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Abstract. We introduce the notion of compatible actions in the context of
split extensions of Lie algebras over a field k . Using compatible actions, we
construct new resolutions to compute the cohomology of semi-direct products
of Lie algebras and give an alternative way to construct the Hochschild-Serre
spectral sequence associated to a split extension. Finally, we describe several
instances in which this spectral sequence collapses at the second page and obtain
a sharper bound for its length in the finite dimensional case.
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1. Introduction

In [6], L. Evens constructed a resolution to compute the cohomology of the semi-
direct product HoG of two groups. This resolution arose by considering a special
action of G on a free resolution for H . The construction was later made explicit by
T. Brady in [5] where he named it a compatible action. This approach has proven
to be very useful for computing the cohomology of certain semi-direct product
groups such as crystallographic groups (see for example [1] and [2]).

In this paper, we define the analogue of compatible group actions in the
context of Lie algebras over a field k . More concretely, we consider a split extension
of Lie algebras 0 → n → g → h → 0 over a field k , a free resolution P → k for
h and a free resolution F → k for n . Then we define the notion of compatible
action in such a way that, if h acts compatibly on F , we can define a g-module
structure on P ⊗k F that turns this complex into a free resolution for g . Using
this fact, we obtain an alternative way to construct the Hochschild-Serre spectral
sequence of a split Lie algebra extension, from which we derive the following.

Theorem 1.1. Suppose 0 → n → g → h → 0 is a split extension of Lie
algebras. Let M be a g-module and denote by (Er, dr) the associated Hochschild-
Serre spectral sequence. If h acts compatibly on a free U(n)-resolution F such
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that the differential

dq−1 : Homn(Fq−1,M)→ Homn(Fq,M)

is zero, then dp,qr and dp,q+r−2r are zero for all p and all r ≥ 2.

The accessibility of this construction, of course, depends on the fact whether
a particular resolution for n admits a compatible action of h . As it turns out, h
always acts compatibly on the Chevalley-Eilenberg complex of n . This allows
us to form a practical cochain complex for computing the cohomology of g . By
explicitly constructing compatible actions, we obtain a collapse of the Hochschild-
Serre spectral sequence in the following cases.

Theorem 1.2. Consider the split extension 0 → n → g → h → 0 determined
by ϕ : h → Der(n). Let M be a g-module with a trivial n-action. Then the
Hochschild-Serre spectral sequence associated to this extension with coefficients in
M collapses at E2 in the following cases

(a) n = n1 ⊕ n2 , where n1 is either abelian or free and n2 is either abelian or
free;

(b) n = n1 ∗ n2 ∗ . . . ∗ nk , where each of the ni is either abelian or free and
ϕ(α)(ni) ⊆ ni ∀α ∈ h and i = 1, . . . , k .

In [4], D. Barnes showed that the length l of the Hochschild-Serre spectral
sequence associated to a split extension of finite dimensional Lie algebras with
kernel n satisfies l ≤ max {2, dimk(n)} when n is nilpotent and acts trivially on
the coefficient space. As another corollary of Theorem 1.1, we prove the following
generalization of this result.

Theorem 1.3. Suppose 0→ n→ g→ h→ 0 is a split extension of Lie algebras
such that dimk(n) = m < ∞. Denote by (Er, dr) the associated Hochschild-Serre
spectral sequence with coefficients in a g-module M . If n acts trivially on M ,
then

(a) dp,mr = 0 for all p and all r ≥ 2;

(b) l ≤ max {2,m};

(c) Hp(h,Hm(n,M))⊕ Hp+m(h,M) ⊆ Hp+m(g,M) for all p.

2. Definitions, Notations and Preliminary Results

Suppose R is a ring with unit, and let (A, dh, dv) be a double complex of R-
modules. We define the total complex A to be the chain complex with An =⊕

k+l=nAk,l and differential d defined by dh + dv .
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Now, let (P, d) be a chain complex of right R-modules and let (Q, d′) be a
chain complex of left R-modules. Then, we define the double complex (B, dh, dv)
as Bp,q = Pp ⊗R Qq

dhp,q : Bp,q → Bp−1,q, x⊗ y 7→ dp(x)⊗ y
dvp,q : Bp,q → Bp,q−1, x⊗ y 7→ (−1)px⊗ d′q(y).

We define the tensor product of P and Q to be B . In the future we will denote
B and B both by P ⊗R Q ; the meaning will be apparent from the context.

When (P, d) is a chain complex of left R-modules and (Q, d′) is a cochain
complex of left R-modules, we define the double complex (C, dh, dv) as Cp,q =
HomR(Pp, Q

q)

dp,qh : Cp,q → Cp+1,q, f 7→ f ◦ dp+1

dp,qv : Cp,q → Cp,q+1, f 7→ (−1)pd′q ◦ f.

We denote the total Hom cochain complex of P and Q by C . Like before, we will
abuse notation and denote both C and C by HomR(P,Q).

All Lie algebras we consider are over a fixed field k . Let g be a Lie algebra.
If M and N are g-modules then M ⊗k N and Homk(M,N) naturally become
g-modules in the following way

α(m⊗ n) = αm⊗ n+m⊗ αn, α ∈ g,m ∈M,n ∈ N ;

(αf)(m) = αf(m)− f(αm), α ∈ g,m ∈M, f ∈ Homk(M,N).

Some useful properties of these g-module structures are summarized in the follow-
ing lemma.

Lemma 2.1. There is a natural isomorphism Homk(M,N)g ∼= Homg(M,N).
Also, the functor Homk(N,−) : g-mod → g-mod is right adjoint to the functor
−⊗k N : g-mod→ g-mod, which implies that there exists a natural isomorphism

Homg(M ⊗k N,K) ∼= Homg(M,Homk(N,K))

for all g-modules M,N and K .

Denote by U(g) the universal enveloping algebra of g . Note that the
category of g-modules is naturally isomorphic to the category of U(g)-modules, so
we will identify them without mentioning. The cohomology of g with coefficients
in the g-module M is defined as H∗(g,M) = Ext∗U(g)(k,M). Hence, H∗(g,M)
can be computed by taking the cohomology of Homg(F,M), where F is any free
U(g)-resolution of k . For details on homological algebra and the cohomology of
Lie algebras, we refer the reader to [8] and [10].

Lemma 2.2. Let 0→ n→ g
π−→ h→ 0 be short exact sequence of Lie algebras.

If K,N are g-modules such that n acts trivially on K , then there is a natural
isomorphism

Homg(K,N) ∼= Homh(K,N
n).

In particular, we have a natural isomorphism of functors −g ∼= −h ◦−n , where we
consider −n as a functor from g-mod to h-mod.
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3. Compatible Actions

We are especially interested in split short exact sequences of Lie algebras over a
field k

0 // n // g π // h
��

// 0 . (1)

There is a Lie algebra homomorphism ϕ : h → Der(n), where Der(n) is the
derivation algebra of n . Using ϕ , we can write g as a semi-direct product
g = noϕ h . Viewed this way, multiplication in g is given by

[(s, α), (t, β)] = ([s, t] + ϕ(α)(t)− ϕ(β)(s), [α, β]), ∀α, β ∈ h, s, t ∈ n.

In what follows, we will drop ϕ from our notation and write ϕ(α)(t) as α(t) for
all α ∈ h and t ∈ n . Given a g-module M , we will construct a new resolution
to compute H∗(g,M). Our result will depend on the existence of what is called a
compatible action.

Definition 3.1. Suppose ε : F → k is a free resolution of k over U(n). Let
C(F ) be the set of chain maps from F to itself that extend the zero map on k .
It is an associative k -algebra under composition and hence it can be given the
standard Lie algebra structure. We say h acts compatibly on F , if there exists a
Lie algebra homomorphism Θ : h→ C(F ) : α 7→ α , such that

α(s)f = α(sf)− sα(f) (2)

for all α ∈ h , s ∈ n and f ∈ F∗ .

Given an h-module M , we can use the projection map π : g→ h to turn M
into a g-module. Moreover, a U(h)-resolution of k inflates to a U(g)-resolution of
k . However, since the projection of g onto n is not a Lie algebra homomorphism,
there is no obvious way of extending a U(n)-resolution to a U(g)-resolution. This
is where compatible actions come into play.

Lemma 3.2. Suppose there is a compatible action of h on a U(n)-resolution
ε : F → k . Let (s, α) ∈ g for s ∈ n, α ∈ h, and f ∈ F∗ , then

(s, α)f = sf + α(f) (3)

turns F → k into a resolution of U(g)-modules.

Proof. For each n , denote by Fn the nth -module of F . By definition of
compatible action, the action in (3) turns Fn into a g-module.

To see that the differentials of F are g-module homomorphisms, we use the
fact that α is a chain map for each α ∈ h . Let f ∈ Fn and (s, α) ∈ g , then

d((s, α)f) = d(sf + α(f)) = sd(f) + α(d(f)) = (s, α)d(f).

Finally, the augmentation ε : F0 → k becomes a g-module map (give k trivial
g-module structure) because α extends the zero map on k for each α ∈ h . Let
f ∈ F0 and (s, α) ∈ g . Then, we have

ε((s, α)f) = sε(f) + ε(α(f)) = 0 = (s, α)ε(f).
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Next, we consider a free U(n)-resolution εF : F → k and assume that
it admits a compatible action of h . Using Lemma 3.2, we inflate εF : F → k
into a (not necessarily free) U(g)-resolution of k . Also, we consider a free U(h)-
resolution εP : P → k of k and turn it into a U(g)-resolution of k , using the
projection map π . The complex P ⊗k F now turns out to be a free resolution of
U(g)-modules. To summarize, we have

Lemma 3.3. The complex εP ⊗ εF : P ⊗k F → k is a free U(g)-resolution,
with the action of U(g) on P ⊗k F induced by

(s, α)(p⊗ f) := αp⊗ f + p⊗ (sf + α(f))

for each (s, α) ∈ g, p ∈ P∗ , and f ∈ F∗ .

Proof. By the Künneth formula for tensor products, εP ⊗ εF : P ⊗k F→k is
a U(g)-resolution of k . The nth -module of P ⊗k F is given by

⊕
p+q=n Pq ⊗k Fq ,

and we need to show that this is a free U(g)-module. Because P consists of free
U(h)-modules, it suffices to show that U(h)⊗k Fq is a free U(g)-module for every
q . Furthermore, it follows from tensor identities that the g-modules U(h) ⊗k Fq
and U(g)⊗U(n) Fq are isomorphic, where the g-module structure on U(g)⊗U(n) F
is given by multiplication on the left in U(g). Hence, we see that

U(h)⊗k Fq ∼= U(g)⊗U(n) Fq ∼= U(g)⊗U(n)

(
⊕i∈I U(n)

)
∼= ⊕i∈IU(g).

4. Constructing Compatible Actions

We will first show that compatible actions always exist for the Chevalley-Eilenberg
complex V (n) of n :

. . .→ U(n)⊗k Λp(n)
dp−→ . . .

d2−→ U(n)⊗k Λ1(n)
d1−→ U(n)⊗ Λ0(n)

ε−→ k → 0.

where Λp(g) denotes the p-th exterior product of g , ε is the usual augmentation
map, and d1 : U(n)⊗k n→ U(n) is the product map d1(u⊗ x) = ux . For p ≥ 2,
and u⊗ x1 ∧ . . . ∧ xp ∈ Vp(n), (u ∈ U(n), xi ∈ n) the boundary map is given by

dp(u⊗ x1 ∧ . . . ∧ xp) =

p∑
i=1

(−1)i+1uxix1 ∧ . . . ∧ x̂i ∧ . . . ∧ xp+∑
i<j

(−1)i+ju⊗ [xi, xj] ∧ x1 ∧ . . . ∧ x̂i ∧ . . . ∧ x̂j ∧ . . . ∧ xp.
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Proposition 4.1. Given the split extension (1), the maps

α : U(n)⊗k Λp(n) → U(n)⊗k Λp(n) :

1⊗ x1 ∧ . . . ∧ xp 7→
p∑
j=1

1⊗ x1 ∧ . . . ∧ α(xj) ∧ . . . ∧ xp,

y1 . . . ym ⊗ x1 ∧ . . . ∧ xp 7→
m∑
j=1

y1 . . . α(yj) . . . ym ⊗ x1 ∧ . . . ∧ xp,

+

p∑
j=1

y1 . . . ym ⊗ x1 ∧ . . . ∧ α(xj) ∧ . . . ∧ xp

for all α ∈ h, define a compatible action of h on the Chevalley-Eilenberg complex
of n. (If p = 0, then the second big sum disappears.)

Proof. Let us first show that for each α ∈ h , α is an augmentation preserving
chain map. By simple computations, this reduces to showing that

d ◦ α(1⊗ x1 ∧ . . . ∧ xp) = α ◦ d(1⊗ x1 ∧ . . . ∧ xp), for all p .

First, we compute the left hand side (L).

(L) =

p∑
j=1

d(1⊗ x1 ∧ . . . α(xj) . . . ∧ xp)

=

p∑
j=1

(−1)j+1α(xj)⊗ x1 ∧ . . . ∧ x̂j ∧ . . . ∧ xp

+

p∑
l,j=1
l 6=j

(−1)l+1xl ⊗ x1 ∧ . . . ∧ x̂l ∧ . . . ∧ α(xj) ∧ . . . ∧ xp

+

p∑
l>j

(−1)l+j ⊗ [α(xj), xl] ∧ x1 ∧ . . . ∧ x̂j ∧ . . . ∧ x̂l ∧ . . . ∧ xp

+

p∑
j>l

(−1)l+j ⊗ [xl, α(xj)] ∧ x1 ∧ . . . ∧ x̂l ∧ . . . ∧ x̂j ∧ . . . ∧ xp

+

p∑
j=1

p∑
l>k
l 6=j 6=k

(−1)l+k⊗[xk, xl] ∧ x1∧. . .∧x̂k∧. . .∧x̂l∧. . .∧α(xj)∧. . .∧xp.

Since α acts as a derivation, we have α([xl, xj]) = [α(xl), xj] + [xl, α(xj)]. So,
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continuing with the equality, we find

(L) =

p∑
j=1

(−1)j+1α(xj)⊗ x1 ∧ . . . ∧ x̂j ∧ . . . ∧ xp

+

p∑
l,j=1
l 6=j

(−1)j+1xj ⊗ x1 ∧ . . . ∧ x̂j ∧ . . . ∧ α(xl) ∧ . . . ∧ xp

+

p∑
j>l

(−1)l+j1⊗ α([xl, xj]) ∧ x1 ∧ . . . ∧ x̂l ∧ . . . ∧ x̂j ∧ . . . ∧ xp

+

p∑
j=1

p∑
l>k
l 6=j 6=k

(−1)l+k⊗[xk, xl]∧x1∧. . .∧x̂k∧. . .∧x̂l∧. . .∧α(xj)∧. . .∧xp.

Meanwhile, the right hand side (R) is

(R) =

p∑
j=1

(−1)j+1α(xj ⊗ x1 ∧ . . . ∧ x̂j ∧ . . . ∧ xp)

+

p∑
j>l

(−1)l+jα(1⊗ [xl, xj] ∧ x1 ∧ . . . ∧ x̂l ∧ . . . ∧ x̂j ∧ . . . ∧ xp)

=

p∑
j=1

(−1)j+1α(xj)⊗ x1 ∧ . . . ∧ x̂j ∧ . . . ∧ xp

+

p∑
l,j=1
l 6=j

(−1)j+1xj ⊗ x1 ∧ . . . ∧ x̂j ∧ . . . ∧ α(xl) ∧ . . . ∧ xp

+

p∑
j<l

(−1)l+jα(1⊗ [xl, xj] ∧ x1 ∧ . . . ∧ x̂l ∧ . . . ∧ x̂j ∧ . . . ∧ xp).

Now, using the definition of α , we see that this is the same expression as before.

Next, straightforward computations confirm that the map Θ : h→ C(V (n))
is a Lie algebra homomorphism.

It is left to check condition (2). Suppose y1y2 . . . ym ∈ U(n), x1 ∧ . . .∧xp ∈
Λp(n) and x ∈ n . Then,

α(xy1y2 . . . ym ⊗ x1 ∧ . . . ∧ xp) =
m∑
j=1

xy1 . . . α(yj) . . . ym ⊗ x1 ∧ . . . ∧ xp

+α(x)y1y2 . . . ym ⊗ x1 ∧ . . . ∧ xp
+xy1y2 . . . ymα(1⊗ x1 ∧ . . . ∧ xp)

= α(x)y1 . . . ym ⊗ x1 ∧ . . . ∧ xp +

xα(y1 . . . ym ⊗ x1 ∧ . . . ∧ xp).
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This shows that condition (2) is satisfied. Now, using the definition of α , we see
that this is the same expression as before. We conclude that the maps α indeed
define a compatible action of h on the Chevalley-Eilenberg complex of n .

Next, we give four simple but useful lemmas that allow us to construct new
compatible actions from already existing ones. The proofs of the first three lemmas
are straightforward.

Lemma 4.2. Let h1 → Der(n) be a Lie algebra homomorphism and suppose h1
acts compatibly on a free U(n)-resolution ε : F → k . If φ : h2 → h1 is a Lie
algebra homomorphism, then α(f) = (φ(α))(f) defines a compatible action of h2
on F .

Lemma 4.3. Suppose that, for i = 1, 2, we have a Lie algebra homomor-
phism ϕi : h → Der(ni) such that h acts compatibly on a free U(ni)-resolution
εi : Fi → k . Then, considering the homomorphism ϕ : h → Der(n1) ⊕ Der(n2) ↪→
Der(n1⊕n2), we obtain a compatible action of h on the free U(n1⊕n2)-resolution
ε1 ⊗ ε2 : F1 ⊗k F2 → k given by α(f1 ⊗ f2) := α(f1)⊗ f2 + f2 ⊗ α(f2).

Lemma 4.4. Let h = h1 oρ h2 and let ϕ : h → Der(n) be a Lie algebra
homomorphism. For each i = 1, 2, suppose hi acts compatibly through ϕ on the
free U(n)-resolution ε : F → k . If ρ(α2)(α1) = α2◦α1−α1◦α2 for all (α1, α2) ∈ h,
then (α1, α2)(f) = α1(f) + α2(f) defines a compatible action of h on F .

Lemma 4.5. Suppose n1 and n2 are two Lie algebras and consider a Lie
algebra homomorphism ϕ : h → Der(n1 ∗ n2) such that for every α ∈ h, we
have ϕ(α)(ni) ⊂ ni for i = 1, 2. Then

. . .→ U(n1 ∗ n2)⊗ (Λp(n1)⊕ Λp(n2))→ . . .→ U(n1 ∗ n2)→ k → 0.

is a free U(n1 ∗ n2)-resolution of k that allows a compatible action of h.

Proof. Given two Lie algebras n1 and n2 , we can consider their free product
n1 ∗ n2 . If Ji is the augmentation ideal of ni and J is the augmentation ideal of
n1 ∗ n2 , then

J ∼=
(
U(n1 ∗ n2)⊗U(n1) J1

)
⊕
(
U(n1 ∗ n2)⊗U(n2) J2

)
as left U(n1 ∗ n2)-modules. Denote by V∗(ni) the Chevalley-Eilenberg resolution
of ni , for i = 1, 2. Then

. . .→ Vp(ni)→ Vp−1(ni)→ . . . . . . V1(ni)→ Ji → 0 (4)

is a free U(ni)-resolution of Ji , for i = 1, 2. Since U(n1∗n2) is a free U(ni)-module,
applying U(n1 ∗ n2)⊗U(ni) − to (4) yields an exact U(n1 ∗ n2)-complex

. . .→ U(n1 ∗n2)⊗Λp(ni)→ U(n1 ∗n2)⊗Λp−1(ni)→ . . .→ U(n1 ∗n2)⊗U(ni) Ji → 0
(5)
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for i = 1, 2. If we now take the direct sum of (5) for i = 1, 2, we obtain a free
U(n1 ∗ n2)-resolution of J that we can extend to a free U(n1 ∗ n2)-resolution of k ,
i.e.

. . .→ U(n1 ∗ n2)⊗ (Λp(n1)⊕ Λp(n2))→ . . .→ U(n1 ∗ n2)→ k → 0. (6)

Now suppose we have a Lie algebra homomorphism ϕ : h→ Der(n1 ∗n2) such that
for every α ∈ h , we have ϕ(α)(ni) ⊂ ni for i = 1, 2. Then h acts compatibly on
(6). Indeed, the compatible action on the n-th module of (6) can be defined on
each of the two direct summands U(n1 ∗ n2)⊗ Λp(ni) as in Proposition 4.1.

Remark 4.6. Note that this lemma can easily be generalized to free products
of more that two factors. Also, if one of the factors, say n2 , is free then we can
replace the Chevalley-Eilenberg complex of n2 by a resolution of the form (7).

In the next examples, we will apply these lemmas to construct several useful
compatible actions.

Example 4.7. Let fm be the free Lie algebra on m generators {x1, . . . , xm} =
X . Then k{X} , the free k -algebra on X , is the universal enveloping algebra of
fm . Since the augmentation ideal J of k{X} can be seen as an m-dimensional
free k{X}-module,

0→ J→ k{X} → k → 0 (7)

is a free U(fm)-resolution of k . Now, consider the universal split extension
fm o Der(fm) and take α ∈ Der(fm). Then one can easily check that the k -linear
map

α : k{X} → k{X} :

{
r ∈ k 7→ 0

xi1xi2 . . . xip 7→
∑p

j=1 xi1 . . . α(xij) . . . xip

induces a compatible action of Der(fm) on (7). Hence, by Lemma 4.2, every split
extension fn o h allows a compatible action of h on (7).

Example 4.8. Let f1 be the free Lie algebra on m generators {x1, . . . , xm} = X
and take f2 to be the free Lie algebra on n generators {y1, . . . , yn} = Y . Now
consider (f1 ⊕ f2) o Der(f1 ⊕ f2). Since Der(fm ⊕ fn) = Der(fm) ⊕ Der(fn), we
can use the previous example and Lemma 4.3 to obtain a compatible action of
Der(fm ⊕ fn) on a free U(f1 ⊕ f2)-resolution of k . Using Lemma 4.2, we see that
any split extension with kernel f1 ⊕ f2 admits a compatible action of this form.

Example 4.9. Let f be the free Lie algebra on m generators {x1, . . . , xm} = X
and let kn be the n-dimensional abelian Lie algebra with k -basis {t1, . . . , tn} .
Recall that the universal enveloping algebra of kn equals the polynomial ring in
n variables k[t1, . . . , tn] and that we have a split short exact sequence

0→ Der(f, kn)→ Der(f⊕ kn)→ Der(f)⊕Der(kn)→ 0.

Here, Der(f, kn) denotes the abelian Lie algebra of all k -linear maps from f to kn

that map [f, f] to zero.
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Now, denote by F1 the free U(f)-resolution (7) and by F2 the Chevalley-
Eilenberg resolution of kn . By Example 4.7, we have a compatible action of
Der(f) on F1 and by Proposition 4.1 we have a compatible action of Der(kn)
on F2 . Hence, it follows from Lemma 4.3 that we have a compatible action of
Der(f)⊕ Der(kn) on F = F1 ⊗ F2 . Next we will construct a compatible action of
Der(f, kn) on F . To simplify our notation, we will first rewrite the complex F .
Define

A0 = k,

Ap = Λp(kn)⊕ (Λp−1(kn)⊗ 〈x1, . . . , xm〉) for 1 ≤ p ≤ n,

An+1 = Λn(kn)⊗ 〈x1, . . . , xm〉,

where 〈x1, . . . , xm〉 is the m-dimensional vector space with basis X . Then one
can check that Fp = U(f ⊕ kn) ⊗ Ap for all p ∈ {0, . . . , n + 1} , with differentials
given by

d1 : F1 → F0 : w ⊗ (ti, xk) 7→ w(xk, ti)

dp : Fp → Fp−1 : w ⊗ (ti1 ∧ . . . ∧ tip , tj1 ∧ . . . ∧ tjp−1 ⊗ xk) 7→
p∑
r=1

(−1)r+1w(0, tir)⊗ (ti1 ∧ . . . ∧ t̂ir ∧ . . . ∧ tip , 0)

+

p−1∑
s=1

(−1)sw(0, tjs)⊗ (0, tj1 ∧ . . . ∧ t̂js ∧ . . . ∧ tjp−1 ⊗ xk)

+w(xk, 0)⊗ (tj1 ∧ . . . ∧ tjp−1 , 0)

for all p ∈ {2, . . . , n} and

dn+1 : Fn+1 → Fn : w ⊗ (t1 ∧ . . . ∧ tn ⊗ xk) 7→
n∑
j=1

(−1)jw(0, tj)⊗ (0, t1 ∧ . . . ∧ t̂j ∧ . . . ∧ tn ⊗ xk)

+w(xk, 0)⊗ (t1 ∧ . . . ∧ tn, 0).

Now, take α ∈ Der(f, kn) ⊆ Der(f ⊕ kn) and ai ∈ U(f ⊕ kn), then one can
check that the maps

α : F0 → F0 : a1a2 . . . ar 7→
r∑
s=1

a1 . . . α(as) . . . ar

α : Fp → Fp : a1a2 . . . ar ⊗ (ti1 ∧ . . . ∧ tip , tj1 ∧ . . . ∧ tjp−1 ⊗ xk) 7→
r∑
s=1

a1 . . . α(as) . . . ar ⊗ (ti1 ∧ . . . ∧ tip , tj1 ∧ . . . ∧ tjp−1 ⊗ xk)

+(−1)p−1a1 . . . ar ⊗ (tj1 ∧ . . . ∧ tjp−1 ∧ α(xk), 0)

α : Fn+1 → Fn+1 : a1a2 . . . ar ⊗ (t1 ∧ . . . ∧ tn ⊗ xk) 7→
r∑
s=1

a1 . . . α(as) . . . ar ⊗ (t1 ∧ . . . ∧ tn ⊗ xk)
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define a compatible action of Der(f, kn) on F . Furthermore, one can verify that

ϕ2 ◦ α− α ◦ ϕ1 = (ϕ1, ϕ2) ◦ α− α ◦ (ϕ1, ϕ2)

for all (ϕ1, ϕ2) ∈ Der(f) ⊕ Der(kn) and for all α ∈ Der(f, kn) which means that
the action of Der(f, kn) is compatible with the action of Der(f) ⊕ Der(kn) in the
sense of Lemma 4.4. It now follows from Lemma 4.4 that we have a compatible
action of Der(f⊕ kn) on F . Finally, Lemma 4.2 implies that every split extension
with kernel f⊕ kn admits a compatible action of this form.

5. The Hochschild-Serre Spectral Sequence of a Split Extension

Recall that a short exact sequence of Lie algebras

0→ n→ g
π−→ h→ 0 (8)

and a g-module M give rise to a Hochschild-Serre spectral sequence. For a general
treatment of spectral sequences we refer the reader to [9] and [10]. The Hochschild-
Serre spectral sequence for Lie algebra extensions is discussed in [3] and [7].

When the extension (8) splits, we propose a modification to the construction
of the Hochschild-Serre spectral sequence.

Proposition 5.1. Let 0→ n→ g→ h→ 0 be a split extension of Lie algebras
and let M be a g-module. If εP : P → k is a free U(h)-resolution and εF : F → k
is a free U(n)-resolution that allows a compatible action of h, then this action
defines a g-module structure on F such that,

Hn(g,M) = Hn
(

Homh(P,Homn(F,M))
)

for each n.

Proof. According to Lemma 3.3, εP⊗εF : P⊗kF → k is a free U(g)-resolution.
Therefore,

H∗(g,M) = H∗(Homg(P ⊗k F,M)).

Also, by Lemma 2.1, we have

Homg(P ⊗k F,M) ∼= Homg(P,Homk(F,M)).

Furthermore, since n acts trivially on Pp for each p , it follows from Lemmas 2.1
and 2.2 that

Homg(Pq,Homk(Fq,M)) = Homh(Pp,Homn(Fq,M))

for all p and q . We conclude that H∗(g,M) can be calculated by taking the
cohomology of Homh(P,Homn(F,M)).

Filtering by columns, we can obtain a canonically bounded filtration of the
(total) Hom cochain complex Homh(P,Homn(F,M)). By constructing the spectral
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sequence associated to this filtration and using the proposition above, we obtain a
convergent first quadrant spectral sequence

Ep,q
2 = Hp(h,Hq(n,M))⇒ Hp+q(g,M). (9)

Moreover, it is not difficult to see that this spectral sequence coincides with the
Hochschild-Serre spectral sequence from the second page onward. We will use
this different construction of the Hochschild-Serre spectral sequence to prove a
generalization of Theorem 2 from [4], but first we need a lemma.

Lemma 5.2. Suppose (C, dh, dv) is a first quadrant double complex with the
vertical differential dp+1,q−1

v : Cp+1,q−1 → Cp+1,q zero for some p and q . Then
the differentials dp,qr and dp−r+2,q+r−2

r , from the convergent first quadrant spectral
sequence

IEp,q
2 = Hp

hH
q
v(C)⇒ Hp+q(C ),

obtained by filtering C columnwise, are zero for all r ≥ 2.

Proof. Recall that C is the cochain complex with C n =
⊕

k+l=nC
k,l , and

the differential d is defined by dh + dv . The filtration of C is given by F pC n =⊕
k+l=n
k≥p

Ck,l . By definition we have Ep,q
r = Zp,q

r /(Zp+1,q−1
r−1 +Bp,q

r−1), with

Zp,q
r = F pC p+q ∩ d−1

(
F p+rC p+q+1

)
,

Bp,q
r = F pC p+q ∩ d

(
F p−rC p+q−1

)
.

Also, the differentials dp,qr : Ep,q
r → Ep+r,q−r+1

r are induced by the restriction of d
to Zp,q

r .

Now, let [x] ∈ Ep,q
r where x ∈ Zp,q

r . We can write x = f + x′ with
f ∈ Cp,q and x′ ∈ F p+1C p+q . Since dp+1,q−1

v = 0, we have d(x) = d(x′) (if r ≥ 2).

This means that d(x) ∈ F p+rC p+q+1 ∩ d
(
F p+1C p+q

)
= Bp+r,q−r+1

r−1 showing that

dp,qr ([x]) = 0. Since [x] and r are arbitrary, we conclude that dp,qr = 0 for all
r ≥ 0.

Similarly, take [x] ∈ Ep−r+2,q+r−2
r where x ∈ Zp−r+2,q+r−2

r ⊂ F p−r+2C p+q .
Then dp−r+2,q+r−2

r ([x]) = [d(x)] ∈ Ep+2,q−1
r . We will show that d(x) ∈ Bp+2,q−1

r−1 .
Denote by x′ the image of x under the projection of F p−r+2C p+q onto F p+1C p+q .
Because dp+1,q−1

v = 0, one can easily verify that d(x) = d(x′). But this implies
that d(x) ∈ Bp+2,q−1

r−1 , because F p+1C p+q ⊂ F p−r+3C p+q for r ≥ 2. By definition
of Ep+2,q−1

r , this means that dp−r+2,q+r−2
r ([x]) = 0. Since [x] and r are arbitrary,

we conclude that dp−r+2,q+r−2
r = 0 for all r ≥ 0.

Theorem 5.3. Suppose 0 → n → g → h → 0 is a split extension of Lie
algebras. Let M be a g-module and denote by (Er, dr) the associated Hochschild-
Serre spectral sequence. If h acts compatibly on a free U(n)-resolution F such
that the differential

dq−1 : Homn(Fq−1,M)→ Homn(Fq,M)

is zero, then dp,qr and dp,q+r−2r are zero for all p and all r ≥ 2.
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Proof. If dq−1 : Homn(Fq−1,M) → Homn(Fq,M) is zero, then the vertical
differentials dp,q−1v of the double complex Homh(P,Homn(F,M)) are zero for all
p . It now follows from the previous lemma that dp,qr and dp,q+r−2r are zero for all
p and all r ≥ 2.

Theorem 5.4. Let 0 → n → g → h → 0 be the split extension determined
by ϕ : h → Der(n) and let M be a g-module such that Mn = M . Then the
Hochschild-Serre spectral sequence associated to this extension with coefficients in
M collapses at E2 in the following cases

(a) n = n1 ⊕ n2 , where n1 is either abelian or free and n2 is either abelian or
free;

(b) n = n1 ∗ n2 ∗ . . . ∗ nk , where each of the ni is either abelian or free and
ϕ(α)(ni) ⊆ ni ∀α ∈ h and i = 1, . . . , k .

Proof. First suppose that n is abelian. We know that h acts compatibly on
the Chevalley-Eilenberg complex V (n) of n . Since n acts trivially on M , the
differential

dq−1 : Homn(Vq−1(n),M)→ Homn(Vq(n),M)

is zero for all q . Hence, it follows that dp,qr = 0 for all p, q and r ≥ 2 which means
that the spectral sequence collapses at E2 .

Now, assume that n = n1⊕n2 with n1 and n2 both free. In Example 4.8, we
constructed a resolution for n that allows a compatible action in any case and one
easily checks that this resolution has zero differentials after applying Homn(−,M),
when n acts trivially on M . So, just as before we obtain the desired collapse.
If n = n1 ⊕ n2 , with n1 free and n2 abelian, then Example 4.9 provides a free
resolution of n with compatible action that has zero differentials after applying
Homn(−,M) because n acts trivially on M . Thus, the collapse follows and case
(a) of the corollary is proven.

Part (b) is proven similarly by considering the compatible actions con-
structed in Lemma 4.5.

Suppose that (8) is a split extension with a finite dimensional kernel and
consider its associated Hochschild-Serre spectral sequence with coefficients in a
g-module M ,

Ep,q
2 = Hp(h,Hq(n,M))⇒ Hp+q(g,M).

It is clear that at some page t the Hochschild-Serre spectral sequence will collapse,
i.e. Er = E∞ for all r ≥ t . We define the length l of the spectral sequence to
be the smallest t for which Et = E∞ . This means that dr = 0 for all r ≥ l , but
dl−1 6= 0. Using the previous theorem we can now prove the following.

Theorem 5.5. Suppose 0→ n→ g→ h→ 0 is a split extension of Lie algebras
such that dimk(n) = m <∞ . Denote by (Er, dr) the associated Hochschild-Serre
spectral sequence with coefficients in the g-module M . If n acts trivially on M ,
then
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(a) dp,mr = 0 for all p and all r ≥ 2;

(b) l ≤ max {2,m};

(c) Hp(h,Hm(n,M))⊕ Hp+m(h,M) ⊆ Hp+m(g,M) for all p.

Proof. Since n acts trivially on M , either Hm(n,M) = 0 or Hm(n,M) ∼= M . If
Hm(n,M) = 0, then Ep,m

r = 0 for all p and all r ≥ 1. This of course implies dp,mr =
0 for all p and all r ≥ 2. If Hm(n,M) = M , then dm−1 : Homn((Vm−1(n),M) →
Homn((Vm(n),M) is zero. Since we always have a compatible action on the
Chevalley-Eilenberg complex, Theorem 5.3 implies that dp,mr = 0 for all p and
all r ≥ 2, so part (a) is proven.
Since n acts trivially on M , we know that the differential d0 : Homn((V0(n),M)
→ Homn((V1(n),M) is zero. It follows that all differentials dr , for r ≥ 2, that
land on the bottom row of the spectral sequence are also zero. We conclude that
l ≤ max {2,m} . This finishes (b).
A priori we have Ep,m

∞ ⊕ Ep+m,0
∞ ⊆ Hp+m(g,M) and Ep+m,0

∞ = Hp+m(h,M) for all
p . By part (a), Ep,m

∞ = Ep,m
m+1 = · · · = Ep,m

2 for all p and Ep,m
2
∼= Hp(h,Hm(n,M)).

This proves part (c).

Remark 5.6.

- Since the extension splits and n acts trivially on M , we know that the
homomorphisms Hp(h,M) → Hp(g,M) are injective for every p . This is
another way to see that all differentials dr , for r ≥ 2, that land on the
bottom row of the spectral sequence are zero.

- In [4], Barnes shows that the spectral sequence of split extensions of finite
dimensional Lie algebra with abelian kernel collapses at the second page if
the kernel acts trivially in the coefficients. Case (a) of Theorem 5.4 is a
generalization of this result.
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