any λ, µ, ν ∈ I(P) with
D0(ν)  An , we have cνλ,µ = tνλ,µ ·m

ν
λ,µ as soon as deg(ν∩P0) ≤ 2n−3 (recall that

with the conventions explained in Example 3.4, if D0(ν) = An then ν contains
all the ⊗’s in the above picture of P0 ). In particular because for n ≥ 4 we have
i + j ≤ 2n − 3 for i ≤ p and j ≤ n + 1 − p, the equality γi · σj = γi ⊙ σj holds
for all i ≤ p and j ≤ p and the equality γi · τ j = γi ⊙ τ j holds for all i ≤ p and
j ≤ n + 1− p.

Now let λ ∈ I(P0). If λ ⊃ λp or λ ⊃ µn+1−p , then by recursion with
respect to λp or µn+1−p (namely Lemma 3.8(2)) we have γi · σλ = γi ⊙ σλ .
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If λ 6⊃ λp and λ 6⊃ µn+1−p , then we first consider the case where λ is an
ideal of the form 〈(αk, l)〉 for some simple root αk and some integer l . We prove
the equality γi · σλ = γi ⊙ σλ by induction on deg(λ) in that case. We may of
course assume that λ is distinct from all the λi and the µj . Consider the two
subideals λ′ and λ′′ in λ described by λ′ = 〈(αk−1, l

′)〉 and λ′′ = 〈(αk+1, l
′′)〉

where l′ = max{a / (αk−1, a) ∈ λ} and l′′ = max{a / (αk+1, a) ∈ λ} . By recursion
with respect to λ′ or λ′′ , we have cνδi,λ = tνδi,λ · mν

δi,λ
for any ν not containing

(αk−1, l
′ + 1) or (αk+1, l

′′ + 1). By hypothesis it is also true if ν does not contain
(α1, 1) or (αn, 1). For an ideal ν in P containing all these elements of P0 , we
have deg(ν ∩ P0) ≥ deg(λ) + n − 1. For such a ν we have cνδi,λ = 0 = tνδi,λ for
degree reasons.

We finish by dealing with λ ∈ I(P0) not of the previous form. Let us
consider the set M(λ) of maximal elements in λ . For (αk, l) ∈ M(λ), define
the ideal λ(αk, l) = 〈(αk, l)〉 . By what we have just done, we have γi · σλ(αk ,l) =
γi ⊙ σλ(αk ,l) . In particular we can use recursion with respect to λ(αk, l) and we
deduce that cνδi,λ = tνδi,λ ·m

ν
δi,λ

for any ν not containing (αk, l+1). By hypothesis it
is also true if ν does not contain (α1, 1) or (αn, 1). For an ideal ν in P containing
all the elements (αk, l + 1) for (αk, l) ∈ M(λ) as well as (α1, 1) and (αn, 1), we
have deg(ν ∩P0) ≥ deg(λ) + n. For such a ν we have cνδi,λ = 0 = tνδi,λ for degree
reasons.

4.4. Type Dn : isotropic Grassmannian.

In this case, we consider the system of ̟n−1 -minuscule Dn -colored posets
P0 given by the posets of an orthogonal Grassmannian GQ(n, 2n). We have
S0 = {1, n} . For i ∈ {1, n} , let (Di, di) be a marked Dynkin diagram and Pi

be any di -minuscule Di -colored poset. Set P = PP0,{P1,Pn} . The quiver P for D7

was described in (5).

Lemma 4.5. With the above notation, assume that Conjecture 2.13 holds for
P1 and Pn , and for any λ, µ, ν in I(P) as soon as D0(ν)  Dn . Then Conjecture
2.13 holds for P.

Proof. By irreducibility of P0 we may assume n ≥ 4 and by Lemma 4.3, we
may assume that n ≥ 5.

Let us define the degree i ideals λi = 〈(αn−i, 1)〉 for i ∈ [1, n− 1] and the
degree 3 ideal µ3 = 〈(αn, 1)〉 . The corresponding Schubert cells are denoted by
σi and by τ 3 . Take (γi)i∈[1,n−1] a set of generators of the cohomology ring of the
isotropic Grassmannian, with deg(γi) = i and write γi = σδi for δi ∈ I(P).

Since by assumption the conjecture holds for any λ, µ, ν ∈ I(P) with
D0(ν)  Dn , we have cνλ,µ = tνλ,µ as soon as deg(ν ∩ P0) ≤ 2n− 3. In particular
because for n ≥ 5 we have i+3 ≤ 2n−3 for i ≤ n−1, the equality γi ·τ 3 = γi⊙τ 3

holds for all i ≤ n− 1.

For any ideal λ in P containing µ3 , we obtain by the hypothesis and
recursion with respect to τ 3 that cνδi,λ = tνδi,λ ·m

ν
δi,λ

for ν with deg(ν∩P0) ≤ 2n−1.
In particular if deg(λ) ≤ n − 1 and for i ≤ n − 1, we have deg(λ) + i ≤ 2n − 1
and γi ·σλ = γi⊙σλ . But there is a unique class in H∗(P) of degree j ∈ [1, n−1]
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not bigger than τ 3 : the class σj , thus by Lemma 3.18 we obtain γi · σj = γi ⊙ σj

for all i and j in [1, n− 1].

If λ ⊃ λn−1 , then by recursion with respect to λn−1 we have γi ·σλ = γi⊙σλ

for i ∈ [1, n− 1].

If λ 6⊃ λn−1 , then we first consider the case where λ is an ideal of the
form 〈(αk, l)〉 for some simple root αk and some integer l . We prove the equality
γi · σλ = γi ⊙ σλ by induction on deg(λ) in that case. We may of course assume
that λ is distinct from all the λi and from µ3 . We have to discuss two cases. If
k 6∈ {n−2, n−1, n} , then consider the three subideals λ′ , λ′′ and λ′′′ in λ described
by 〈(αk−1, l

′)〉 , 〈(αk+1, l
′′)〉 and 〈(αk′, l

′′′)〉 where l′ = max{a / (αk−1, a) ∈ λ} ,
l′′ = max{a / (αk+1, a) ∈ λ} and (αk′, l

′′′) is the largest element in λ with
k′ ∈ {n−1, n} . If k ∈ {n−2, n−1, n} , then consider the subideal λ′ in λ described
by 〈(αk′, l

′)〉 where (αk′, l
′) is the largest element in λ with {k, k′} = {n− 1, n} .

By recursion with respect to λ′ , λ′′ or λ′′′ , we have cνδi,λ = tνδi,λ · mν
δi,λ

for any
ν not containing (αk−1, l

′ + 1), (αk+1, l
′′ + 1) and (αk′, l

′′′ + 1) in the first case
and (αk′, l

′ + 1) in the second one. By hypothesis it is also true if ν does not
contain (α1, 1). For an ideal ν in P containing all these elements of P0 , we
have deg(ν ∩ P0) ≥ deg(λ) + n − 1. For such a ν we have cνδi,λ = 0 = tνδi,λ
for degree reasons if i < n − 1. This method does not work for i = n − 1.
However, given λ of the form 〈(αk, l)〉 , the above method proves the equality
cνδn−1,λ

= tνδn−1,λ
·mν

δn−1,λ
for all the ideals ν but one, which is contained in P0 . We

obtain cνδn−1,λ
= tνδn−1,λ

·mν
δn−1,λ

also for this ν by Lemma 3.20.

We finish by dealing with λ not of the previous form. Let us consider
the set M(λ) of maximal elements in λ . For (αk, l) ∈ M(λ), define the ideal
λ(αk, l) = 〈(αk, l)〉 . We have γi · σλ(αk ,l) = γi ⊙ σλ(αk ,l) . In particular we can use
recursion with respect to λ(αk, l) and we deduce that cνδi,λ = tνδi,λ ·m

ν
δi,λ

for any ν
not containing (αk, l+1). By hypothesis it is also true if ν does not contain (α1, 1).
For an ideal ν in P containing all the elements (αk, l + 1) for (αk, l) ∈ M(λ) as
well as (α1, 1), we have deg(ν ∩ P0) ≥ deg(λ) + n − 1. For such a ν we have
cνδi,λ = 0 = tνδi,λ for degree reasons if i < n − 1. Once more, for i = n − 1, we
proved the equality cνδn−1,λ

= tνδn−1,λ
·mν

δn−1,λ
for all ν except at most one which is

included in P0 . We again conclude by Lemma 3.20.

4.5. Type E6 .

Let us start with the case of E6/P1 . Thus we consider the system of ̟1 -
minuscule E6 -colored posets P0 given by the following maximal element:
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τ 5

σ4

σ8

We have S0 = {2, 6} . For i ∈ {2, 6} let (Di, di) be a marked Dynkin
diagram and Pi be any di -minuscule Di -colored poset. Set P = PP0,(P2,P6) with
notation 3.3.

Lemma 4.6. With the above notation, assume that Conjecture 2.13 holds for
P2 and P6 , and for any λ, µ, ν in I(P) as soon as D0(ν)  E6 . Then Conjecture
2.13 holds for P.

Proof. We consider the ideals λ4 = 〈(α2, 1)〉 resp. µ5 = 〈(α6, 1)〉 in P0 , of
degree 4 resp. 5. The corresponding Schubert cells are denoted by σ4 resp. τ 5 . Let
{γ1, γ4} be a set of generators of the cohomology ring of E6/P1 , with deg(γi) = i.
The variety E6/P1 has dimension 16 and the dimensions of Hd(E6/P1) are

d 0 1 2 3 4 5 6 7 8
dimHd(E6/P1) 1 1 1 1 2 2 2 2 3

Since by assumption the conjecture holds for any λ, µ, ν ∈ I(P) with
D0(ν)  E6 , we have cνλ,µ = tνλ,µ ·m

ν
λ,µ as soon as deg(ν ∩P0) ≤ 9.

By Proposition 2.16, γ1 is a good generator. By the above argument, we
have γ4 · σ = γ4 ⊙ σ for all σ of degree at most 5. Furthermore, for any ideal λ
in I(P) such that deg(λ ∩ P0) = 5, we have λ ⊃ λ4 , λ ⊃ µ5 or λ ⊂ P0 . In any
case we have γ4 · σλ = γ4 ⊙ σλ either by recursion with respect to σ4 , to τ 5 or by
the previous argument. By Proposition 3.19 we get the same equality for σλ with
deg(λ ∩P0) ≤ 7.

Let σλ be a degree 8 class associated to an ideal λ in P . If λ is not
contained in P0 , then deg(λ∩P0) ≤ 7 and we have γ4 · σλ = γ4 ⊙ σλ . Moreover,
if λ ⊃ µ5 , then by recursion with respect to τ 5 we have γ4 ·σλ = γ4⊙σλ . Finally,
there is a unique ideal λ in P satisfying λ ⊂ P0 and λ 6⊃ µ5 . For this class we
conclude by Lemma 3.18.

Let σλ be a class associated to an ideal λ in P such that deg(λ∩P0) = 8.
If λ 6⊂ P0 , then λ ⊃ λ4 or λ ⊃ µ5 and we have γ4 · σλ = γ4 ⊙ σλ by recursion
with respect to σ4 or τ 5 . If λ ⊂ P0 , then we already proved the equality
γ4 · σλ = γ4 ⊙ σλ . By Lemma 3.19, we get equality γ4 · σλ = γ4 ⊙ σλ for higher
degree classes.
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Therefore γ1 and γ4 are good generators, and we can conclude thanks to
Lemma 3.13.

We now consider the case of E6/P2 . Thus we consider the system of ̟2 -
minuscule E6 -colored posets P0 given by:

τ 4σ4

We have S0 = {1, 6} . For i ∈ {1, 6} let (Di, di) be a marked Dynkin
diagram and Pi be any di -minuscule Di -colored poset. Set P = PP0,(P1,P6) with
notation 3.3.

Lemma 4.7. With the above notation, assume that Conjecture 2.13 holds for
P1 and P6 , and for any λ, µ, ν in I(P) as soon as D0(ν)  E6 . Then Conjecture
2.13 holds for P.

Proof. We consider the ideals λ4 = 〈(α1, 1)〉 resp. µ4 = 〈(α6, 1)〉 in P0 ; both
are of degree 4. The corresponding Schubert cells are denoted by σ4 resp. τ 4 .
Let {γ1, γ3, γ4} be a set of generators of the cohomology ring of E6/P2 , with
deg(γi) = i.

Since by assumption the conjecture holds for any λ, µ, ν ∈ I(P) with
D0(ν)  E6 , we have cνλ,µ = tνλ,µ ·m

ν
λ,µ as soon as deg(ν ∩P0) ≤ 9.

By Proposition 2.16, γ1 is a good generator. By the previous argument, we
have γ3 · σ = γ3 ⊙ σ for all σ in H∗(P) of degree at most 6. In particular this
holds for σ = σ4 or σ = τ 4 . Let λ ∈ I(P) with deg(λ) ≥ 7. We have λ ⊃ λ4

or λ ⊃ µ4 and by recursion with respect to σ4 or τ 4 (Lemma 3.8(2)) we get the
equality γ3 · σλ = γ3 ⊙ σλ .

We have shown that γ4 · σλ = γ4 ⊙ σλ for all λ in I(P) with deg(λ) ≤ 5.
Let λ ∈ I(P) with deg(λ) = 6. If λ ⊃ λ4 or λ ⊃ µ4 , then by recursion with
respect to σ4 or τ 4 we get the equality γ4 · σλ = γ4 ⊙ σλ . There is only one
ideal λ ∈ I(P) such that deg(λ) = 6, λ 6⊃ λ4 and λ 6⊃ µ4 (namely λ = 〈(α2, 2)〉).
Equation γ4 ·σλ = γ4⊙σλ holds for this ideal by Lemma 3.18. Finally, if λ ∈ I(P)
and deg(λ) ≥ 7, then λ ⊃ λ4 or λ ⊃ µ4 , and by recursion with respect to σ4 or
τ 4 we get the equality γ4 · σλ = γ4 ⊙ σλ .

Therefore γ1, γ3 and γ4 are good generators, and we conclude thanks to
Lemma 3.13.

4.6. Type E7 .

Let us start with the case of E7/P1 . Thus we consider the system of ̟1 -
minuscule E7 -colored posets P0 given by the following maximal elements:
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σ8

σ4

τ 6

We have S0 = {2, 7} . For i ∈ {2, 7} let (Di, di) be a marked Dynkin
diagram and Pi be any di -minuscule Di -colored poset. Set P = PP0,(P2,P7) with
notation 3.3.

Lemma 4.8. With the above notation, assume that Conjecture 2.13 holds for
P2 and P7 , and for any λ, µ, ν in I(P) as soon as D0(ν)  E7 . Then Conjecture
2.13 holds for P.

Proof. We consider the ideals λ4 = 〈(α2, 1)〉 resp. µ6 = 〈(α7, 1)〉 and λ8 =
〈(α1, 2)〉 in P0 , of degree 4 resp. 6 and 8. The corresponding Schubert cells are
denoted by σ4 resp. τ 6 and σ8 . Let {γ1, γ4, γ6} be a set of generators of the
cohomology ring of E7/P1 , with deg(γi) = i. The variety E7/P1 has dimension
33 and the dimensions of Hd(E7/P1) are

d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
dimHd(E7/P1) 1 1 1 1 2 2 3 3 4 4 5 5 6 6 6 6 7

Since by assumption the conjecture holds for any λ, µ, ν ∈ I(P) with
D0(ν)  E7 , we have cνλ,µ = tνλ,µ ·m

ν
λ,µ as soon as deg(ν ∩P0) ≤ 11.

By Proposition 2.16, γ1 is a good generator. By the above argument, we
have γ4 · σ = γ4 ⊙ σ for all σ in P0 of degree at most 7. In particular this is
valid for σ = σ4 , for σ = τ 6 , and for any class σλ with λ 6⊃ λ4 . By recursion
with respect to σ4 , an ideal ν such that cνλ4,λ

6= tνλ4,λ
has to contain (α2, 2) and in

particular deg(ν∩P0) ≥ 14 (we also use the hypothesis that conjecture 2.13 holds
for D0(ν) ( E7 ). We thus have γ4 · σ = γ4 ⊙ σ for any class σ with deg(σ) ≤ 9.
By recursion with respect to τ 6 or σ8 we have γ4 · σλ = γ4 ⊙ σλ for any ideal
λ ⊃ µ6 or λ ⊃ λ8 . As there is only one ideal λ ∈ P0 with λ 6⊃ µ6 and λ 6⊃ λ8

in degree 10 and 11 and none in higher degree, we have γ4 · σ = γ4 ⊙ σ for any
σ ∈ H∗(P) by Lemma 3.18.

We have seen that the equality γ6 ·σ = γ6⊙σ holds for all σ in P of degree
at most 5. Let λ ∈ I(P) of degree 6 and λ 6= µ6 , then λ ⊃ λ4 and by recursion with
respect to σ4 we have cνµ6,λ

= tνµ6,λ
for ν 6∋ (α2, 2) (or ν 6∋ (α6, 2) or ν 6∋ (α1, 2) by

the condition D0(ν) = E7 ). But for degree reasons we have deg(ν∩P0) ≤ 12 thus
γ6 · σλ = γ6 ⊙ σλ . By Lemma 3.18 we obtain γ6 · τ 6 = γ6 ⊙ τ 6 . In particular, by
Lemma 3.8(4), γ6 · σλ = γ6 ⊙ σλ if λ ∈ I(P)− I(P0). By Lemma 3.19, we obtain
γ6·σ = γ6⊙σ for σ of degree 7. As H8(P0)⊗Q = π(Q·(γ4)⊙2⊕γ1⊙H7(P0)) (recall
from Definition 3.10 that π : H∗(P) → H∗(P0) denotes the natural projection),
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we conclude by Lemma 3.12 for degree 8 classes. For degree 9 classes we conclude
by Lemma 3.19 and for higher degree classes we conclude as for γ4 .

Thus γ1, γ4, γ6 are good generators and we conclude thanks to Lemma
3.13.

We now deal with the case E7/P2 . Thus we consider the system of ̟2 -
minuscule E7 -colored posets P0 given by:

τ 5
σ7σ6

σ3

σ4

We have S0 = {1, 7} . For i ∈ {1, 7} let (Di, di) be a marked Dynkin
diagram and Pi be any di -minuscule Di -colored poset. Set P = PP0,(P1,P7) with
notation 3.3.

Lemma 4.9. With the above notation, assume that Conjecture 2.13 holds for
P1 and P7 , and for any λ, µ, ν in I(P) as soon as D0(ν)  E7 . Then Conjecture
2.13 holds for P.

Proof. We consider the ideals λ4 = 〈(α1, 1)〉 resp. µ5 = 〈(α7, 1)〉 and λ6 =
〈(α2, 2)〉 in P0 , of degree 4 resp. 5 and 6. The corresponding Schubert cells are
denoted by σ4 resp. τ 5 and σ6 . Let {γ1, γ3, γ4, γ5, γ7} be a set of generators of
the cohomology ring of E7/P2 , with deg(γi) = i.

Since by assumption the conjecture holds for any λ, µ, ν ∈ I(P) with
D0(ν)  E7 , we have cνλ,µ = tνλ,µ ·m

ν
λ,µ as soon as deg(ν ∩P0) ≤ 11.

By Proposition 2.16, γ1 is a good generator. By the above argument, we
have γ3 ·σ = γ3⊙σ for all σ in P0 of degree at most 8. In particular this equation
is valid for σ = σ4 and τ 5 . As any class σλ of degree at least 9 in H∗(P0) satisfies
λ ⊃ λ4 or λ ⊃ µ5 we conclude by recursion with respect to σ4 or τ 5 .

We know that γ4 · σλ = γ4 ⊙ σλ for all λ in I(P) with deg(λ) ≤ 7. In
particular, this equation is valid for λ = λ4 and λ = µ5 and thus for any class σλ

with λ ∈ I(P)− I(P0). As any class σλ of degree at least 8 in H∗(P0) satisfies
λ ⊃ λ4 or λ ⊃ µ5 except one in degree 8, we conclude by recursion with respect
to σ4 or τ 5 and Lemma 3.18.

We know that τ 5 · σλ = τ 5 ⊙ σλ for all λ in I(P) with deg(λ) ≤ 6. In
particular, this equation is valid for λ = λ4 and λ = µ5 and thus for any class σλ

with λ ∈ I(P)− I(P0). As any class σλ of degree at least 7 in H∗(P0) satisfies
λ ⊃ λ4 or λ ⊃ µ5 except one in degree 7 and one in degree 8, we conclude by
recursion with respect to σ4 or τ 5 and Lemma 3.18.

Applying Lemma 3.11 with d = 6 and the sequence (γ1, γ3, γ4, γ5), we have
γ7 ·σ = γ7⊙σ for all σ in H∗(P) of degree at most 6. In particular, this equation
is valid for σ = σ4 , σ = τ 5 and σ = σ6 . As a consequence, by Lemma 3.8(4), it
is also valid for any class σλ with λ ∈ I(P)− I(P0). As any class σλ of degree at
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least 7 in H∗(P0) satisfies λ ⊃ λ4 , λ ⊃ µ5 or λ ⊃ λ6 , we conclude by recursion
with respect to σ4 , τ 5 or σ6 (Lemma 3.8(2)).

We now deal with the case of E7/P7 . Thus P0 contains only one poset
which is the following:

σ5

τ 6

We have S0 = {1, 2} . For i ∈ {1, 2} let (Di, di) be a marked Dynkin
diagram and Pi be any di -minuscule Di -colored poset. Set P = PP0,(P1,P2) with
notation 3.3.

Lemma 4.10. With the above notation, assume that Conjecture 2.13 holds for
P1 and P2 , and for any λ, µ, ν in I(P) as soon as D0(ν)  E7 . Then Conjecture
2.13 holds for P.

Proof. Let σ5 resp. τ 6 be the Schubert classes corresponding to the ideals
generated by (α2, 1) resp. (α7, 1). They are of degree 5 resp. 6. Let {γ1, γ5, γ9}
be a set of generators of H∗(E7/P7), where γi has degree i and write γi = σδi for
δi ∈ I(P). The variety E7/P7 has dimension 27 and the dimensions of Hd(E7/P7)
are

d 0 1 2 3 4 5 6 7 8 9 10 11 12 13
dimHd(E7/P7) 1 1 1 1 1 2 2 2 2 3 3 3 3 3

By Proposition 2.16, γ1 is a good generator. If cνλ,µ 6= tνλ,µ ·m
ν
λ,µ , then ν∩P0

must have degree at least 12. Thus γ5 ·σ = γ5⊙σ if deg(σ) ≤ 6. By Lemma 3.19
we have γ5·σ = γ5⊙σ if deg(σ) ≤ 8. Let µ, ν ∈ I(P0) such that cνδ5,µ 6= tνδ5,µ·m

ν
δ5,µ

.
Assume deg(µ) = 9. If (α1, 1) ∈ µ then by recursion with respect to τ 6 we have
(α1, 2) ∈ ν , thus deg(ν) ≥ 18, a contradiction. Thus µ cannot contain (α1, 1).
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Since there is a unique ideal in P0 of degree 9 not containing (α1, 1) (namely
〈(α6, 2)〉), we conclude by Lemma 3.18 that γ5 · σ = γ5 ⊙ σ if deg(σ) = 9. By
Lemma 3.19, γ5 is a good generator.

Since we know that γ9 · γ5 = γ9 ⊙ γ5 , by Lemma 3.11 with d = 8 we
deduce that γ9 · σ = γ9 ⊙ σ if deg(σ) ≤ 8. By recursion with respect to σ5

and τ 6 we have γ9 · σλ = γ9 ⊙ σλ if λ ∈ I(P) − I(P0). Let µ, ν ∈ I(P0) such
that cνδ9,µ 6= tνδ9,µ · mν

δ9,µ
. Assume deg(µ) = 9. If (α1, 1) ∈ µ then by recursion

with respect to τ 6 we have (α1, 2) ∈ ν , thus ν = 〈(α1, 2), (α7, 2)〉 . Since there
is a unique ideal in P0 of degree 9 not containing (α1, 1) (namely 〈(α6, 2)〉), we
conclude by Lemma 3.18(ıı) that for all ν but ν = 〈(α1, 2), (α7, 2)〉 , we have
cνδ9,µ = tνδ9,µ ·m

ν
δ9,µ

. For ν = 〈(α1, 2), (α7, 2)〉 , we only need to compute in H∗(P0),
and because P0 is the heap of wP with G/P a minuscule homogeneous space,
we conclude by Lemma 3.20. Then we conclude that γ9 is a good generator by
Lemma 3.19.

Thus γ1, γ5 and γ9 are good generators and we conclude thanks to Lemma
3.13.

4.7. Type E8 .

Let us start with the case of E8/P1 . Thus we consider the system of ̟1 -
minuscule E8 -colored posets P0 given by the three following maximal elements
and their obvious intersections:

σ8

σ4

σ7

σ11

We have S0 = {2, 8} . For i ∈ {2, 8} let (Di, di) be a marked Dynkin
diagram and Pi be any di -minuscule Di -colored poset. Set P = PP0,(P2,P8) with
notation 3.3.

Lemma 4.11. With the above notation, assume that Conjecture 2.13 holds for
P2 and P8 , and for any λ, µ, ν in I(P) as soon as D0(ν)  E8 . Then Conjecture
2.13 holds for P.

Proof. For i = 4 resp. 7, 8, 11 we consider the ideals λi = 〈(α2, 1)〉 resp.
〈(α8, 1)〉, 〈(α1, 2)〉 , 〈(α2, 2)〉 in P0 , of degree i. The corresponding Schubert cells
are denoted by σi . Let {γ1, γ4, γ6, γ7, γ10} be a set of generators of the cohomology
ring of E8/P1 , with deg(γi) = i and write γi = σδi for δi ∈ I(P).

Since by assumption the conjecture holds for any λ, µ, ν ∈ I(P) with
D0(ν)  E8 , we have cνλ,µ = tνλ,µ ·m

ν
λ,µ as soon as deg(ν ∩P0) ≤ 13.
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By Proposition 2.16, γ1 is a good generator. Let µ, ν such that cνδ4,µ 6=
tνδ4,µ ·m

ν
δ4,µ

. By the above we have deg(ν) ≥ 14. In particular γ4 · σ4 = γ4 ⊙ σ4 .
By recursion with respect to σ4 (Lemma 3.8(1)) we deduce that ν must contain
(α2, 2). Thus deg(ν) ≥ 16. Thus γ4 ·σ11 = γ4⊙σ11 . By recursion with respect to
σ7, σ8 and σ11 we get that µ does not contain these elements. Since moreover µ
must have degree at least 12 it follows that µ is one of the two elements 〈(α5, 3)〉 ,
〈(α4, 3), (α6, 2)〉 , of degree respectively 13,12. Thus we can conclude by Lemma
3.18 that γ4 is a good generator.

Let us show that γ6 is a good generator. Let µ, ν such that cνδ6,µ 6=
tνδ6,µ ·m

ν
δ6,µ

. We know that γ6 · σ = γ6 ⊙ σ for deg(σ) ≤ 7 thus for σ ∈ {σ4, σ7} .
By recursion with respect to these elements we deduce that µ cannot contain
(α8, 1), thus (α2, 1) ∈ µ , and ν must contain (α2, 2). Thus deg(ν) ≥ 16 and
γ6 · σ = γ6 ⊙ σ if deg(σ) ≤ 9. The number of Schubert classes of degree 9
resp. 10,11,12,13,14,15,16 not bigger than σ8 and σ7 is 3 resp. 3,3,2,2,1,1,0,
and moreover the map induced by the multiplication by h is surjective. Thus we
conclude thanks to Lemma 3.19(ıı).

Let µ, ν such that cνδ7,µ 6= tνδ7,µ · mν
δ7,µ

. Assume first that deg(µ) = 7.
If µ ⊃ σ4 then by recursion with respect to σ4 it follows that (α2, 2) ∈ ν and
deg(ν) ≥ 16, contradicting deg(µ) = 7. Since there is only one cell of degree
7 which is not bigger than σ4 (namely σ7 ), it follows from Lemma 3.18 that
γ7 · σ = γ7 ⊙ σ if deg(σ) = 7. By recursion with respect to σ7 we also have this
property for any µ ⊃ λ7 . Thus, again by recursion with respect to σ4 (Lemma
3.8(1)), γ7 · σ = γ7 ⊙ σ if deg(σ) ≤ 8. By recursion with respect to σ8 we have
(α1, 2) 6∈ µ . Since h8(E8/P1) = h9(E8/P1) = 5, we deduce from Lemma 3.19 that
γ7 · σ = γ7 ⊙ σ if deg(σ) = 9. Then we can argue as for γ6 .

For γ10 we already know that γ10·σ = γ10⊙σ if σ is one of the γi ’s or σ = σ4

or σ = σ7 . By recursion with respect to σ4 and σ7 we deduce γ10 · σλ = γ10 ⊙ σλ

if λ ∈ I(P) − I(P0), and since the γi ’s for i ≤ 7 generate H9(P0) we have
γ10 · σ = γ10 ⊙ σ for deg(σ) = 9. Then we can argue as for γ6 and γ7 .

Therefore the γi ’s are good generators and we conclude thanks to Lemma
3.13.

We now consider the case of E8/P2 . Thus we consider the system of ̟2 -
minuscule E8 -colored posets P0 given by only one quiver P0 :

σ6

τ 6

τ 4

We have S0 = {1, 8} . For i ∈ {1, 8} let (Di, di) be a marked Dynkin
diagram and Pi be any di -minuscule Di -colored poset. Set P = PP0,(P1,P8) with
notation 3.3.
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Lemma 4.12. With the above notation, assume that Conjecture 2.13 holds for
P1 and P8 , and for any λ, µ, ν in I(P) as soon as D0(ν)  E8 . Then Conjecture
2.13 holds for P.

Proof. Let us define λ6 = 〈(α8, 1)〉 and µ4 = 〈(α1, 1)〉 and define σ6 = σλ6

and τ 4 = σµ4 which are classes of degree 6 and 4 respectively. We also consider
τ 6 which corresponds to the ideal µ6 = 〈(α2, 2)〉 . Let {γ1, γ3, γ4, γ5, γ6, γ7} be a
set of generators of H∗(E8/P2), with deg(γi) = i.

Let λ, µ, ν ∈ I(P). Since Conjecture 2.13 holds if D0(ν)  E8 , we may
have cνλ,µ 6= tνλ,µ ·m

ν
λ,µ only if ν ⊃ P0 .

By Proposition 2.16, γ1 is a good generator. For γ3 we have γ3 ·σ = γ3⊙σ
if deg(σ) ≤ 10. In particular γ3 ·τ 4 = γ3⊙τ 4 , γ3 ·σ6 = γ3⊙σ6 and γ3 ·τ 6 = γ3⊙τ 6 .
By recursion we deduce that γ3 · σλ = γ3 ⊙ σλ if λ ⊃ λ6 , λ ⊃ µ4 , or λ ⊃ µ6 . If
not, then deg(λ) ≤ 9. Thus γ3 is a good generator. The same argument works
for γ4 .

For γ5 the same argument says that we have γ5·σλ = γ5⊙σλ except possibly
for the degree 9 ideal λ = 〈(α6, 2)〉 . But then we can use Lemma 3.18. Thus γ5

is a good generator. For γ6 the same argument also works because there is also
only one element of degree 8 not bigger than σ6, τ 6, τ 4 , namely 〈(α5, 2), (α7, 1)〉 .

For γ7 we observe that we have already shown that γ7 · σλ = γ7 ⊙ σλ for
λ of degree at most 6, or λ ⊃ λ6 or λ ⊃ µ4 . Since H7(P,Q) is generated as a
Q-vector space by h ·H6(P,Q) and the elements σλ with λ ⊃ λ6 or λ ⊃ µ4 , γ

7

is a good generator.

Therefore the γi ’s are good generators, and we conclude thanks to Lemma
3.13.

We finally deal with E8/P8 . Thus we consider the system of ̟8 -minuscule
E8 -colored posets P0 given by the seven following maximal elements and their
obvious intersections:

τ 7
σ10

σ13

σ6

σ12
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We have S0 = {1, 2} . For i ∈ {1, 2} let (Di, di) be a marked Dynkin
diagram and Pi be any di -minuscule Di -colored poset. Set P = PP0,(P1,P2) with
notation 3.3.

Lemma 4.13. With the above notation, assume that Conjecture 2.13 holds for
P1 and P2 , and for any λ, µ, ν in I(P) as soon as D0(ν)  E8 . Then Conjecture
2.13 holds for P.

Proof. Set λ6 = 〈(α2, 1)〉 , µ7 = 〈(α1, 1)〉 , λ10 = 〈(α3, 2)〉 , λ12 = 〈(α8, 2)〉
and λ13 = 〈(α2, 2)〉 . Set σi = σλi and τ 7 = σµ7 . Let {γ1, γ6, γ10} be a set of
generators of H∗(E8/P8), with deg(γi) = i and write γi = σδi for δi ∈ I(P). By
the hypothesis of the lemma we know that cνλ,µ = tνλ,µ ·m

ν
λ,µ if deg(ν) ≤ 13. Let

us also give the dimensions of the graded parts of the cohomology:

d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
dim Hd(E8/P8) 1 1 1 1 1 1 2 2 2 2 3 3 4 4 4

d 15 16 17 18 19 20 21 22 23 24 25 26 27 28
dim Hd(E8/P8) 4 5 5 6 6 6 6 7 7 7 7 7 7 8

By Proposition 2.16 we know that γ1 is a good generator. For γ6 we have
γ6 ·σ = γ6⊙σ if σ ≤ 7. In particular we get γ6 ·τ 7 = γ6⊙τ 7 and γ6 ·σ6 = γ6⊙σ6 .
By recursion with respect to σ6 and τ 7 we deduce that γ6 · σµ = γ6 ⊙ σµ if
µ ∈ I(P)− I(P0). Let µ, ν such that cνδ6,µ 6= tνδ6,µ ·m

ν
δ6,µ

: thus µ ∈ I(P0).

Assume that deg(µ) ≤ 13. By recursion with respect to τ 7 it follows that
if (α1, 1) ∈ µ then (α1, 2) ∈ ν . But ν must also contain (α8, 2), thus deg(ν) ≥ 20
and this contradicts deg(µ) ≤ 13. Thus (α1, 1) 6∈ µ . Since there is exactly one
possible µ with 7 ≤ deg(µ) ≤ 12 and none with deg(µ) > 12, by Lemma 3.18
it follows that γ6 · σ = γ6 ⊙ σ if deg(σ) ≤ 13. By Lemma 3.19 it follows that
γ6 · σ = γ6 ⊙ σ if deg(σ) ≤ 15.

Let us assume that deg(µ) = 16 and (α2, 2) ∈ µ . By recursion with
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respect to σ13 we deduce that (α2, 3) ∈ ν . Since (α1, 2) ∈ ν also it follows that
deg(ν) ≥ 23, and we get a contradiction. Since moreover there is only one class µ
of degree 16 such that (α8, 2) 6∈ µ and (α2, 2) 6∈ µ , we conclude that deg(µ) > 16
by Lemma 3.18. By Lemma 3.19 it follows that γ6 · σ = γ6 ⊙ σ if deg(σ) ≤ 17.

There are three classes σλ of degree 17 resp. 18 such that (α8, 2) 6∈
λ , namely 〈(α2, 2), (α6, 3)〉 , 〈(α4, 4), (α7, 2)〉 , 〈(α3, 2)〉 resp. 〈(α1, 2)〉 , 〈(α3, 3),
(α7, 2)〉, 〈(α4, 4), (α6, 3)〉 , and the corresponding map given by multiplication by h
is surjective; thus we conclude thanks to Lemma 3.19(ıı) that γ6 · σ = γ6 ⊙ σ if
deg(σ) = 18. Then Lemma 3.19(ı) gives the same identity for deg(σ) ≤ 21.

We finish showing that γ6 is a good generator thanks again to Lemma
3.19(ıı), because there are exactly two classes in each degree 21 and 22 which are
not bigger than σ12 .

We now consider γ10 . By Lemma 3.11 with d = 9, we have already proved
that γ10 ·σ = γ10⊙σ for deg(σ) ≤ 9. For deg(σ) = 10, we shall assume γ10 = σ10

(obviously, σ10 does not belong to the subalgebra generated by γ1 and γ6 ). Let
us define the following ideals

ν20,1 = 〈(α4, 4), (α7, 3)〉 ν20,2 = 〈(α5, 4), (α8, 2)〉 ν20,3 = 〈(α3, 3), (α6, 3), (α8, 2)〉
ν20,4 = 〈(α1, 2), (α8, 2)〉 ν20,5 = 〈(α1, 2), (α6, 3)〉 ν20,6 = 〈(α3, 3), (α5, 4)〉

and the cohomology classes σ20,i = σν20,i for i ∈ [1, 6]. Remark first that the ideals
(ν20,i)i∈[1,6] are all the ideals of degree 20 in P0 . They do not contain one of the
vertices (α1, 2) or (α8, 2) except for ν20,4 = 〈(α1, 2), (α8, 2)〉 . In particular, we
have the equalities cνδ10,λ = tνδ10,λ · m

ν
δ10,λ

for all degree 10 ideals λ and all degree
20 ideals ν 6= ν20,4 . By Lemma 3.20, it follows that γ10 · γ10 = γ10 ⊙ γ10 .

Since any class of degree at most 19 can be expressed as P (γ1, γ6) + γ10 ·
Q(γ1, γ6) we have γ10 · σ = γ10 ⊙ σ if deg(σ) ≤ 19 by Lemma 3.14. For higher
degree classes, we conclude as for γ6 .

Since γ1, γ6 and γ10 are good generators, we conclude thanks to Lemma
3.13.

5. Non simply-laced case

5.1. General results for the push-forward of a minuscule class.

We will now explain how it is possible to obtain Theorem 3.2 in the non
simply-laced cases using folding. First we deal with the minuscule case. More
precisely, let (D0, d0), (E, e) be marked Dynkin diagrams, p an integer, and x0 ∈
D0 . We consider the disjoint union ∐1≤i≤pD

i
0 of p copies of D0 denoted by Di

0 and
an automorphism θ of ∐iD

i
0 induced by a cyclic permutation of order p of [1, p].

In each Di
0 we denote by xi

0 the element corresponding to x0 . We consider the
Dynkin diagram D obtained from the disjoint union of E and ∐iD

i
0 connecting

each xi
0 with e. We still denote by θ the automorphism of D extending θ by

setting θ(x) = x for x ∈ E . Moreover we set d = d10 ∈ D .

Thus D defines a Kac-Moody algebra g, and θ an automorphism of g. We
denote by gθ the subalgebra of invariant elements, with Dynkin diagram Dθ in-
dexed by the equivalence classes of elements in D modulo θ , Gθ the corresponding
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subgroup of G, and W θ the Weyl group of Dθ . For i ∈ D let ı ∈ Dθ denote its
natural projection. Denote by D0 resp. E the image of D1

0 resp. E under this

projection. We denote by x0 the element xi
0 for any i ∈ [1, p].

D0 D1
0 D2

0 Dp
0

p

x0 x1
0 x2

0 xp
0

E E

D D

ee

. . .

d d

Let P resp. P θ be the parabolic subgroup of G resp. Gθ corresponding to d
resp. d ; we have injections i : W θ → W and ι : Gθ/P θ → G/P . Denoting with tm
the simple reflections in W θ and with sj the simple reflections in W , note that we
have i(tm) =

∏
j:=m sj ∈ W . The idea to prove Conjecture 2.13 in this situation is

to use the fact that ι∗ : H∗(G/P ) → H∗(Gθ/P θ) and ι∗ : H∗(G
θ/P θ) → H∗(G/P )

are adjoint and to compare Littlewood-Richardson coefficients on G/P with those
on Gθ/P θ . For this it is useful to show that minuscule Schubert cells are mapped
to minuscule Schubert cells by ι∗ .

We first show that if p ≥ 3 then the situation is quite simple because there
are very few d-minuscule elements.

Lemma 5.1. If p ≥ 3 then any d-minuscule element is either in W (D0) or
can be written as vu with u ∈ W (D0) a d-minuscule element and v ∈ W (E) an
e-minuscule element.

Proof. Let w ∈ W (D) be d-minuscule. Write a reduced expression w =
tm1 · · · tml

. It satisfies equation (1) in Definition 2.1. If the reflection with re-
spect to e does not appear in a reduced expression of w , then clearly w be-
longs to W (D0). If the reflection with respect to e appears, then let k be the
maximal integer with mk = e . We may assume that mk+1 = x0 and we have
〈tmk+1

· · · tml
(Λ), β∨

x0
〉 ≥ −1. We deduce 〈tmk

· · · tml
(Λ), β∨

x0
〉 ≥ p− 1 ≥ 2, so that

for all k′ ≤ k we have 〈tmk′
· · · tml

(Λ), β∨
x0
〉 ≥ 2 and mk′ 6= x0 . Therefore up to

using some commutation relations we may write w as vu with v ∈ W (E) and
u ∈ W (D0). Since any reduced expression of w satisfies (1), v is e-minuscule and
u is d-minuscule.

Lemma 5.2. Let w ∈ W θ be d-minuscule. Then the class of i(w) in W/WP

can be represented by a unique d-minuscule element u. This element satisfies
l(u) = l(w) and we have the equality ι(BθwP θ/P θ) = BuP/P .
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Proof. Let Λ resp. Λ be the weight corresponding to d resp. d . Then Λ is
the restriction of Λ to hθ . Let αj , j ∈ D resp. βm, m ∈ Dθ denote the simple
roots of G resp. Gθ . Let us denote by tm ∈ W θ the reflection corresponding
to m ∈ Dθ . Let w ∈ W θ be Λ-minuscule and let w = tm1 · · · tml

be a reduced
decomposition of w . Since w is Λ-minuscule, we have 〈tm2 · · · tml

(Λ), β∨
m1

〉 = 1.
We have

β∨
m1

=
∑

j:=m1

α∨
j ,

thus we get that ∑

j

〈ι(tm2 · · · tml
)(Λ), α∨

j 〉 = 1 . (6)

We claim that if  = m1 then 〈ι(tm2 · · · tml
)(Λ), α∨

j 〉 is nonnegative. In case
p > 2 the claim is easily verified using Lemma 5.1.

Let us now assume that p = 2 and let us choose j with  = m1 and
〈ι(tm2 · · · tml

)(Λ), α∨
j 〉 > 0. If j is the unique element k such that k = m1 , then

the claim is true, so we can assume that θ(j) 6= j , so that {j, θ(j)} = {k : k = m1} .
For w ∈ W let lP (w) denote the length of its minimal length representative in
W/WP . Since Bι(tm1 · · · tml

)P/P contains ι(Bθtm1 · · · tml
P θ/P θ), of dimension

l = lP θ(w), we have lP (ι(tm1 · · · tml
)) ≥ l . The element tm2 · · · tml

is d-minuscule,
and we may assume by induction on the length that the lemma is proved for this
element, so that lP (ι(tm2 · · · tml

)) = l− 1. If 〈ι(tm2 · · · tml
)(Λ), α∨

θ(j)〉 < 0, then we

would have lP (sθ(j) · ι(tm2 · · · tml
)) < l − 1 and thus lP (ι(tm1 · · · tml

)) ≤ l − 1. We
have already seen that this does not occur.

Thus the claim is proved. By (6) there is therefore a unique element j
such that  = m1 and 〈ι(tm2 · · · tml

)(Λ), α∨
j 〉 = 1. The class of ι(w) in W/WP

is equal to the class of sj · ι(tm2 · · · tml
), and thus lP (ι(w)) = l by induction.

Moreover if u2 is a d-minuscule element which represents the class of ι(tm2 · · · tml
)

in W/WP , then sj · u2 represents ι(w). Finally, ι restricts to an inclusion
BθwP θ/P θ → BuP/P of l -dimensional irreducible varieties, so we have the
equality ι(BθwP θ/P θ) = BuP/P . The uniqueness follows from the uniqueness
of reduced expression modulo commuting relations.

Notation 5.3. Let w ∈ W θ be d-minuscule. We denote by ι(w) the unique
d-minuscule element in W which has the same class as ι(w) modulo P . Such an
element exists by Lemma 5.2.

For w ∈ W θ resp. v ∈ W let σw, σ
w resp. τv, τ

v denote the corresponding
homology and cohomology classes.

Lemma 5.4. (ı) Let w ∈ W θ be d-minuscule. Then ι∗σw = τι(w) .

(ıı) Let w ∈ W θ be d-minuscule and assume that all homology classes in
Gθ/P θ of degree deg σw are d-minuscule. Then ι∗τ ι(w) = σw .

Proof. Point (ı) follows directly from Lemma 5.2. Let w ∈ W θ be as in (ıı).
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Then for w′ ∈ W θ a d-minuscule element of degree deg σw , one computes that

〈ι∗τ ı(w), σw′〉 = 〈τ ı(w), ι∗σw′〉 = 〈τ ı(w), τı(w′)〉 = δw′,w = 〈σw, σw′〉,

thus the lemma is proved.

5.2. Type Bn .

In this case, we consider the system of ̟n -minuscule Bn -colored posets P0

given by the poset of an isotropic Grassmannian GQ(n, 2n+ 1):

We have S0 = {1} . Let (D1, d1) be a marked Dynkin diagram and P1

be any d1 -minuscule D1 -colored poset. Set P = PP0,{P1} . We apply the above
construction with D0 reduced to one vertex d0 = d , E obtained from a union
D1 ∪ A, where A is of type An−1 , attaching d1 to the first node of A, e the last
element of A, and p = 2. Thus D resp. Dθ is obtained as a union of D1 and
a Dynkin diagram of type Dn+1 resp. Bn . Moreover we see that the heaps of w
and ı(w) are isomorphic for any w corresponding to an ideal in P (although they
are not isomorphic as colored heaps).

D1 D1
11 n− 1 n− 1

d
d

Lemma 5.5. With the above notation, assume that Conjecture 2.13 holds for
P1 . Then Conjecture 2.13 holds for P.

Proof. Let w be d-(co)minuscule. First of all observe that w is d-minuscule.
In fact, by assumption, it is either minuscule or cominuscule. Since the ele-
ment of degree 2 in P0 is minuscule but not cominuscule, w must be minuscule.
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Let γ1, . . . , γn be a set of Schubert classes in P0 which generate H∗(P0), with
deg(γi) = i. By Lemma 3.13 it is enough to show that γi · σ = γi ⊙ σ for any
σ ∈ H∗(P0).

Let ui ∈ W θ denote the element corresponding to γi . It is enough to
show that for any elements v, w in W θ we have twui,v

= cwui,v
(in fact, since w

is minuscule, we have mw
ui,v

= 1). We compute cwui,v
as the coefficient of σv in

σui ∩ σw . Since deg(γi) = i ≤ n, all classes of degree i correspond to ideals in P0

and thus are minuscule. So by Lemma 5.4 we deduce that ι∗τ ı(ui) = σui . Thus by
Lemma 5.4 again we get

ι∗(σ
ui ∩ σw) = ι∗(ι

∗τ ı(ui) ∩ σw) = τ ı(ui) ∩ ι∗(σw) = τ ı(ui) ∩ τı(w).

Thus the coefficient of σv in σui ∩ σw is the same as the coefficient of τı(v) in the

cap product τ ı(ui) ∩ τı(w) . In other words cwui,v
= c

ı(w)
ı(ui),ı(v)

. Now by Lemma 4.5 we

know that the latter equals t
ı(w)
ı(ui),ı(v)

(again, ı(w) is d-minuscule). Since the heaps

of w and ı(w) are isomorphic, we deduce t
ı(w)
ı(ui),ı(v)

= twui,v
. Therefore cwui,v

= twui,v
,

which is exactly what we wanted to prove.

5.3. Type F4 : minuscule case.

In this case, we consider the system of ̟4 -minuscule F4 -colored posets P0

given by the following picture:

We have S0 = {1} . Let (D1, d1) be a marked Dynkin diagram and P1 be
any d1 -minuscule D1 -colored poset. Set P = PP0,{P1} .

d
d

D1 D1

Lemma 5.6. With the above notation, assume that Conjecture 2.13 holds for
P1 . Then Conjecture 2.13 holds for P.

Proof. Again, observe that if w is d-(co)minuscule then it is d-minuscule. Let
γ1, γ4 be a set of generators of H∗(P0) with deg(γi) = i. By Lemma 3.13 it is
enough to show that γi · σ = γi ⊙ σ for any σ ∈ H∗(P0). For γ1 this is already
known by Proposition 2.16. Moreover by Lemma 3.19(ı) it is enough to show that
γ4 · γ4 = γ4 ⊙ γ4 .
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To prove this we consider the above construction with D0 of type A2 and
x0 the first node of A2 and d0 the last node, E obtained as a connected union of
D1 and again a Dynkin diagram of type A2 , and p = 2. Here D resp. Dθ is a
connected union of D1 and a Dynkin diagram of type E6 resp. F4 (cf. the above
picture). Again we see that the heaps of w and ı(w) are isomorphic for any w
corresponding to an ideal in P .

The rest of the proof of the lemma is the same as for Lemma 5.5, using the
fact that any class of degree 4 corresponding to an ideal in P is minuscule and
Lemma 4.6.

5.4. General result for Λ-cominuscule classes.

Let (D0, d) be a marked Dynkin diagram, let G0 be the associated Kac-
Moody group and P0 the corresponding parabolic subgroup. Let WG0 the Weyl
group of G0 and let w ∈ W P0

G0
(the set of minimal length representatives for

P0 ). We shall assume that D0 is the support of w . Choose a simple root α
or equivalently a vertex of D0 (still denoted by α) and a Dynkin diagram D′

containing D0 and one more root β only connected to α in D′ . If 〈α, β∨〉 = −p
we also define a Dynkin diagram D containing D0 and p more vertices labelled
(βi)i∈[1,p] all only connected to α with a simple edge. In the following we depicted
D′ on the left and D on the right.

d d α

D

α

D′

p
β

β1

β2

βp

...

Let us denote by G′ resp. G the group whose Dynkin diagram is D′ resp. D
and by P ′ resp. P the maximal parabolic subgroup of G′ resp. G corresponding
to the marked node d . We have a commutative diagram:

G0/P0� _

��

G0/P0� _

��

G′/P ′ � � ι
// G/P.

We may define extended elements w′ and (wi)i∈[1,n] of w in W P ′

G′ and W P
G

by w′ = sβw and wi = sβi
w . Their length is l(w)+1. For example let us consider

w = sα1sα3sα2sα4sα3sα2sα1 in the Weyl group of F4 (with notation as in [Bou54]).
This is a ̟1 -cominuscule element. The elements w′ and (wi)i∈[1,n] will also be ̟1 -
cominuscule. We depict here their heaps (in the following diagrams we depicted
with crossed nodes the added vertices of w′ and (wi)i∈[1,n] ).
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...p

w w′ (wi)i∈[1,p]

w1

wp

For w as above, we define σw the corresponding homology class in G0/P0

and also in G′/P ′ . We denote by τw the same class in H∗(G/P ). We denote by
σw′ the homology class in G′/P ′ corresponding to w′ and by τwi

the homology
class in G/P corresponding to wi for i ∈ [1, p].

Proposition 5.7. We have the equality ι∗σw′ =

p∑

i=1

τwi
.

Proof. We proceed by induction on the length of w . Let us write

ι∗σw′ =
∑

x∈WP
G : l(x)=l(w)+1

bxτx.

We first prove that the only classes appearing in this sum are the classes (τwi
)i∈[1,p] .

Lemma 5.8. Let x ∈ W P with bx > 0, then we have x = wi for some i ∈ [1, p].

Proof. We introduce some notation: let us denote by δ the simple root
associated to the vertex d . We denote by P ′

β,δ and P ′
β (resp. Pβ,δ and Pβ ) the

parabolic subgroups of G′ (resp. G) associated to the set of simple roots {β, δ}
and {β} (resp. {(βi)i∈[1,p], δ} and {(βi)i∈[1,p]}). We also denote, for u ∈ WG′

(resp. v ∈ WG ), by Xβ,δ(u) and Xβ(u) (resp. Xβ,δ(v) and Xβ(v)) the associated
Schubert varieties in G′/P ′

β,δ and G′/P ′
β (resp. G/Pβ,δ and G/Pβ ). Finally we

introduce the projections p′ : G′/P ′
β,δ → G′/P ′ and q′ : G′/P ′

β,δ → G′/P ′
β (resp.

p : G/Pβ,δ → G/P and q : G/Pβ,δ → G/Pβ ).

Choose a reduced expression sα1 · · · sαl
for w with αi simple roots of

G0 . We must have the equality αl = δ . We deduce a reduced expression
w′ = sβsα1 · · · sαl

. Let us consider the unipotent subgroup Uw = Uα1 · · ·Uαl

of G0 and the unipotent subgroup Uw′ = UβUw of G′ . We have an inclusion
Uw′ ⊂ Uβ1 · · ·UβpUw . This induces the following inclusions of Schubert varieties
ι : X(w′) ⊂ X(sβ1 · · · sβpw), ιβ : Xβ(sβ) ⊂ Xβ(sβ1 · · · sβp) and ιβ,δ : Xβ,δ(w

′) ⊂
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Xβ,δ(sβ1 · · · sβpw). We have the commutative diagram:

Xβ(sβ)
� �

ιβ
// Xβ(sβ1 · · · sβp)

Xβ,δ(w
′)

q′
66

n
n

n
n

n
n

n
n

n
n

n
n

n

� �
ιβ,δ

//

p′

��

Xβ,δ(sβ1 · · · sβpw)

q
55

l
l

l
l

l
l

l
l

l
l

l
l

l

p

��

X(w′) � � ι // X(sβ1 · · · sβpw).

Remark that the Schubert variety Xβ(sβ) is isomorphic to the projective line P1

while the Schubert variety Xβ(sβ1 · · · sβp) is isomorphic to (P1)p the map ιβ being
given by the diagonal embedding.

Let τx be a class with bx > 0. We thus have x ≤ sβ1 · · · sβpw . In particular,
as any reduced expression for sβ1 · · · sβpw is obtained by multiplying on the left
with sβ1 · · · sβp a reduced expression for w , we obtain (using the characterisation
of Bruhat order described in [Dem74, Section 3 Proposition 5]) that

x =
∏

k∈A

sβk
y (7)

with A ⊂ [1, p] and y ≤ w . The same argument gives that if we write

(ιβ,δ)∗[Xβ,δ(w
′)] =

∑

t∈W
Pβ,δ

G : l(t)=l(w)+1

ct · [Xβ,δ(t)],

then ct > 0 implies

t =
∏

k∈B

sβk
u (8)

with B ⊂ [1, p] and u ≤ w . We now prove that A has at most one element and
for this, we prove that B has at most one element.

Let [Xβ,δ(t)] be a class with ct > 0 and assume that in the expression (8)
the set B contains at least two elements say i and j in [1, p]. Let us consider
the two degree one cohomology classes hi and hj of (P1)p corresponding to
the factors i and j . We have (hi ∪ hj) ∩ [Xβ,δ(t)] 6= 0 by Chevalley formula
and because ct > 0 we get (hi ∪ hj) ∩ (ιβ,δ)∗[Xβ,δ(w

′)] 6= 0. By projection
formula we get ιβ,δ∗(ι

∗
β,δ(hi ∪ hj) ∩ [Xβ,δ(w

′)]) 6= 0. On the other hand we have
ιβ,δ∗(ι

∗
β,δ(hi ∪ hj) ∩ [Xβ,δ(w

′)]) = 0 because ι∗β,δ(hi ∪ hj) = ι∗β,δq
∗(hi ∪ hj) =

q′∗ι∗β(hi ∪ hj) and ι∗β(hi ∪ hj) vanishes as a degree 2 class on P1 , a contradiction.
Thus B has at most one element.

Because the map p′ is birational, we have p′∗[Xβ,δ(w
′)] = [X(w′)] = σw′ and

thus the equality

ι∗σw′ = p∗(ιβ,δ)∗[Xβ,δ(w
′)] =

∑

t∈W
Pβ,δ

G : l(t)=l(w)+1

ct · p∗[Xβ,δ(t)].
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Now for t ∈ W
Pβ,δ

G , we have

p∗[Xβ,δ(t)] =

{
τt for t ∈ W P

G

0 otherwise.

We deduce that A has only one element. Now from (7) and the fact that, bx > 0
implies that l(x) = l(w) + 1, the result follows.

We deduce that there is an integer i such that bwi
> 0. Furthermore, the

group G′ is obtained from G by taking the subgroup invariant by an automorphism
of order p of the Dynkin diagram D : the permutation of the p vertices we added
to D0 . In particular the class ι∗σw′ is invariant under this permutation thus we
have the equalities bwi

= bwj
for i and j in [1, p]. We may therefore set b = bwi

for any i ∈ [1, p], we have b > 0 and

ι∗σw′ = b

p∑

i=1

τwi
.

Computing the coefficient of τw in h ∩ ι∗σw′ = ι∗(h ∩ σw′), we get the equality

bp
(α, α)

(δ, δ)
= p

(α, α)

(δ, δ)
,

thus b = 1.

5.5. Type Cn .

In this case, we consider the system of ̟n -cominuscule Cn -colored posets
P0 given by the posets of a Lagrangian Grassmannian Gω(n, 2n). We have
S0 = {1} . Let (D1, d1) be a marked Dynkin diagram and P1 be any d1 -minuscule
D1 -colored poset. Set P = PP0,{P1} . The heap P for type C6 is the same as the
one for type D7 except for the colors. It was described in (5).

Lemma 5.9. With the above notation, assume that Conjecture 2.13 holds for
P1 and any λ, µ, ν in I(P) with D0(ν)  Cn . Then Conjecture 2.13 holds for P.

Proof. Let us define the degree i ideals λi = 〈(αn+1−i, 1)〉 for i ∈ [1, n] and
set σi = sλi . Take a set of generators {γ1, · · · , γn} with deg(γi) = i. We start to
prove that the generators (γi)i∈[1,n−1] are good generators and shall prove at the
end that γn is also a good generator.

Since by assumption the conjecture holds if D0(ν)  Cn , we have cνλ,µ = tνλ,µ
as soon as deg(ν ∩ P0) ≤ 2n − 2. In particular if deg(λ) ≤ n and i ≤ n − 2 we
have deg(λ) + i ≤ 2n− 2 and γi · σλ = γi ⊙ σλ . Furthermore, for i = n− 1 there
is a unique ideal ν (namely ν = 〈(α2, 2)〉) of degree 2n − 1 for which we cannot
compute cν

γn−1,λ
. By Lemma 3.20 we conclude that γn−1 · σλ = γn−1 ⊙ σλ . In

particular we have γi · σj = γi ⊙ σj for i ∈ [1, n− 1] and j ∈ [1, n].

If λ ⊃ λn , then by recursion with respect to σn we have γi · σλ = γi ⊙ σλ .

If λ 6⊃ λn , then we first consider the case where λ is an ideal of the form
〈(αk, l)〉 for some simple root αk and some integer l . We prove the equality
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γi · σλ = γi ⊙ σλ by induction on deg(λ) in that case. We may of course assume
that λ is distinct from all the λi . We consider the two subideals λ′ and λ′′ in
λ described by 〈(αk−1, l

′)〉 and 〈(αk+1, l
′′)〉 (if k = n we consider only λ′ ) where

l′ = max{a / (αk−1, a) ∈ λ} and l′′ = max{a / (αk+1, a) ∈ λ} . By recursion with
respect to λ′ or λ′′ , we have cσ

ν

γi,σλ = tσ
ν

γi,σλ for any ν not containing (αk−1, l
′ + 1)

or (αk+1, l
′′ + 1) (the last condition is empty for k = n). By induction on P0 it

is also true if ν does not contain (α1, 1). For an ideal ν in P containing all these
elements of P0 , we have deg(ν∩P0) ≥ deg(λ)+n−1. For such a ν and i ≤ n−2,
we have cσ

ν

γi,σλ = 0 = tσ
ν

γi,σλ for degree reasons. For i = n− 1 however, the equality

cσ
ν

γi,σλ = tσ
ν

γi,σλ holds for all λ = 〈(αk, l)〉 and ν 6= 〈(αk, l + 1)〉 . We conclude by
Lemma 3.20.

We finish by dealing with λ not of the previous form. Let us consider
the set M(λ) of maximal elements in λ . For (αk, l) ∈ M(λ), define the ideal
λ(αk, l) = 〈(αk, l)〉 . We have γi · σλ(αk ,l) = γi ⊙ σλ(αk ,l) . In particular we can
use recursion with respect to λ(αk, l) and we deduce that cσ

ν

γi,σλ = tσ
ν

γi,σλ for any

ν not containing (αk, l + 1). By induction on P0 it is also true if ν does not
contain (α1, 1). For an ideal ν in P containing all the elements (αk, l + 1) for
(αk, l) ∈ M(λ) as well as (α1, 1), we have deg(ν ∩ P0) ≥ deg(λ) + n. For such a
ν and i ≤ n− 1, we have cσ

ν

γi,σλ = 0 = tσ
ν

γi,σλ for degree reasons.

To finish the proof, we need to deal with γn . The first formula we need
to verify is the equality γn · γn = γn ⊙ γn . This will be the most difficult one.
Indeed, assume this formula holds, then γn · σn = γn ⊙ σn and by recursion
γn · σλ = γn ⊙ σλ for λ ⊃ λn . Now take λ 6⊃ λn , then in the cohomology of
Gω(n− 1, 2(n− 1)) we may write σλ = P (γ1, · · · , γn−1) where P is a polynomial
in n − 1 variables. If we consider the class P (γ1, · · · , γn−1) in H∗(P) then its
pull-back to H∗(Gω(n− 1, 2(n− 1))) is σλ thus P (γ1, · · · , γn−1) = σλ +A where
A is a linear combination of classes σµ with µ ⊃ λn . We thus have γn ·A = γn⊙A.
Furthermore, by Lemma 3.14 we have γn ·P (γ1, · · · , γn−1) = γn⊙P (γ1, · · · , γn−1)
and the result follows.

To prove γn · γn = γn ⊙ γn , we remark that there are two ideals ν of
degree 2n for which we do not know that cσ

ν

γn,γn = tσ
ν

γn,γn · mσν

γn,γn . These ideals
are ν = 〈(α2, 2), (αn, 3)〉 and ν ′ = 〈(α0, 1), (α2, 2)〉 where we denote by α0 the
simple root corresponding to the vertex d1 in D1 . Since ν is contained in P0

and is the only class in that degree in P0 , we may apply Lemma 3.20 to get
cσ

ν

γn,γn = tσ
ν

γn,γn ·mσν

γn,γn . For ν ′ however, we may not apply Lemma 3.20 since D0(ν
′)

is not the Dynkin diagram of a finite group. However if the edge between α0 and

α1 is simple, then D0(ν
′) = Cn+1 is of finite type and cσ

ν′

γn,γn = tσ
ν′

γn,γn ·mσν′

γn,γn by
Lemma 3.20. If the edge between α0 and α1 is a p-tuple edge (i.e. 〈α1, α

∨
0 〉 = −p),

then by Proposition 5.7 we have

ι∗σν′ =

p∑

i=1

τνi

with notation as in Proposition 5.7. We then have, because ι∗γn = γn , the equality

ι∗(γ
n ∩ σν′) =

p∑

i=1

γn ∩ τνi
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and by taking the cap product with γn we get the equality cσ
ν′

γn,γn =

p∑

i=1

cτ
νi

γn,γn . The

result follows since the same equality holds for the combinatorial coefficients.

5.6. Type F4 : cominuscule case.

As for type Cn we shall need to use Proposition 5.7 and foldings to get the
result. However, we need here one more step. Indeed, to apply the construction
of subsection 5, we need to add one node to the Dynkin diagram D . If D =
Cn , then we get the Dynkin diagram Cn+1 of finite type and with quite well
understood cohomology. On the other hand, for D = F4 , then we get F̃ 2

4 which is
a twisted affine Dynkin diagram (see [Kac90]). To compute some intersections in

its cohomology we will use a folding of Ẽ1
7 to F̃ 2

4 and compute direct images by
hand (this is done in Lemma 5.10 and in Proposition 5.12).

5.0.3. Foldings with F4

We start with notation and set up. Let us denote by ι the inclusion of the
group F4 in the group E6 given by folding of the Dynkin diagram. We also
denote by ι the inclusion of F4/P1 in E6/P2 . We want to describe the map
ι∗ : H∗(F4/P1) → H∗(E6/P2). For this we introduce some notation to describe
the classes in these homology groups. Let ΛF and ΛE the fundamental weights
corresponding to F4/P1 and E6/P2 respectively. Any element of length at most 7
in W P1

F4
is ΛF -cominuscule. The two heaps of size 7 are as follows:

σ7,2σ7,1

To fix notation we define the following homology classes in H∗(F4/P1).
These are all classes of degree d ∈ [4, 7]. By convention the notation σa,b or τa,b
(resp. σa,b or τa,b ) denote homology (resp. cohomology) classes of degree a. The
set of all indices b is an index set of (co)homology classes of that degree. For
example, as the following array shows, there are two homology classes of degree 4
denoted by σ4,1 and σ4,2 .

σ4,1 = 〈(α2, 2)〉 σ5,1 = 〈(α1, 2)〉 σ6,1 = 〈(α1, 2), (α4, 1)〉 σ7,1 = 〈(α1, 2), (α3, 2)〉
σ4,2 = 〈(α4, 1)〉 σ5,2 = 〈(α2, 2), (α4, 1)〉 σ6,2 = 〈(α3, 2)〉 σ7,2 = 〈(α2, 3)〉

The two elements of length 8 are fully commutative. The heaps of these
length 8 elements are as follows:
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σ8,1 σ8,2

We define σ8,1 to be the class associated to the left heap and σ8,2 to be the
class associated to the right one. Let us also give the Hasse diagram for F4/P1 .
In the following picture we decribe on the lowest row the classes σi,1 and on the
top row the classes σi,2 with i growing from left to right. We also indicated the
degree (with respect to the hyperplane classe) of the lower dimension classes.

1 1 1 2 2 2

4 8

12 40

16 16

Let us now describe some classes in E6/P2 . Recall that we described the
maximal slant-irreducible heap in E6/P2 in Section 4. To fix notation we define the
following homology classes in H∗(E6/P2). These are all classes of degree d ∈ [3, 8].

τ3,1 = 〈(β3, 1)〉 τ4,1 = 〈(β1, 1)〉 τ5,1 = 〈(β1, 1), (β5, 1)〉
τ3,2 = 〈(β5, 1)〉 τ4,2 = 〈(β3, 1), (β5, 1)〉 τ5,2 = 〈(β4, 2)〉

τ4,3 = 〈(β6, 1)〉 τ5,3 = 〈(β3, 1), (β6, 1)〉

τ6,1 = 〈(β1, 1), (β4, 2)〉 τ7,1 = 〈(β3, 2)〉 τ8,1 = 〈(β3, 2), (β2, 2)〉
τ6,2 = 〈(β2, 2)〉 τ7,2 = 〈(β1, 1), (β2, 2)〉 τ8,2 = 〈(β3, 2), (β6, 1)〉
τ6,3 = 〈(β1, 1), (β6, 1)〉 τ7,3 = 〈(β1, 1), (β4, 2), (β6, 1)〉 τ8,3 = 〈(β1, 1), (β2, 2), (β6, 1)〉
τ6,4 = 〈(β6, 1), (β4, 2)〉 τ7,4 = 〈(β2, 2), (β6, 1)〉 τ8,4 = 〈(β1, 1), (β5, 2)〉

τ7,5 = 〈(β5, 2)〉 τ8,5 = 〈(β5, 2), (β2, 2)〉

Lemma 5.10. Let ι denote the inclusion of F4/P1 into E6/P2 . We have
ι∗σ4,1 = τ4,2 ι∗σ5,1 = τ5,2 ι∗σ6,1 = τ6,1 + τ6,2 + τ6,4
ι∗σ4,2 = τ4,1 + τ4,2 + τ4,3 ι∗σ5,2 = τ5,1 + τ5,2 + τ5,3 ι∗σ6,2 = τ6,1 + τ6,3 + τ6,4
ι∗σ7,1 = τ7,1 + τ7,2 + τ7,3 + τ7,4 + τ7,5 ι∗σ8,1 = τ8,1 + τ8,2 + τ8,3 + τ8,4 + τ8,5
ι∗σ7,2 = τ7,3 ι∗σ8,2 = τ8,2 + τ8,3 + τ8,4

Proof. We shall denote by h the hyperplane class in H∗(E6/P2) and in
H∗(F4/P1) by identifying it to its pull-back. Let g be the Weyl involution of
the Lie algebra e6 . Then g induces an outer automorphism of E6/P2 , which fixes
pointwise ι(F4/P1). Since g ◦ ι = ι, we have g∗ι∗σ = ι∗σ for σ ∈ H∗(F4/P1). In
other words, the classes in the image of ι∗ are invariant under g .
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Thus there exist non negative integers a, b, c, d such that

{
ι∗σ4,1 = a(τ4,1 + τ4,3) + bτ4,2
ι∗σ4,2 = c(τ4,1 + τ4,3) + dτ4,2.

By the same argument there exist non negative integers α, β, γ, δ, ǫ, η such that

{
ι∗σ8,1 = α(τ8,1 + τ8,5) + β(τ8,2 + τ8,4) + γτ8,3
ι∗σ8,2 = δ(τ8,1 + τ8,5) + ǫ(τ8,2 + τ8,4) + ητ8,3.

The degree of σ4,1 resp. σ4,2, τ4,1, τ4,2, τ4,3 is 2 resp. 4, 1, 2, 1 so we have

a + b = 1 and c+ d = 2. (9)

The degree of σ8,1 resp. σ8,2, τ8,1, τ8,2, τ8,3, τ8,4, τ8,5 is 96 resp. 72, 12, 21, 30, 21, 12
so we have

24α+ 42β + 30γ = 96 and 24δ + 42ǫ+ 30η = 72. (10)

To get more precise information we use the relation σ4,2∪σ4,2 = σ8,1+σ8,2 ,
which follows from the fact that the degree of (σ4,2)2 resp. σ8,1, σ8,2 is 56 resp.
40, 16 (here we identify via Poincaré duality the cohomology classes σ8,i with
the homology classes σ7,i for i ∈ {1, 2}). We deduce the relations σ4,1 ∪ σ4,2 =
3σ8,1 + 2σ8,2 and (σ4,1)2 = 8σ8,1 + 6σ8,2 . Since ι∗ and ι∗ are adjoint, we have
ι∗τ 4,1 = aσ4,1 + cσ4,2 . Thus one computes that ι∗τ 4,1 ∪ ι∗τ 4,1 = (8a2 + 6ac +
c2)σ8,1 + (6a2 + 4ac+ c2)σ8,2 .

On the other hand using the jeu de taquin rule we have τ 4,1 ∪ τ 4,1 = τ 8,2 so
ι∗(τ 4,1 ∪ τ 4,1) = ι∗τ 8,2 = βσ8,1 + ǫσ8,2 . This implies that β = 8a2 + 6ac + c2 and
ǫ = 6a2 + 4ac + c2 . By (10) we have β ≤ 2 so a = 0 and β = c = 1. By (9) and
(10) we deduce the result for ι∗ applied to degree 4 and 8 classes.

To compute ι∗ for classes of degree lower than 8, we use the projection
formula h ∩ ι∗σ = ι∗(h ∩ σ). For example applying this to σ8,1 and σ8,2 we get

h ∩ (τ8,1 + τ8,2 + τ8,3 + τ8,4 + τ8,5) = ι∗(2σ7,1 + σ7,2) and
h ∩ (τ8,2 + τ8,3 + τ8,4) = ι∗(σ7,1 + 2σ7,2).

Resolving this system gives the result in degree 7. The same procedure gives the
result in lower degrees.

Remark 5.11. Let us also remark that there is only one class in H∗(F4/P1)
in degree 3. We denote this class by σ3 . We have ι∗σ3 = aτ3,1 + bτ3,2 but
2 = deg(σ3) = h3 ∩ ι∗σ3 = ah3 ∩ τ3,1 + bh3 ∩ τ3,2 = a + b thus a = b = 1 by
symmetry and ι∗σ3 = τ3,1 + τ3,2 .

We need to extend the Dynkin diagrams of F4 and E6 . We first consider
the Kac-Moody groups F̃ 2

4 and Ẽ1
7 with the notation of [Kac90]. Their Dynkin

diagrams are:
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α1 α1α2

α2

α3 α3α4 α4α5 α5 α6 α7α0

F̃ 2
4 Ẽ1

7

Any length 8 element is ΛF -cominuscule and there are three new ΛF -
cominuscule heaps of length 8 in F̃ 2

4 with heaps as follows:

σ8,3 σ8,4 σ8,5

We shall also consider the following heap in Ẽ1
7/P2 :

We complete our notation and define homology classes in H∗(F̃
2
4 /P1). The

previous classes are again classes and there are few more classes to obtain all classes
of degree d ∈ [4, 8].

σ5,3 = 〈(α5, 1)〉 σ6,3 = 〈(α2, 2), (α5, 1)〉 σ7,3 = 〈(α1, 2), (α5, 1)〉 σ8,3 = 〈(α1, 2), (α3, 2), (α5, 1)〉
σ7,4 = 〈(α3, 2), (α5, 1)〉 σ8,4 = 〈(α2, 3), (α5, 1)〉

σ8,5 = 〈(α4, 2)〉
In the same way, we complete our notation and define homology classes in

H∗(Ẽ
1
7/P2). The previous classes are again classes and there are few more classes

to obtain all classes of degree d ∈ [4, 8]. We define
τ5,4 = 〈(β0, 1)〉 τ6,5 = 〈(β0, 1), (β5, 1)〉 τ7,6 = 〈(β0, 1), (β4, 2)〉 τ8,6 = 〈(β0, 1), (β3, 2)〉
τ5,5 = 〈(β7, 1)〉 τ6,6 = 〈(β3, 1), (β7, 1)〉 τ7,7 = 〈(β0, 1), (β6, 1)〉 τ8,7 = 〈(β0, 1), (β2, 2)〉

τ7,8 = 〈(β1, 1), (β7, 1)〉 τ8,8 = 〈(β0, 1), (β4, 2), (β6, 1)〉
τ7,7 = 〈(β4, 2), (β7, 1)〉 τ8,9 = 〈(β0, 1), (β7, 1)〉

τ8,10 = 〈(β1, 1), (β4, 2), (β7, 1)〉
τ8,11 = 〈(β2, 2), (β7, 1)〉
τ8,12 = 〈(β5, 2), (β7, 1)〉

We prove the following
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Proposition 5.12. We have the formula

τ 4,1 ∩ ι∗σ8,3 = 4τ4,1 + 12τ4,2 + 4τ4,3.

Before going into the proof of this proposition, which is a long but simple
computation we prove

Corollary 5.13. We have the equalities

cσ8,3
σ4,2,σ4,2

= 4 = mσ8,3
σ4,2,σ4,2

· tσ8,3
σ4,2,σ4,2

and cσ8,3
σ4,1,σ4,2

= 8 = mσ8,3
σ4,1,σ4,2

· tσ8,3
σ4,1,σ4,2

.

Proof. By Lemma 5.10, we have the equalities 〈ι∗τ 4,1, σ4,i〉 = 〈τ 4,1, ι∗σ4,i〉 = δi,2
in F4/P1 . In particular, this implies the equality ι∗τ 4,1 = σ4,2 . On the other
hand, Lemma 5.10 and the previous Proposition imply the equality τ 4,1 ∩ ι∗σ8,3 =
ι∗(8σ4,1 + 4σ4,2). We compute

ι∗(σ
4,2 ∩ σ8,3) = ι∗(ι

∗τ 4,1 ∩ σ8,3)
= τ 4,1 ∩ ι∗σ8,3

= 4τ4,1 + 12τ4,2 + 4τ4,3
= ι∗(8σ4,1 + 4σ4,2).

The result follows by injectivity of ι∗ .

Proof of Proposition 5.12. The main tool here will be the fact that the
pull-back by ι of an hyperplane section is again an hyperplane section. We will
write this as ι∗h = h and use it with projection formula to obtain

h ∩ ι∗σ = ι∗(h ∩ σ) (11)

where σ ∈ H∗(F̃
2
4 /P1). We shall also use the following observation: for σ ∈

H∗(F̃
2
4 /P1) and τ ∈ H∗(Ẽ1

7/P2), the cap product τ∩ι∗σ is symmetric with respect
to the folding. Indeed, we have τ∩ι∗σ = ι∗(ι

∗τ∩σ). We shall in particular need the
following cap products (we compute them using the product ⊙ which is valid for

all degree 8 classes σλ in H∗(Ẽ1
7/P2) because D0(λ) is of finite type and because

we have already proved the simply laced case).

τ6,1 τ6,2 τ6,3 τ6,4 τ6,5 τ6,6
τ 3,1 ∩ • 2τ3,1 + τ3,2 τ3,2 τ3,1 + 2τ3,2 τ3,1 + τ3,2 2τ3,1 + τ3,2 τ3,2

τ8,1 τ8,2 τ8,3 τ8,4 τ8,5 τ8,6
τ 4,1 ∩ • τ4,2 τ4,1 + τ4,2 τ4,2 + τ4,3 τ4,2 0 2τ4,1 + τ4,2

τ8,7 τ8,8 τ8,9 τ8,10 τ8,11 τ8,12
τ 4,1 ∩ • 2τ4,2 τ4,1 + 3τ4,2 + τ4,3 τ4,2 + 2τ4,3 τ4,2 + τ4,3 0 0

We will not explicitly commute the direct image ι∗σ8,3 (we will have four
possible solutions) but this will be enough to get the result.

Write ι∗σ5,3 = a(τ5,1 + τ5,3) + bτ5,2 + c(τ5,4 + τ5,5) with (a, b, c) non negative
integers. By equation (11), we get

2(τ4,1+τ4,2+τ4,3) = ι∗(2σ4,2) = ι∗(h∩σ5,3) = h∩(a(τ5,1+τ5,3)+bτ5,2+c(τ5,4+τ5,5))
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and the equalities 2a + b = 2 = a + c. The only solutions are (a, b, c) = (1, 0, 1)
or (0, 2, 2).

Now write ι∗σ6,3 = α(τ6,1+τ6,4)+βτ6,2+γτ6,3+δ(τ6,5+τ6,6) with (α, β, γ, δ)
non negative integers. As before, we get the equalities δ = c, α + γ + δ = a + 2,
2α + β = b + 2. If (a, b, c) = (1, 0, 1) then (α, β, γ, δ) = (0, 2, 2, 1) or (1, 0, 1, 1)
and if (a, b, c) = (0, 2, 2) then (α, β, γ, δ) = (0, 4, 0, 2). Computing the cap product
τ 3,1 ∩ ι∗σ6,3 we see that the only solution for (α, β, γ, δ) such that τ 3,1 ∩ ι∗σ6,3 is
symmetric with respect to the folding is (1, 0, 1, 1) and we deduce that (a, b, c) =
(1, 0, 1).

Let us now write ι∗σ7,3 = x(τ7,1 + τ7,5) + y(τ7,2 + τ7,4) + zτ7,3 + t(τ7,6 +
τ7,9) + u(τ7,7 + τ7,8) with (x, y, z, t, u) non negative integers. As before, we get the
equalities x+ y + z + t = 3, 2y = 2, z + 2u = 1, t + u = 1. The only solution is
(x, y, z, t, u) = (0, 1, 1, 1, 0).

Write ι∗σ7,4 = x′(τ7,1+ τ7,5)+ y′(τ7,2+ τ7,4)+ z′τ7,3+ t′(τ7,6+ τ7,9)+u′(τ7,7+
τ7,8) with (x′, y′, z′, t′, u′) non negative integers. As before, we get the equalities
x′ + y′ + z′ + t′ = 4, 2y′ = 0, z′ + 2u′ = 4, t′ + u′ = 2. The only solutions are
(x′, y′, z′, t′, u′) = (1, 0, 2, 1, 1) and (4, 0, 0, 0, 2).

Write ι∗σ8,3 = A(τ8,1 + τ8,5) + B(τ8,2 + τ8,4) + Cτ8,3 + D(τ8,6 + τ8,12) +
E(τ8,7 + τ8,11) + F (τ8,8 + τ8,10) + Gτ8,9 with (A,B,C,D,E, F,G) non negative
integers. We get the equalities A + B + D = x′ + 2, A + C + E = y′ + 4,
2B + C + 2F = z′ + 4, D + E + F = t′ + 2, F + G = u′ . If (x′, y′, z′, t′, u′) =
(1, 0, 2, 1, 1) then (A,B,C,D,E, F,G) = (0, 2, 2, 1, 2, 0, 1) or (1, 1, 2, 1, 1, 1, 0) and
if (x′, y′, z′, t′, u′) = (4, 0, 0, 0, 2) then (A,B,C,D,E, F ) = (4, 1, 0, 1, 0, 1, 1) or
(3, 2, 0, 1, 1, 0, 2). We now compute for all these solution the cap product with
τ 4,1 . It gives in all cases τ 4,1 ∩ ι∗σ8,3 = 4τ4,1 + 12τ4,2 + 4τ4,3.

5.0.4. End of the proof

We consider the system of ̟1 -cominuscule F4 -colored posets P0 given by the
unique following poset:

σ4,2

We have S0 = {4} . Let (D4, d4) be a marked Dynkin diagram and P4 be
any d4 -minuscule D4 -colored poset. Set P = PP0,{P4} .

Lemma 5.14. With the above notation, assume that Conjecture 2.13 holds for
P4 and any λ, µ, ν in I(P) with D0(ν)  F4 . Then Conjecture 2.13 holds for P.

Proof. Choose some generators γ1 and γ4 of degree 1 and 4 of H∗(F4/P1).
It is easy to see that we may choose γ4 = σ4,2 with the notation of the previous
section. The variety F4/P1 has dimension 15 and the dimensions of Hd(F4/P1)
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are

d 0 1 2 3 4 5 6 7 8
dimHd(F4/P1) 1 1 1 1 2 2 2 2 2

In particular by Lemma 3.19, we only need to prove γ4 ·γ4 = γ4⊙γ4 . Since
by assumption the conjecture holds if D0(ν)  F4 , we have cσ

ν

γ4,γ4 = tσ
ν

γ4,γ4 ·mσν

γ4,γ4

as soon as the ideal ν , of degree 8 satisfies (α1, 2) 6∈ ν or (α3, 2) 6∈ ν . There is a
unique such ideal ν in P . We denote it by ν ′ .

We first deal with the case D0(ν
′) = F̃ 2

4 . In that case, the class σν′ is σ8,3

in the notation of the previous section. In particular, we have cσ
8,3

γ4,γ4 = cσ
8,3

σ4,2,σ4,2 =

4 = mσ8,3

σ4,2,σ4,2tσ
8,3

σ4,2,σ4,2 by Corollary 5.13.

Now we deal with the general case where D0(ν
′) is obtained from F4 by

adding one vertex with n-tuple edge linking it to the simple root α4 . By Proposi-
tion 5.7 and with the notation of that proposition, we have ι∗σν′ =

∑n
i=1 τνi . We

then have, because ι∗γ4 = γ4 , the equality

ι∗(γ
4 ∩ σν′) =

n∑

i=1

γ4 ∩ τνi

and it follows that cσ
ν′

γ4,γ4 =
∑n

i=1 c
τνi
γ4,γ4 and the result follows.

6. Appendix

We prove Assertion 4.2 in this appendix. Let us first remark that by the explicit
description of the invariants in the classical case, even Assertion 4.1 holds for G a
finite dimensional semisimple linear algebraic group of classical type (i.e. type A,
B , C or D).

For (co)minuscule homogeneous spaces, all Schubert classes are (co)minus-
cule, therefore we have the equality (as Z-modules) H∗(P0) = H∗(G/P,Z).
Furthermore, the presentation of these algebra are well known (see for example
[ChMaPe08]). For classical types, any Schubert class is obtained from the special
classes (which have the desired degrees) via the classical Giambelli formulas. For
the exceptional types, the computation of the presentation is done in [ChMaPe08].

For (co)adjoint varieties, a presentation of the ring H∗(G/P,Z) is given in
[ChPe09] using the jeu de taquin rule. In particular, the computations in [ChPe09]
prove that H∗(P0) is generated in the correct degrees.

We are therefore left with the last three cases for which we need to make
some computations using the jeu de taquin rule. Let us recall the set of exponents
of E7 and E8 .

E7 1 5 7 9 11 13 17
E8 1 7 11 13 17 19 23 29

6.1. Cases E7/P2 and E8/P2 .

We deal with E7/P2 and E8/P2 at the same time. There is a presentation
of H∗(E7/P2,Z) and of H∗(E8/P2,Z) whose generators and relations are of the
following degrees.
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generators relations
H∗(E7/P2,Z) 1 2 3 4 5 6 7 2 6 8 10 12 14 18
H∗(E8/P2,Z) 1 2 3 4 5 6 7 8 2 8 12 14 18 20 24 30

Therefore, the degrees of generators and relations coincide in degrees 2 and
6 in H∗(E7/P2,Z) and in degrees 2 and 8 in H∗(E8/P2,Z). In degree 2, the
result is easy since there is a unique cohomology class of degree 2. Thus this class
has to be a multiple of h2 where h is the hyperplane class. In degrees 6 and 8,
we will need some computations.

First remark that it is enough to prove that all classes in degree 6 in
H∗(E7/P2,Z) (resp. in degree 8 in H∗(E8/P2,Z)) can be obtained using the
generators of degree strictly less than 6 (resp. 8). Let x1 , x3 , x4 , x5 , (together
with x6 and x7 for E8 ) be the generators of the corresponding degrees. The mono-
mials in degree 6 (resp. 8) are x6

1 , x3x
3
1 , x

2
3 , x4x

2
1 , x5x1 (resp. x8

1 , x3x
5
1 , x

2
3x

2
1 ,

x4x
4
1 , x4x3x1 , x

2
4 , x5x

3
1 , x5x3 , x6x

2
1 , x7x1 ). We denote them by (m6

i )i∈[1,5] (resp.
by (m8

i )i∈[1,10] ). We choose explicit representative for the generators (xi)i∈[1,7] and
describe them by their heaps:

x1 x3 x4 x5 x6 x7

〈(α2, 1)〉 〈(α3, 1)〉 〈(α1, 1)〉 〈(α7, 1)〉 〈(α8, 1)〉 〈(α1, 1), (α7, 1)〉.

Let us give notations for the Schubert basis in the corresponding de-
grees. The five Schubert classes (σ6

i )i∈[1,5] in H6(E7/P2,Z) have the following
heaps: 〈(α3, 1), (α7, 1)〉 , 〈(α1, 1), (α6, 1)〉 , 〈(α4, 2), (α6, 1)〉 , 〈(α1, 1), (α4, 2)〉 , and
〈(α2, 2)〉 . The heaps of the ten Schubert classes (σ8

i )i∈[1,10] in H8(E8/P2,Z)
are: 〈(α1, 1), (α8, 1)〉 , 〈(α4, 2), (α8, 1)〉 , 〈(α1, 1), (α4, 2), (α7, 1)〉 , 〈(α5, 2), (α7, 1)〉 ,
〈(α2, 2), (α7, 1)〉 , 〈(α3, 2), (α6, 1)〉 , 〈(α1, 1), (α2, 2), (α6, 1)〉 , 〈(α1, 1), (α5, 2)〉 ,
〈(α2, 2), (α5, 2)〉 , and 〈(α3, 2), (α2, 2)〉 .

Using our jeu de taquin rule, we can express the degree 6 monomials
(m6

i )i∈[1,5] in terms of the basis (σ6
i )i∈[1,5] of Schubert classes of degree 6 in

H∗(E7/P2,Z). We get the following matrix




4 6 5 5 2
1 3 2 3 1
0 1 1 2 0
0 1 0 1 0
1 0 0 0 0




whose determinant is 2 therefore we are done in this case. Note that we use our
rule only to compute the third line namely the expression of x2

3 in the Schubert
basis.

The same argument for degree 8 classes gives the following matrix
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15 14 35 14 16 21 30 21 12 12
5 4 15 5 6 11 15 10 5 7
1 1 6 2 2 6 7 5 2 4
1 0 3 0 0 3 3 2 0 2
0 0 1 0 0 2 1 1 0 1
0 0 0 0 0 1 0 0 0 0
3 3 2 1 1 0 0 0 0 0
2 1 1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0




whose determinant is 6 and we are done.

6.2. Case E8/P1 .

There is a presentation of H∗(E8/P1,Z) whose generators and relations are
of the following degrees.

generators relations
H∗(E8/P2,Z) 1 2 4 6 7 8 10 12 2 8 12 14 18 20 24 30

Therefore, the degrees of generators and relations coincide in degrees 2, 8
and 12. In degree 2, the same argument as before works. In degrees 8 and 12,
we will again need some computations.

It is enough to prove that all classes in degree 8 (resp. 12) in H∗(E8/P1,Z)
can be obtained using the generators of degree strictly less than 8 (resp. 12). Let
x1 , x4 , x6 , x7 and x10 be the generators of the corresponding degrees. The
monomials in degree 8 (resp. 12) are x8

1 , x4x
4
1 , x

2
4 , x6x

2
1 , x7x1 (resp. x12

1 , x4x
8
1 ,

x2
4x

4
1 , x

3
4 , x6x

6
1 , x6x4x

2
1 , x

2
6 , x7x

5
1 , x7x4x1 , x10x

2
1 ). We denote them by (m8

i )i∈[1,5]
(resp. by (m12

i )i∈[1,10] ). We choose explicit representative for the generators
(xi)i∈[1,7] and describe them by their heaps:

x1 x4 x6 x7 x10

〈(α1, 1)〉 〈(α2, 1)〉 〈(α7, 1)〉 〈(α8, 1)〉 〈(α1, 2), (α7, 1)〉.

Let us describe the Schubert basis in the corresponding degrees. The five
Schubert classes (σ8

i )i∈[1,5] in H8(E8/P1,Z) have the following heaps:
〈(α2, 1), (α8, 1)〉 , 〈(α4, 2), (α7, 1)〉 , 〈(α5, 2)〉 , 〈(α3, 2), (α6, 1)〉 and 〈(α1, 2)〉 . The
heaps of the ten Schubert classes (σ12

i )i∈[1,10] in H12(E8/P1,Z) are: 〈(α7, 2)〉 ,
〈(α3, 2), (α6, 2), (α8, 1)〉 , 〈(α4, 3), (α8, 1)〉 , 〈(α1, 2), (α5, 2), (α8, 1)〉 ,
〈(α4, 3), (α6, 2)〉 , 〈(α1, 2), (α6, 2)〉 , 〈(α2, 2), (α7, 1)〉 , 〈(α1, 2), (α4, 3), (α7, 1)〉 ,
〈(α1, 2), (α2, 2)〉 and 〈(α3, 3)〉 .

Using our jeu de taquin rule, we can express the degree 8 monomials
(m8

i )i∈[1,5] in terms of the basis (σ8
i )i∈[1,5] of Schubert classes of degree 8 in
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H∗(E8/P1,Z). We get the following matrix




4 9 5 7 2
1 3 2 3 1
0 1 1 1 1
2 1 0 0 0
1 0 0 0 0




whose determinant is −1 therefore we are done in this case.

The same argument for degree 12 classes gives the following matrix




42 198 154 243 110 144 66 175 45 33
14 70 56 90 42 56 26 70 19 14
5 25 20 33 16 22 10 28 8 6
2 9 7 11 6 9 4 11 3 3
5 18 12 18 5 6 2 5 0 0
1 6 5 6 2 2 1 2 0 0
2 2 0 0 0 1 0 0 0 0
1 3 2 3 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 0 2 0 1 0 1 0 0




whose determinant is 4 and we are done.

Remark 6.1. For all the pairs (G,P ) as in Assertion 4.2, the fact that Assertion
4.2 holds together with our jeu de taquin rule imply Assertion 4.1 because one easily
checks that in the corresponding degrees, all the classes are (co)minuscule classes.
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[Dem74] Demazure, M., Désingularisation des variétés de Schubert géné-
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53–88.

[Dua05] Duan, H., Multiplicative rule of Schubert class, Invent. Math. 159
(2005), 407–436.

[Hu90] Humphreys, J. E., “Reflection groups and Coxeter groups,” Cam-
bridge Studies in Advanced Mathematics 29, Cambridge University
Press, Cambridge, 1990.

[Kac90] Kac, V. G., “Infinite-dimensional Lie algebras,” Third edition. Cam-
bridge University Press, Cambridge, 1990.

[Kum02] Kumar, S., “Kac-Moody groups, their flag varieties and representa-
tion theory,” Progress in Mathematics 204. Birkhäuser Boston, 2002.
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Institut de Mathématiques de Jussieu
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