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Abstract. We study invariant distributions on the tangent space to a sym-
metric space. We prove that an invariant distribution with the property that
both its support and the support of its Fourier transform are contained in the
set of non-distinguished nilpotent orbits, must vanish. We deduce, using recent
developments in the theory of invariant distributions on symmetric spaces, that
the symmetric pair (GL2n(R), Sp2n(R)) is a Gelfand pair. More precisely, we
show that for any irreducible smooth admissible Fréchet representation (π,E)
of GL2n(R) the space of continuous functionals HomSp2n(R)(E,C) is at most
one dimensional. Such a result was previously proven for p-adic fields in M. J.
Heumos and S. Rallis, Symplectic-Whittaker models for Gln , Pacific J. Math.
146 (1990), 247–279, and for C in E. Sayag, (GL2n(C), Sp2n(C)) is a Gelfand
pair, arXiv:0805.2625 [math.RT].
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1. Introduction

Let (V, ω) be a finite dimensional symplectic vector space over R . Consider the
standard imbedding Sp(V ) := Aut(V, ω) ⊂ GL(V ) and the natural action of
Sp(V )× Sp(V ) on GL(V ). In this paper we prove the following theorem:

Theorem A. Any Sp(V )×Sp(V ) - invariant distribution on GL(V ) is invari-
ant with respect to transposition.

It has the following corollary in representation theory:

Theorem B. Let (V, ω) be a symplectic vector space and let E be an irreducible
admissible smooth Fréchet representation of GL(V ). Then

dimHomSp(V )(E,C) ≤ 1
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138 Aizenbud and Sayag

In the language of [AGS], Theorem B means that the pair (GL(V ), Sp(V ))
is a Gelfand pair. In particular, Theorem B implies that the spectral decomposition
of the unitary representation L2(GL(V )/Sp(V )) is multiplicity free (see e.g. [Lip]).

Theorem B is deduced from Theorem A using the Gelfand-Kazhdan method
(adapted to the archimedean case in [AGS]).

The analogue of Theorem A and Theorem B for non-archimedean fields were
proven in [HR] using the method of Gelfand and Kazhdan. A simple argument
over finite fields is explained in [GG] and using this a simpler proof of the non-
archimedean case was written in [OS3]. Recently, one of us, using the ideas of
[AG2] extended the result to the case F = C (see [Say1]).

Our proof of Theorem A is based on the methods of [AG2]. In that work the
notion of regular symmetric pair was introduced and shown to be a useful tool in
the verification of the Gelfand property. Thus, the main result of the present work
is the regularity of the symmetric pair (GL(V ), Sp(V )). The notion of regularity
concerns the action of additional symmetries of the symmetric space on the space
of invariant distributions on its tangent space. In previous works the proof of
regularity of symmetric pairs was based either on some simple considerations or
on a criterion that requires negativity of certain eigenvalues (this was implicit in
[JR], [RR] and was explicated in [AG2], [AG3], [Say1]).

The pair (GL(V ), Sp(V )) does not satisfy the above mentioned criterion
and requires new techniques.

1.1. Main ingredients of the proof.
To show regularity we study distributions on the space

q = {X ∈ gl2n : JX t = XJ} where J =

(
0n Idn
−Idn 0n

)
.

More precisely, we are interested in those distributions that are invariant with
respect to the conjugation action of Sp2n and supported on the nilpotent cone.
To classify the nilpotent orbits of the action we use the method of [GG] to identify
these orbits with nilpotent orbits of the adjoint action of GLn on its Lie algebra.
This allows us to show that there exists a unique distinguished (in the sense of e.g.
[Sek]) nilpotent orbit O ⊂ q and that this orbit is open in the nilpotent cone of
q . Next, we use the theory of D -modules, as in [AG4], to prove that there are
no distributions supported on non-distinguished orbits whose Fourier transform is
also supported on non-distinguished orbits (see Theorem 4.1).

1.2. Related works.
The problem of identifying symmetric pairs that are Gelfand pairs was studied
by various authors. In the case of symmetric spaces of rank one this problem
was studied extensively in [RR], [vD], [BvD] both in the archimedean and non-
archimedean case. Recently, cases of symmetric spaces of high rank were studied
in [AGS], [AG2], [AG3], [Say2]. However, as hinted above, all these works could
treat a restricted class of symmetric pairs, first introduced in [Sek] that are now
commonly called nice symmetric pairs.

The pair (GL(V ), Sp(V )) is not a nice symmetric pair and additional meth-
ods are needed to study invariant distributions on the corresponding symmetric
space. For that, we use the theory of D -modules as in [AG4] and analysis of the
nilpotent cone of the pair in question, in order to prove the Gelfand property.
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In the non-archimedean case, the pair (GL2n, Sp2n) is a part of a list
(GL2n, Hk, ψk), k = 0, 1, ..., n , of twisted Gelfand pairs that provide a model in the
sense of [BGG] to the unitary representations of GL2n . Namely, every irreducible
unitarizable representation of GL2n appears exactly once in

⊕n
k=0 Ind

GL2n
Hk

(ψk)
(see [OS1],[OS2],[OS3]). Considering the strategy taken in those works, a major
first step in transferring these results to the archimedean case is taken in the
present paper. Indeed, recently, in [AOS] we use the results of the present work
to study uniqueness and disjointness for the archimedean analogues of the above
pairs.

1.3. Structure of the paper.
In section 2 we give some preliminaries on distributions, symmetric pairs and
Gelfand pairs. We introduce the notion of regular symmetric pairs and show that
Theorem 7.4.5 of [AG2] and the results of [Say1] allow us to reduce the Gelfand
property of the pair in question to proving that the pair is regular. In section 4
we prove the main technical result on distributions, Theorem 4.1. It states that
under certain conditions there are no distributions supported on non-distinguished
nilpotent orbits. The proof is based on the theory of D -modules. In section 5 we
use Theorem 4.1 to prove that the pair (GL(V ), Sp(V )) is regular.

1.4. Acknowledgements.
We thank Dmitry Gourevitch, Bernhard Krötz and Omer Offen for fruitful discus-
sions. Part of the work on this paper was done while the authors visited the Max
Planck Institute for Mathematics in Bonn. The visit of the first named author was
funded by the Bonn International Graduate School. The visit of the second named
author was partially funded by the Landau center of the Hebrew University.

2. Preliminaries

2.1. Nash Manifolds, Bundles.
We will use the theory of Schwartz functions and distributions as developed in
[AG1]. This theory is developed for Nash manifolds. Nash manifolds are smooth
semi-algebraic manifolds but in the present work only smooth real algebraic man-
ifolds are considered. Therefore the reader can safely replace the word Nash by
smooth real algebraic.

We remind that TX , the tangent bundle of the Nash manifold X , carries
a Nash structure. Furthermore, if Z ⊂ X is a Nash submanifold we denote by
NX
Z := (TX |Z)/TZ the normal bundle to Z in X . We also denote by CNX

Z :=
(NX

Z )∗ the co-normal bundle. For a point z ∈ Z we denote by NX
Z,z the normal

space to Z in X at the point z and by CNX
Z,z the co-normal space.

2.2. Schwartz distributions on Nash manifolds.
Schwartz functions are functions that decay, together with all their derivatives,
faster than any polynomial. On Rn it is the usual notion of Schwartz function.
For precise definitions of those notions we refer the reader to [AG1].

Let X be a Nash manifold and let S(X) be the Fréchet space of Schwartz
functions on X . We let S∗(X) := S(X)∗ be the space of Schwartz distributions on

http://arxiv.org/abs/0812.5063


140 Aizenbud and Sayag

X . More generally, for any Nash vector bundle E over X we denote by S(X,E)
the space of Schwartz sections of E and by S∗(X,E) its dual space.

For a smooth manifold X and Z ⊂ X a closed subset we denote by S∗X(Z)
the space of distributions on X supported in Z . Thus

S∗X(Z) := {ξ ∈ S∗(X)|Supp(ξ) ⊂ Z}.

More generally, for a locally closed subset Y ⊂ X we denote S∗X(Y ) := S∗
X\(Y \Y )

(Y ).

In the same way, for any bundle E on X we define S∗X(Y,E).

Lemma 2.1. For a Nash manifold X and an open Nash submanifold U ⊂ X ,
we have the following exact sequence

0→ S∗X(X \ U)→ S∗(X)→ S∗(U)→ 0.

For the proof see e.g. [AG1] Theorem 5.4.3.

Remark 2.2. The above sequence fail to be right exact when usual distributions
are considered.

2.3. Invariant distributions: Basic tools.
Given a group G acting on a space X we would like to study distributions on X
that are G equivariant. For this we employ a few standard techniques. For the
benefit of the reader we state the exact statements below with some commentary.

The first is a technique allowing the study of a equivariant distribution on
a space by using a stratification of the space. If X is a Nash manifold we say that
X =

⋃l
k=0Xk is a Nash stratification of X if Xi are Nash manifolds and

⋃r
k=0Xk

is open for 0 ≤ r ≤ l.

If G is a Nash group acting on X and the strata are G- invariant then we
say that the stratification is G-invariant.

Proposition 2.3. Let a Nash group G act on a Nash manifold X . Let Z ⊂ X
be a closed subset.

Let Z =
⋃l
i=0 Zi be a Nash G-invariant stratification of Z . Let χ be

a character of G. Suppose that for any k ∈ Z≥0 and 0 ≤ i ≤ l we have
S∗(Zi, Symk(CNX

Zi
))G,χ = 0. Then S∗X(Z)G,χ = 0.

This proposition immediately follows from Corollary B.2.4 in [AGS].

The next proposition is an analogue of 2.36 from [BZ]. It is called there
Frobenius reciprocity. It allows one to study invariant distributions on a space by
means of invariant distributions on a smaller space. More precisely,

Proposition 2.4 (Frobenius reciprocity). Let a Nash group G act transitively
on a Nash manifold Z . Let ϕ : X → Z be a G-equivariant Nash map. Let z ∈ Z .
Let Gz be its stabilizer. Let Xz be the fiber of z . Let χ be a character of G and
let χ′ = χ ·∆G|Gz ·∆−1Gz

where ∆H denotes the modular character of the group H.

Then S∗(X)G,χ is canonically isomorphic to S∗(Xz)
Gz ,χ′

http://arxiv.org/abs/0709.1273v3
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For proof see [AG2], Theorem 2.5.7.

The next lemma states the obvious fact that the Fourier transform of an
invariant distribution on V is invariant.

Let V be a vector space over R . Let B be a non-degenerate bilinear form
on V .

We define FB : S(V )→ S(V ) by the formula

FB(f)(v) =

∫
f(w)e2πiB(v,w)dw

Here dw is the self dual Haar measure on V with respect to B .

We also denote by FB : S∗(V )→ S∗(V ) the dual map.

For any Nash manifold M we also denote by FB : S∗(M×V )→ S∗(M×V )
the partial Fourier transform.

If there is no ambiguity, we will write FV , and sometimes just F , instead
of FB .

The next simple observation will be very useful so we record it as a lemma.

Lemma 2.5. Let V be a finite dimensional vector space over R. Let a Nash
group G act linearly on V . Let B be a G-invariant non-degenerate symmetric
bilinear form on V . Let M be a Nash manifold with an action of G. Let
ξ ∈ S∗(V ×M) be a G-invariant distribution. Then FB(ξ) is also G-invariant.

2.4. Singular support of distributions.
The Singular Support of a distribution ξ is a certain subvariety of the cotangent
bundle of X that is related to the support of the distribution and will be used
in the sequel. Here we give a brief review and the reader should consult [Bor] or
[AG4] Appendix B for more details.

We begin by recalling the definition of a D -module and the singular support
of a D -module.

Assume that X is a smooth affine algebraic variety defined over R and
consider the algebra D(X) of polynomial differential operators on X . On D(X)
there is a natural filtration by the order of the differential operator and the
associated graded algebra is isomorphic to O(T ∗(X)) the regular functions on
the cotangent bundle of X . Given a D(X)-module M certain filtrations F on
M are called good. One then consider the module GrF (M) over the commutative
algebra Gr(D(X)) = O(T ∗(X)). One can show that the support of this module is
a subvariety of T ∗(X) which is independent of the good filtration F . It is called
the singular support of the module M and denoted by SS(M).

Let X be a smooth algebraic variety. Let ξ ∈ S∗(X(R)). Let Mξ be the
DX -submodule of S∗(X(R)) generated by ξ . We denote by SS(ξ) ⊂ T ∗X the
singular support of Mξ (for the definition see [Bor]). We will call it the singular
support of ξ . In more concrete terms, let J = Ann(ξ) = {d ∈ D(X) : dξ = 0} be
the ideal in D(X) annihilating ξ , and let I ⊂ O(T ∗(X)) be the ideal generated
by the symbols of elements of J . Then SS(ξ) is the zero set of I .

Remark 2.6. (i) A similar, but not equivalent notion is sometimes called in
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the literature a ’wave front set of ξ ’.

(ii) In some of the literature different notations are used. Namely, sometimes
the expression singular support of a distribution is a subset of X not to be confused
with our SS(ξ) which is a subset of T ∗X. In those cases our notion is called there
characteristic variety.

Let X be a smooth algebraic variety. We denote by pX : T ∗X → X the

standard projection. Furthermore, for S ⊂ X we denote by S
Zar

its Zariski
closure in X . Below is a list of properties of the Singular support. Proofs can be
found in [AG4] section 2.3 and Appendix B.

Lemma 2.7. Let ξ ∈ S∗(X(R)). Then Supp(ξ)
Zar

= pX(SS(ξ)).

Lemma 2.8. Let an algebraic group G act on X . Let g denote the Lie algebra
of G. Let ξ ∈ S∗(X(R))G(R) . Then

SS(ξ) ⊂ {(x, φ) ∈ T ∗X | ∀α ∈ gφ(α(x)) = 0}.

For the next lemma we need some further notations. Let (V,B) be a
quadratic space. Let X be a smooth algebraic variety. Consider B as a map
B : V → V ∗ . Identify T ∗(X×V ) with T ∗X×V ×V ∗ . We define FV : T ∗(X×V )→
T ∗(X × V ) by FV (α, v, φ) := (α,−B−1φ,Bv).

Lemma 2.9. Let (V,B) be a quadratic space. Let Z ⊂ X × V be a closed
subvariety, invariant with respect to homotheties in V . Let ξ ∈ S∗(X × V ) and
suppose that Supp(ξ) ⊂ Z(R). Then SS(FV (ξ)) ⊂ FV (p−1X×V (Z)).

The integrability Theorem

We recall the notion of co-isotropic subvariety in the context of algebraic varieties.

Definition 2.1. Let M be a smooth algebraic variety and ω be a symplectic
form on it. Let Z ⊂M be an algebraic subvariety. We call it M -co-isotropic if
one of the following equivalent conditions holds.

1. The ideal sheaf of regular functions that vanish on Z is closed under Poisson
bracket.

2. At every smooth point z ∈ Z we have TzZ ⊃ (TzZ)⊥ . Here, (TzZ)⊥ denotes
the orthogonal space to (TzZ) in (TzM) with respect to ω .

3. For a generic smooth point z ∈ Z we have TzZ ⊃ (TzZ)⊥ .

If there is no ambiguity, we will call Z a co-isotropic variety.

http://arxiv.org/abs/0808.2729v1
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Note that every non-empty M -co-isotropic variety is of dimension at least
1
2

dim(M).

Finally, the following is a corollary of the integrability theorem ([KKS],
[Mal], [Gab]):

Theorem 2.10. Let X be a smooth algebraic variety. Let ξ ∈ S∗(X(R)). Then
SS(ξ) is co-isotropic with respect to the standard symplectic form.

3. Gelfand pairs and invariant distributions

In this section we recall a technique due to Gelfand and Kazhdan (see [GK]) which
allows to deduce statements in representation theory from statements on invariant
distributions. For more detailed description see [AGS], section 2.

Let G be a reductive group. By an admissible representation of G(R) we
mean an admissible smooth Fréchet representation of moderate growth of G(R)
as in [Wa2] 11.5.

We denote by Rep(G) the category of admissible smooth Fréchet represent-
ations of moderate growth of G(R). By the theorem of Casselman-Wallach this
category is equivalent to the category of Harish-Chandra modules. The latter
category admits a natural duality. Shifting this duality to Rep(G), we denote

for an admissible smooth Fréchet representation E ∈ Ob(Rep(G)) by Ẽ the dual
Frechet representation. The next definition for Gelfand Pair was introduced in
[AGS]. It follows the spirit of [Gro] who used a similar definition for the p-adic
case.

Definition 3.1. Let H ⊂ G be a pair of reductive groups. We say that (G,H)
is a Gelfand Pair if for any irreducible admissible smooth Fréchet representation
(π,E) of G we have

dimHomH(R)(E,C) ≤ 1.

Remark 3.1. In the literature different notions for Gelfand pairs were studied
both in the real and in the p-adic case, e.g. [vD, BvD]. On some of these and
their interconnection see [AGS].

We will use the following theorem from [AGS] which is a version of a classical
theorem of Gelfand and Kazhdan.

Theorem 3.2. Let H ⊂ G be reductive groups and let τ be an involutive anti-
automorphism of G and assume that τ(H) = H . Suppose τ(ξ) = ξ for all bi
H(R)-invariant distributions ξ on G(R). Then for any irreducible admissible
smooth Fréchet representation (π,E) of G we have

dimHomH(R)(E,C) · dimHomH(R)(Ẽ,C) ≤ 1

Furthermore, if G = GLn and H ⊂ GLn is transpose invariant subgroup then
(GLn, H) is a Gelfand pair.
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For proof see [AGS], section 2.

Consider now Theorem B, namely that (GL2n(R), Sp2n(R)) is a Gelfand
Pair. Applying 3.2) with τ(g) = gt we see that it is a direct consequence of
Theorem A regarding invariant distributions.

3.1. Symmetric pairs.
In this subsection we review some tools developed in [AG2] that enable to prove
that, granting certain hypothesis, that a symmetric pair is a Gelfand pair.

A symmetric pair is a triple (G,H, θ) where H ⊂ G are reductive groups,
and θ is an involution of G such that H = Gθ . In cases when there is no ambiguity
we will omit θ

For a symmetric pair (G,H, θ) we define an anti-involution σ : G→ G by
σ(g) := θ(g−1), denote g := Lie(G), h := Lie(H), q := {X ∈ g|θ(X) = −X} .
Note that H acts on q by the adjoint action.

Denote also Gσ := {g ∈ G|σ(g) = g} and define a symmetrization map
s : G(R)→ Gσ(R) by s(g) := gσ(g).

It is well known, and easy to verify, that he symmetrization map s : G→ Gσ

is submersive and hence open.

Let V be an algebraic finite dimensional representation over R of a reduc-
tive group L . Since L is reductive, the subspace V L = {v ∈ V : gv = v,∀g ∈ L}
has a canonical complement

V = V L ⊕ Ve.
Thus, Ve is the subspace of V where L acts effectively.

Let (G,H, θ) be a symmetric pair. We apply the previous notation for the
action of H on q . Thus the effective piece of q will be denoted by qe .

We denote by NG,H the subset of all the nilpotent elements in qe . Denote
RG,H := qe −NG,H .

Remark 3.3. Our notion of RG,H coincides with the notion R(q) used in
[AG2], Notation 2.1.10. This follows from Lemma 7.1.11 in [AG2].

A theorem of Kostant and Rallis

We will also need the following Proposition, whose proof is based on [KR]. We
include the proof for the benefit of the readers.

Proposition 3.4. Let π : q → Spec(O(q)H) be the projection, where O(q)
denote the space of regular functions on the algebraic variety q.

1. Then Spec(O(q)H) is an affine space.

2. Let x ∈ NG,H be a smooth point. Then Ker(dxπ) = Tx(NG,H).

3. Let x ∈ NG,H be a smooth point. Then π submersive at x.

4. Let U be the set of smooth points in NG,H . Let b = π(0). Then

N qe
U
∼= U × Tb(Spec(O(q)H))

http://arxiv.org/abs/0709.1273v3
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Proof. 1 follows from [Ser] (see p. 21 in [KR]). For 2 let I = {f ∈ O(q)H :
f(0) = 0} and J be the ideal in O(q) generated by I. By Theorem 14 of [KR],
J is a radical ideal. We now show, using the Nullstellensatz, that

Ker(dxπ) = Tx(NG,H).

Indeed,

Tx(NG,H) =
⋂

{f∈O(q)|f(NG,H)=0}

Ker(dxf) =
⋂

f∈rad(J )

Ker(dxf) =

⋂
f∈J

Ker(dxf) =
⋂
f∈I

Ker(dxf) = Ker(dx(π)).

We now prove 3. By Theorem 3 of [KR], for any such x

dimTx(NG,H) = dim(NG,H) = dim(q)− dim(Spec(O(q)H)).

Thus,
dim(Im(dxπ)) = dim(Spec(O(q)H)).

This proves that π is submersive at x . For 4 note that for any x ∈ U ,
dxπ sets up an isomorphism between dxπ : Tx(qe)/Tx(NG,H)→ Tb(Spec(O(q)H)).
Thus,

N qe
U = T (qe)|U/T (U) ∼= U × Tb(Spec(O(q)H)).

Gelfand property of symmetric pairs

The Gelfand Kazhdan criterion allow us to verify the Gelfand property of a pair
(G,H) provided that we have an anti-automorphism of G satisfying certain prop-
erties. In the case of a symmetric pair an obvious choice for such an automorphism
is σ and we are led to the following notion.

Definition 3.2. We say that a symmetric pair (G,H, θ) is a Gelfand-Kazhdan
pair (for short GK pair) if any H(R)×H(R) - invariant distribution on G(R) is
σ -invariant.

An obvious obstruction to a symmetric pair being a GK pair is the existence
of closed orbit supporting an invariant distribution which is not σ invariant. Thus
the following definition allows us to concentrate on those pairs that have a chance
to be GK pairs.

Definition 3.3. We call a symmetric pair (G,H, θ) good if for any closed
H(R)×H(R) orbit O ⊂ G(R), we have σ(O) = O .

We define an involution θ : GL2n → GL2n by

θ(x) = Jx−tJ−1 (1)

http://www.jstor.org/view/00029327/di994396/99p0264d/0
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where

J =

(
0n Idn
−Idn 0n

)
. (2)

Note that (GL2n, Sp2n, θ) is a symmetric pair.

Theorem A can be rephrased in the following way:

Theorem A’. The pair (GL2n, Sp2n) defined over R is a GK pair.

In what follows we recall a technique to verify the GK property of a sym-
metric pair.

Descendants of symmetric pairs

Proposition 3.5. Let (G,H, θ) be a symmetric pair. Let g ∈ G(R) such that
HgH is closed. Let x = s(g). Then x is semisimple.

This result is implicit in [KR]. For this specific statement see [AG2],
Proposition 7.2.1.

Definition 3.4. In the notations and assumptions of the previous proposition
we will say that the pair (Gx, Hx, θ|Gx) is a descendant of (G,H, θ). Here Gx (and
similarly for H ) denotes the stabilizer of x in G .

In [Sek] this is called a sub-symmetric pair.

Regular symmetric pairs

An important notion that we use here is that of a regular symmetric space. To
introduce it we first introduce a class of elements in G , that were called admissible
in [AG2]. These elements provide additional symmetries of the symmetric space
and the regularity condition is satisfied if these elements preserve H -invariant
distributions on q . We now recall the definitions from [AG2].

Definition 3.5. Let (G,H, θ) be a symmetric pair. We call an element g ∈
G(R) admissible if
(i) Ad(g) commutes with θ (or, equivalently, s(g) ∈ Z(G)).
(ii) Ad(H)|q ⊂ 〈Ad(H), Ad(g)〉|q is of index at most 2. Both are considered as
subgroups in Aut(q)
(iii) For any closed Ad(H) orbit O ⊂ q we have Ad(g)O = O .

We are now able to introduce the notion of regularity

Definition 3.6. We call a symmetric pair (G,H, θ) regular if for any ad-
missible g ∈ G(R) such that every H(R)-invariant distribution on RG,H is also
Ad(g)-invariant, we have
(*) every H(R)-invariant distribution on qe is also Ad(g)-invariant.
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Clearly, the product of regular pairs is regular (see [AG2], Proposition 7.4.4).

We will deduce Theorem A’ (and hence Theorem A) from the following
Theorem:

Theorem C. The pair (GL2n, Sp2n) defined over R is regular.

The deduction is based on the following theorem (see [AG2], Theorem
7.4.5.):

Theorem 3.6. Let (G,H, θ) be a good symmetric pair such that all its descen-
dants (including itself) are regular. Then it is a GK pair.

Corollary 3.7. Theorem C implies Theorem A.

Proof. The pair (GL2n, Sp2n) is good by Corollary 3.1.3 of [Say1]. In [Say1]
it is shown that all the descendance of the pair (GL2n, Sp2n) are products of pairs
of the form (GL2m, Sp2m) and ((GL2m)C/R, (Sp2m)C/R), here GC/R denotes the
restriction of scalars (in particular GC/R(R) = G(C)). By Corollary 3.3.1. of
[Say1] the pair ((GL2m)C/R, (Sp2m)C/R) is regular. Now clearly Theorem C implies
Theorem A’ and hence Theorem A.

4. Invariant distributions supported on non-distinguished nilpotent
orbits in symmetric pairs

For this section we fix a symmetric pair (G,H, θ).

Definition 4.1. We say that a nilpotent element x ∈ q is distinguished if

gx ∩ qe ⊂ NG,H

Theorem 4.1. Let A ⊂ NG,H be an H -invariant closed subset and assume that
all elements of A are non-distinguished. Let W = S∗q (A)H . Then W ∩F(W ) = 0.

Remark 4.2. We believe that the methods of [SZ] allow to show the same result
without the assumption of H -invariance.

The proof is based on the following proposition:

Proposition 4.3. Let A ⊂ NG,H be an H -invariant closed subset and assume
that all elements of A are non-distinguished. Denote by

B = {(α, β) ∈ A× A : [α, β] = 0} ⊂ qe × qe.

Identify T ∗(qe) with qe × qe. Then there is no non-empty T ∗(qe)-co-isotropic
subvariety of B .

Proof. It follows from [KR] that H has finitely many orbits on NG,H . Stratify

http://arxiv.org/abs/0812.5063
http://arxiv.org/abs/0812.5063
http://www.jstor.org/view/00029327/di994396/99p0264d/0
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A by its orbits O1, ...,Or . Namely,
⋃k
j=1Oj is open in A for any k = 1, ..., r . Let

Zi =
⋃r
j=iOj . Let C ⊂ B be a co-isotropic subvariety of B .

We will show by induction on i that C ⊂ (Zi × A) ∩ B. For i = 1 this is
clear and the inductive step requires to show that C ∩ (Oi×A)∩B = ∅ . For this,
it is enough to show that p−1(Oi) ∩ B does not include a non empty co-isotropic
subvariety.

Let O = Oi. Let NO be the conormal bundle to O considered as a subset
of qe × qe. Note that dim(NO) = dim(qe) and

NO = {(a, b) ∈ O × qe|∀H ∈ h we have 〈Ha, b〉 = 0} =

{(a, b) ∈ O×qe|∀H ∈ h we have 〈H, [a, b]〉 = 0} = {(a, b) : a ∈ O, b ∈ qe, [a, b] = 0}.

Since O is not distinguished, for any x ∈ O the variety p−1(x) ∩ B ⊂
p−1(x) ∩NO is a closed proper subvariety. Hence dim(p−1(O) ∩B) < dim(qe)

Thus p−1(O) ∩ B can not contain a co-isotropic subvariety. This finishes
the proof.

Proof. [Proof of Theorem 4.1] For ξ ∈ W ∩ F(W ) we will show that SS(ξ),
the singular support of ξ , is contained in B , where B is defined as in proposition
4.3 above. By the integrability theorem [Gab] the singular support is co-isotropic
and hence by Proposition 4.3 it is empty. This will finish the proof.

Recall that SS(ξ) ⊂ T ∗(qe) ∼= qe × qe .

Consider the projection pr : qe × qe → qe. Then pr(SS(ξ)) is the Zariski
closure of Supp(ξ) ⊂ A (see section 2.4). Thus, SS(ξ) ⊂ A× qe .

Since Supp(Four(ξ)) ⊂ A and A is homogenous we obtain SS(ξ) ⊂ A×A
(see section 2.4). Since ξ is H -invariant we conclude that

SS(ξ) ⊂ {(a, b) ∈ T ∗(qe)|〈Xa, b〉 = 0,∀X ∈ g}.

However the later set is, under our identification equals to
{(a, b) ∈ qe × qe : [a, b] = 0}

We conclude that SS(ξ) ⊂ B and the proof is complete.

5. Regularity of the pair (GL2n, Sp2n)

In this section we prove the main result of the paper:

Theorem C. The pair (GL2n, Sp2n) defined over R is regular.

For the rest of this section we let (G,H) be the symmetric pair (GL2n(R), Sp2n(R)).

Remark 5.1. In our case there is one non trivial admissible element up to the

action of Z(G)H , namely, the element α =

(
0n Idn
Idn 0n

)
. Thus the regularity

condition needs to be verified only for this element.

Our argument below will not use this fact.



Aizenbud and Sayag 149

To show regularity we analyze the geometry of nilpotent orbits.

5.1. H orbits on q.

Proposition 5.2. There exists a unique distinguished H -orbit in NG,H(R).
This orbit is open in NG,H(R) and invariant with respect to any admissible g ∈ G.

For the proof we will use the following Proposition (this is Proposition 2.1
of [GG]):

Proposition 5.3. Let F be an arbitrary field. For x ∈ GLn(F ) define

γ(x) =

(
x 0
0 In

)
Then γ induces a bijection between the set of conjugacy classes in GLn(F )

and the set of orbits of Sp2n(F )× Sp2n(F ) in GL2n(F ).

Corollary 5.4. Let d : gln → q be defined by

d(X) =

(
X 0
0 X t

)
.

Then d induces a bijection between nilpotent conjugacy classes in gln and H orbits
in NG,H .

Proof.

Let s : GL2n → GLσ2n be given by s(g) = gσ(g). Let W = s(GL2n(R)). By
Proposition 5.3, the map s ◦ γ induces a bijection between conjugacy classes in
GLn(R) and H orbits on W.

Let e : N → GLn be given by e(X) = 1 + X where N is the cone of
nilpotent elements in gln. Let ` : W → q given by `(w) = w − 1.

Then, it is easy to see that the map d|N : N → NG,H coincides with the
composition ` ◦ s ◦ γ ◦ e. The map ` ◦ s ◦ γ ◦ e : N → q defines an injection of the
set of orbits N /Ad(GL2n) into q/H.

We first show that `(W ) ⊃ NG,H .
Indeed, since the symmetrization map is open the set W = s(GL2n(R))

is open and thus `(W ) is open. Since 0 ∈ `(W ) is conjugation invariant it must
contains all nilpotent elements. Thus `◦s◦γ surject onto nilpotent orbits. Finally,
to show that ` ◦ s ◦ γ is surjective onto the nilpotent orbits we note that whenever
` ◦ s ◦ γ(u) ∈ NG,H we must have u unipotent.

We are now ready to prove the proposition.

Proof. [Proof of Proposition 5.2] It is easy to see that if X is non regular
nilpotent then d(X) is not distinguished. Also, a simple verification shows that if
X = Jn is a standard Jordan block then d(Jn) is distinguished. The invariance of
C = Ad(H)d(Jn) with respect to admissible elements follows from the uniqueness.
Thus we only need to show that C is open in NG,H . For this we will show that
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C is dense in NG,H . Indeed, C ⊃ d(Ad(GLn)Jn) = d(N ), where N is the set
of nilpotent elements in gln. But C is Ad(H)-invariant and this implies that
C = NG,H

5.2. Proof of Theorem C.
Let A be the union of all non-distinguished elements. Note that A is closed.

We first prove

Proposition 5.5. Let g ∈ G be an admissible element. Let ξ be any H -
invariant distribution on qe which is anti-invariant with respect to Ad(g). Assume
Supp(ξ) ⊂ NG,H , then Supp(ξ) ⊂ A.

Proof. Let O0 ⊂ NG,H be the distinguished orbit. Let H̃ = 〈Ad(H), Ad(g)〉
be the group of automorphisms of qe generated by the adjoint action of H and g .
Let χ be the character of H̃ defined by χ(H̃ −H) = −1. We need to show

S∗qe(O0)
H̃,χ = 0

By Proposition 2.3 it is enough to show

S∗(O0, Sym
k(CN qe

O0
))H̃,χ = 0

Notice that H̃ acts trivially on Spec(O(qe)
H). Hence, by Proposition 3.4 item 4,

the bundle N qe
O0

is trivial as a H̃ bundle. This completes the proof.

Using the Proposition we can now deduce Theorem C.

Indeed, let g ∈ G be an admissible element.

Assume that any distribution ξ on RG,H which is H -invariant is also Ad(g)-
invariant.

We have to show that any H -invariant distribution on qe that is anti
invariant with respect to Ad(g) is zero.

Let η be such a distribution. Since its restriction to RG,H is still H -
invariant it must be, by our assumptions, Ad(g)-invariant and anti Ad(g)-invariant
and hence zero. We conclude that η is supported in NG,H . Thus, by Proposition
5.5 it is supported in A . Similarly, Four(η) is also supported in A and η is
H -invariant. Thus, by theorem 4.1 we obtain η = 0. This complete the proof.
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