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Abstract. The aim of this paper is to present a new character formula for
finite-dimensional representations of finite-dimensional complex semisimple Lie
algebras and compact semisimple Lie Groups. Some applications of the new
formula include the exact determination of the number of weights in a repre-
sentation, new recursion formulas for multiplicities and, in some cases, closed
formulas for the multiplicities themselves.
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1. Introduction

The effective determination of the characters of the compact semisimple Lie groups
is a subject that probably goes back to the early 20th century and was mainly car-
ried out by Hermann Weyl. As he narrated in his book [12] on the Classical
Groups, he had succeeded in determining the character of all semi-simple continu-
ous groups by means of a combination of the analytical methods developed earlier
by Elie Cartan and Issai Schur. Later, in collaboration with Richard Brauer, he
pursued the task of deriving the most fundamental results by means of purely
algebraic methods, which culminated in the works of Hans Freudental [3], albeit
his algebraic results seemed less elegant and less intuitive than the analytic ones.
The main tool for most of the character-related works have since been the Weyl
Character Formula [4, Theorem 24.3].

Using Weyl’s formula one can conceivably compute the character of any
semisimple Lie group, at the expense of carrying out a complicated “division”,
so it is perhaps not the most suitable for practical computations. It is, however,
a beautiful and most useful theoretical statement, whose applications extend far
beyond that of simply computing the characters.

Here is a brief list of the previously known character formulas other than
Weyl’s: Freudenthal’s [3] formula , Kostant’s [6] formula, Littelmann’s [8] root
and path operators, and Sahi’s [9] formula. We shall not be discussing here the
strengths and weaknesses of each of these formulas, which seem to be quite powerful
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and elegant on their own. It is important to acknowledge that Freudenthal’s
formula has shown to be adequate for computer implementation and has been
used by many computer algebra systems and in the determination of long character
tables [1], although it is not optimal for this task. In our Ph.D. thesis [10] we have
shown this fact and that Sahi’s formula is optimal in a precise sense.

We do not intend to qualify our formula to belong to this select list, but
merely to report its discovery, provide a simple proof, and discuss some of its
intriguing consequences and applications. We focus on the following: new recursion
formulas for the multiplicities, the counting of the weights in a representation,
and obtaining closed formulas for the multiplicities themselves. It is interesting to
notice that in our formula, the prevalent role is played not by the simple roots, but
by the positive non-simple ones, which suggests that the inherent combinatorics
might be simpler than that which uses all of the positive roots.

The rest of this section is used only to establish the notation, most of which
appears to be standard, so it may be skipped by an experienced reader, except
perhaps for Definitions 1.1 through 1.4, where we introduce the signed character
and the girdle.

Let g be a complex simple Lie algebra of rank n over C , h a Cartan
subalgebra of g , h∗ its dual space, R the root system of g in h∗ , ∆ = {α1, . . . , αn}
a choice of simple roots in R , R+ the positive roots, and R− = −R+ the negative
roots. The R-span of ∆ in h∗ is an Euclidean space E where a symmetric non-
degenerate bilinear form 〈 , 〉 on E can be chosen up to a scalar factor to be the
Killing form of h . The elements of E are called weights. As usual, we define the
root lattice Q of g as the Z-span of ∆ in E and define the the co-roots α∨ as
2α/〈α, α〉 for each α in R . The weights ω1, . . . , ωn in E defined by 〈ωi, α∨j 〉 = δij ,
where δij is the Kronecker delta, are called fundamental weights of g and their
Z-span is a lattice P in E called the weight lattice of g . This contains Q as a
sublattice of finite index, known as the index of connection, which is equal to the
determinant d of the Cartan matrix C = [〈αi, α∨j 〉] . The subset P+ of P whose
weights λ satisfy 〈λ, α∨〉 ≥ 0 for all α in R forms a “convex cone” in P called
the cone of dominant weights. All weights λ in P are such that 〈λ, α∨〉 ∈ Z for
all α in R and thus are called integral. The weight lattice is partially ordered
by the dominance partial order: µ ≤ λ if and only if λ − µ is a sum (possibly
zero) of positive roots. The Weyl group W of R is defined as the subgroup of
GL(E) generated by the reflections sα(λ) = λ − 〈λ, α∨〉α for α ∈ R . It can be
shown that W is a Coxeter group generated only by the simple reflections sαi ,
i = 1, 2, . . . , n , and each element in w in W has as well-defined length, namely
the length of a shortest expression of w in terms of the simple generators sαi . All
these definitions can be found for instance in [5] or [4].

For each dominant integral weight λ , the irreducible representation V λ of
highest weight λ is finite dimensional and its weights form a saturated subset P λ

of P in the sense of [4, §13.4]. In particular, this means P λ is finite and invariant
under W . Let C[P ] be the group algebra with basis eµ for all µ in P , where
eµ denotes the function t 7→ et〈µ,ρ〉 and ρ is equal to one half the sum of all the
positive roots. The action of W on P extends naturally to an action on C[P ] via
w · eµ = ew(µ) , for all w in W , so C[P ] becomes a W -module.
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We define the (formal) character of V λ as the sum

χλ =
∑
µ∈Pλ

mλ(µ)eµ,

where the coefficient mλ(µ) is the multiplicity of the weight µ in the representation
V λ , i.e. the dimension of the weight space

V λ(µ) = {v ∈ V λ |h · v = µ(h)v, for all h in h}.

The main purpose of a character formula is providing a means of computing the
multiplicities without constructing V λ explicitly. Our formula will accomplish this
in a way that is significantly different from what has been done before. The most
important character formula is probably the Weyl Character Formula [4, §24.3]:∑

w∈W

(−1)l(w)ew(ρ) χλ =
∑
w∈W

(−1)l(w)ew(λ+ρ), (1)

which is valid for all dominant integral λ . We shall abbreviate this simply by
WCF.

In order to express our formula conveniently, we shall extend the usual
notions of character and multiplicity and introduce an auxiliary element in C[P ] .

Definition 1.1. For each weight λ , let wλ be the unique shortest Weyl group
element such that wλ(λ+ ρ) is dominant. We define λ = wλ(λ+ ρ)− ρ .

This means λ = λ when λ is dominant for, in that case, wλ = 1. If λ + ρ
is regular, that is, if 〈λ+ ρ, α〉 6= 0 for all α ∈ R , then λ is dominant.

Definition 1.2. For any weight λ let

ελ =

{
(−1)l(wλ), if λ+ ρ is regular
0, otherwise

Definition 1.3. Let the signed character be

χ̃λ = ελχλ.

Here we observe that if λ is dominant, then χ̃λ = χλ is just the usual
character. Otherwise χ̃λ is equal to plus or minus the character χλ when λ+ ρ is
regular, or zero when λ+ ρ is not regular.

The coefficients m̃λ(µ) in χ̃λ are equal to ελmλ(µ) and also coincide with
the usual multiplicities when λ is dominant. In any case, it is clear that m̃λ(µ) = 0

if µ 6∈ P λ or λ+ ρ is not regular.

Definition 1.4. For each λ ∈ P+ we define the girdle as the following element
in C[P ] :

Θλ =
∑
µ∈Pλ

eµ.

The girdle is the characteristic function of the (finite) set P λ .
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It is well known that for a dominant integral λ the set P λ is finite, invariant
under the action of the Weyl group W and each dominant µ ∈ P λ satisfies µ ≤ λ ,
hence the girdle belongs to the algebra of W -invariant functions C[P ]W along with
the formal characters and can be expressed unquely as a Z-linear combination of
the irreducible characters [4, §22.5]. Hence

Θλ =
∑
µ≤λ

cλµχµ, (2)

where the sum is over all dominant weights µ ∈ P λ and cλµ ∈ Z . However, since
mλ(λ) = 1 [4, Theorem 20.2], we can write

Θλ = χλ +
∑
µ<λ

cλµχµ. (3)

Our main result, Theorem 2.1, provides explicit values for the coefficients
cλµ , which can be computed from the combinatorics of the positive non-simple
roots R+\∆. We will denote these roots simply by ∆′ .

The combinatorics of ∆′ . For any subset Φ of the vector space E , let
〈Φ〉 denote the sum of all the elements in Φ, and for each subset Φ of ∆′ , let FΦ

be the collection of all subsets Ψ of ∆′ such that 〈Ψ〉 = 〈Φ〉 . We can partition
FΦ into F0

Φ and F1
Φ according to whether the subsets in each one contain an even

or odd number of elements respectively. The number c〈Φ〉 = |F0
Φ| − |F1

Φ| is the
difference between the number of all possible ways of writing 〈Φ〉 as an even sum
of roots in ∆′ and the number of all possible ways of writing 〈Φ〉 as an odd sum of
roots in ∆′ without repetitions. Let F be the union of all 〈Φ〉 for all non-empty
subsets Φ of ∆′ .

For instance, for Lie the algebra A2 , we have ∆′ = F = {α1 + α2} and
cα1+α2 = −1. For B2 , we have ∆′ = {α1 + α2, α1 + 2α2} , F = {α1 + α2, α1 +
2α2, 2α1 + 3α2} , cα1+α2 = −1, so cα1+2α2 = −1 and c2α1+3α2 = 1, and so on.

A2 A3 A4 A5 A6 A7 A8

1 7 45 371 3943 53173 860833

B2 B3 B4 B5 B6 B7 B8

3 37 531 11147 299253 9985765 395408447

C4 C5 C6 C7 C8

527 11023 294347 9748655 383324695

D4 D5 D6 D7 D8

121 2429 65805 2190955 87435085

G2 F4 E6 E7

11 4781 272217 86643209

Table 1: Size of the set F for lower-rank semisimple Lie algebras

A generating function for the c〈Φ〉 . Let us consider the product∏
α∈∆′

(1− e−α). (4)
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By multiplying out its factors and using the above definitions for 〈Φ〉 and c〈Φ〉 ,
we can rewrite it as ∏

α∈∆′

(1− e−α) = 1 +
∑

Φ

(−1)|Φ|e−〈Φ〉, (5)

where the summation is over all nonempty subsets Φ of ∆′ . Then, by factoring
out the terms in e〈Φ〉 , we get∏

α∈∆′

(1− e−α) = 1 +
∑
〈Φ〉∈F

c〈Φ〉e
−〈Φ〉. (6)

Thus, (4) is a generating function for the numbers c〈Φ〉 .

An upper bound for the number of terms on the right-hand side of (6) is
obviously 2|∆

′| , but by carrying out explicit expansions of (4) we have noticed
the actual number of terms is much smaller, as can be seen on Table 1 for all
semisimple Lie algebras of rank less than or equal to 8, except for E8 , which is
not listed.

2. Main Result

Let ελ , χ̃λ , cλµ and c〈Φ〉 be as in the introduction. The following statement is our
main result. It provides explicit values for the coefficients cλµ and states that the
matrix (cλµ) is triangular.

Theorem 2.1 (New Character Formula). If λ is a dominant integral weight
then the following identity holds:

χλ +
∑
〈Φ〉∈F

c〈Φ〉χ̃λ−〈Φ〉 = Θλ. (7)

Furthermore, for each 〈Φ〉 ∈ F such that χ̃λ−〈Φ〉 6= 0, we have λ− 〈Φ〉 < λ.

Equation (7) will follow at once from Theorems 2.3 and 2.4 below. These
and the triangularity statement above will be proved in Section 4.

Although the coefficients c〈Φ〉 in (7) can be negative, it is interesting to
notice that:

Theorem 2.2. If λ is dominant integral, then

χλ = Θλ +
∑
µ<λ

dλµΘµ (8)

where the dλµ are nonnegative integers and µ runs over the dominant integral
weights smaller than λ.

The fact that the dλµ are nonnegative follows from the fact that the Θµ in
(8) are distinct and µ occurs with multiplicity equal to 1 in χµ , and each coefficient
in Θλ is equal to 1.
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Algebra Character Formula
A2 χλ = Θλ + χ̃λ−ρ
B2 χλ = Θλ + χ̃λ−α1−α2 + χ̃λ−α1−2α2 − χ̃λ−2α1−3α2

G2 χλ = Θλ + χ̃λ−α1−α2 + χ̃λ−2α1−α2 + χ̃λ−3α1−α2

− χ̃λ−4α1−2α2 − χ̃λ−4α1−3α2 − χ̃λ−5α1−2α2

− χ̃λ−5α1−3α2 + χ̃λ−6α1−4α2 + χ̃λ−7α1−4α2

+ χ̃λ−8α1−4α2 − χ̃λ−9α1−5α2

A3 χλ = Θλ + χ̃λ−α2−α3 + χ̃λ−α1−α2 + χ̃λ−α1−α2−α3

− χ̃λ−α1−2α2−α3 − χ̃λ−α1−2α2−2α3

− χ̃λ−2α1−2α2−α3 + χ̃λ−2α1−3α2−2α3

B3 χλ = Θλ + χ̃λ−α2−α3 + χ̃λ−α1−α2 + χ̃λ−α2−2α3 + χ̃λ−α1−α2−α3

+ χ̃λ−α1−α2−2α3 − χ̃λ−α1−2α2−α3 − χ̃λ−2α2−3α3

− χ̃λ−α1−2α2−2α3 − χ̃λ−2α1−2α2−α3 − 2χ̃λ−α1−2α2−3α3

− χ̃λ−2α1−2α2−2α3 − χ̃λ−α1−2α2−4α3 − χ̃λ−2α1−2α2−3α3

+ χ̃λ−2α1−3α2−3α3 + χ̃λ−α1−3α2−5α3 + χ̃λ−2α1−3α2−4α3

+ χ̃λ−2α1−4α2−3α3 + χ̃λ−3α1−3α2−3α3 + χ̃λ−α1−4α2−5α3

+ χ̃λ−2α1−3α2−5α3 + χ̃λ−2α1−4α2−4α3 + χ̃λ−3α1−4α2−3α3

+ χ̃λ−2α1−4α2−5α3 − χ̃λ−2α1−5α2−5α3 − χ̃λ−3α1−5α2−4α3

− χ̃λ−2α1−5α2−6α3 − 2χ̃λ−3α1−5α2−5α3 − χ̃λ−2α1−5α2−7α3

− χ̃λ−3α1−5α2−6α3 − χ̃λ−4α1−5α2−5α3 − χ̃λ−3α1−5α2−7α3

+ χ̃λ−3α1−6α2−6α3 + χ̃λ−3α1−6α2−7α3 + χ̃λ−4α1−6α2−6α3

+ χ̃λ−3α1−6α2−8α3 + χ̃λ−4α1−6α2−7α3 − χ̃λ−4α1−7α2−8α3

Table 2: The character formulas for the lower-rank semisimple Lie algebras

Due to the triangularity, we can use (3) to effectively compute any character
χλ recursively. Table 2 lists the character formulas for the first few lower-rank
complex semisimple Lie algebras.

Theorem 2.3. Let λ be a dominant integral weight. Then, the following iden-
tity holds true: ∑

w∈W

w · eλ∏
α∈∆(1− e−α)

= Θλ. (9)

Theorem 2.4. If λ is a dominant integral weight, then the following identity
holds true: ∑

w∈W

w · eλ∏
α∈∆(1− e−α)

= χλ +
∑
〈Φ〉∈F

c〈Φ〉χ̃λ−〈Φ〉. (10)

The exact meaning of equations (9) and (10) depend on a certain expansion
convention which will be discussed in Section 4.

3. Applications

Recursions for the multiplicities. It is a straightforward consequence of our
main theorem the existence of new recursion formulas for the multiplicities:
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Corollary 3.1 (Recursion Formula for the Multiplicities). If λ is a dominant
integral weight and µ is any weight in P λ , then

mλ(µ) = 1−
∑
〈Φ〉∈F

c〈Φ〉m̃λ−〈Φ〉(µ). (11)

This not only provides an effective means for computing the multiplicities
mλ(µ) recursively, but also the possibility of obtaining closed formulas for the
multiplicities themselves in certain cases. This possibility will be addressed below.

Counting the weights in a representation. The next corollary is
probably the first known closed formula for the number of weights in P λ .

Corollary 3.2. If λ is a dominant integral weight, then

|P λ| = dimV λ +
∑
〈Φ〉∈F

ελ−〈Φ〉c〈Φ〉 dimV λ−〈Φ〉. (12)

Furthermore, if λ = (m1, . . . ,mn) is expressed in the weight basis then |P λ| is a
polynomial in the m1, . . . ,mn .

Here we are adopting the convention that V λ = 0 when λ+ρ is not regular.
Otherwise λ is dominant integral and dimV λ makes sense.

Proof. Recall that if λ is dominant integral, an important consequence of the
WCF is that

dimV λ =
∏
α∈R+

〈α, λ+ ρ〉
〈α, ρ〉

. (13)

This follows from the WCF by regarding eµ as the complex function t 7→ et〈µ,ρ〉

and passing to the limit as t → 0. Applying the same procedure to equation (7)
and using the WCF we obtain the result (12).

It is easy to see that (12) is a in fact polynomial in the m1,m2, . . . ,mn ,
since (13) is clearly a polynomial expression in these indeterminates. It is perhaps
less obvious that the degree of (12) will actually be equal to n . This will follow
from the next corollary, which expresses the number of weights in P λ in terms of
the k -th Todd polynomial. This is the homogeneous polynomial Tk given by the
expansion of the generating function∏

i≥1

txi
1− e−txi

=
∞∑
k=0

Tk(x1, x2, . . .)t
k (14)

Corollary 3.3. If λ is a dominant integral weight, then

|P λ| =
∑
w∈W

1∏n
i=1〈ρ, wαi〉

n∑
j=0

〈ρ, wλ〉j

j!
Tn−j(〈ρ, wα1〉, . . . , 〈ρ, wαn〉) (15)

Furthermore, if λ = (m1, . . . ,mn) is expressed in the weight basis then |P λ| is a
polynomial of degree n in the m1, . . . ,mn .



824 Schützer

Proof. For complex variables s, z1, . . . , zn , consider the function

F (s, z1, . . . , zn) =
n∏
i=1

szi
1− e−szi

.

It is well-known that this is analytic in a neighborhood of 0 in Cn+1 and hence
has a power series expansion of the form

F (s, z1, . . . , zn) =
∞∑
k=0

skTk(z1, . . . , zn),

where each Tk is a homogeneous symmetric polynomial of degree k known as the
k -th Todd polynomial in z1, . . . , zn .

Interpreting eµ as the complex function t→ et〈µ,ρ〉 , we can rewrite formula
(9) as ∑

w∈W

et〈wλ,ρ〉∏n
i=1(1− e−t〈wαi,ρ〉)

=
∑
µ∈Pλ

et〈µ,ρ〉. (16)

Each term in the left-hand side sum is a meromorphic function with a pole at
t = 0, so it can be expanded as a Laurent power series:∑

w∈W

et〈wλ,ρ〉∏n
i=1 t〈wαi, ρ〉

∞∑
k=0

Tk(〈wα1, ρ〉, . . . , 〈wαn, ρ〉)tk =
∑
µ∈Pλ

et〈µ,ρ〉. (17)

By comparing the zero-th order term on each side of (17) we obtain equation
(15).

The numbers on Table 3 would probably have been difficult to obtain di-
rectly by counting the number of terms in each character, but were easily obtained
with our formulas using LıE [11] and an optimized program written in C++ by the
author.

The calculation of these numbers took advantage of the fact that the size of
P kρ is a polynomial in k whose degree is equal to the rank of the Lie algebra. This
is a well known general fact [2, Théorème 32] about the number of lattice points
in dilated polyhedra, but it also follows at once from our formulas, for instance by
replacing λ with kρ in (15) and expanding, we get the n-th degree polynomial in
k :

|P kρ| =
n∑
j=0

(∑
w∈W

〈ρ, wρ〉j

j!
∏n

i=1〈ρ, wαi〉
Tn−j(〈ρ, wα1〉, . . . , 〈ρ, αn〉)

)
kj. (18)

These polynomials, known as Ehrhart polynomials, were obtained by means of
(18) for all simple Lie algebras of rank less than or equal to 8 and are listed on
Table 3.

The meaning of the coefficients in the Erharht polynomial are generally
unknown except for its leading term. However, a striking fact emerges at once
from Table 3: the coefficient of k in the Ehrhart polynomial of P kρ is equal to the
number of positive roots. This suggests that∑

w∈W

〈wρ, ρ〉∏n
i=1〈wαi, ρ〉

Tn−1(〈wα1, ρ〉, . . . , 〈wαn, ρ〉) = |R+|. (19)
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λ ρ 2ρ 3ρ 4ρ 10ρ 100ρ

A2 7 19 37 61 331 30301
B2 12 37 76 129 741 70401
G2 31 109 235 409 2461 240601
A3 38 201 586 1289 17561 16150601
B3 136 871 2728 6229 90991 87390901
C3 135 863 2701 6165 89991 86390901
A4 291 3081 13531 39801 1364601 12610451001
B4 2304 30249 143392 438561 16150761 155909261601
C4 2265 29657 140449 429345 15796761 152405261601
D4 601 7009 31897 95569 3390721 32004661201
F4 15145 219529 1075969 3346369 127013641 1248566942401
...
E6 1.2× 106 6.8× 107 7.3× 108 4.0× 109 9.3× 1011 9.0× 1017

E7 3.1× 108 3.5× 1010 5.8× 1011 4.3× 1012 2.5× 1015 2.5× 1022

E8 4.9× 1011 1.2× 1014 3.0× 1015 2.9× 1016 4.4× 1019 4.4× 1027

Table 3: Number of weights in the representations V kρ

We were unable to find a rational explanation for this fact at the moment.

Another striking fact is that for the Lie algebras of types B and C the
respective Ehrhart polynomials seem to coincide up to the term of degree 2 and
we were able to confirm this up to rank 10.

The Lie algebras A2 and A3 . For type A2 , Table 2 says that

χλ = Θλ + χ̃λ−ρ

whenever λ is dominant integral. The signed character on the right hand side is
nonzero as long as (λ−ρ)+ρ = λ is strictly dominant, hence expressing λ = (p, q)
in the weight basis, this simply means that the signed character is nonzero as long
as p > 0 and q > 0. Therefore, we can state that

Corollary 3.4. For type A2 , if λ is a dominant integral weight, then

χλ =
∑
k≥0

Θλ−kρ (20)

where the summation runs over all non-negative integers such that, except when
k = 0, λ − kρ is regular and dominant. If λ = (x, y) is expressed in the weight
basis, this condition is simply k = 0, 1, . . . ,min(x, y).

Table 5 lists the first few characters for the Lie algebra A2 in terms of the
girdles. It is interesting to notice that all the coefficients are nonnegative integers.

If follows at once that if λ is dominant integral, then the number of weights
in V λ is given by

|P λ| = dimV λ − dimV λ−ρ,
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Algebra Ehrhart polynomial |P kρ|
A2 1 + 3k + 3k2

B2 1 + 4k + 7k2

G2 1 + 6k + 24k2

A3 1 + 6k + 15k2 + 16k3

B3 1 + 9k + 39k2 + 87k3

C3 1 + 9k + 39k2 + 86k3

A4 1 + 10k + 45k2 + 110k3 + 125k4

B4 1 + 16k + 126k2 + 608k3 + 1553k4

C4 1 + 16k + 126k2 + 604k3 + 1518k4

D4 1 + 12k + 66k2 + 204k3 + 318k4

F4 1 + 24k + 294k2 + 2364k3 + 12462k4

A5 1 + 15k + 105k2 + 435k3 + 1080k4 + 1296k5

B5 1 + 25k + 310k2 + 2470k3 + 12985k4 + 36145k5

C5 1 + 25k + 310k2 + 2460k3 + 12790k4 + 34988k5

D5 1 + 20k + 190k2 + 1100k3 + 4030k4 + 7872k5

A6 1 + 21k + 210k2 + 1295k3 + 5250k4 + 13377k5 + 16807k6

B6 1 + 36k + 645k2 + 7560k3 + 62595k4 + 351252k5 + 1037367k6

C6 1 + 36k + 645k2 + 7540k3 + 61950k4 + 343020k5 + 995828k6

D6 1 + 30k + 435k2 + 3980k3 + 24870k4 + 104004k5 + 235340k6

E6 1 + 36k + 630k2 + 7020k3 + 54270k4 + 289440k5 + 895536k6

A7 1 + 28k + 378k2 + 3220k3 + 18865k4 + 76608k5 + 200704k6 + 262144k7

B7
1 + 49k + 1197k2 + 19285k3 + 225715k4 + 1946259k5 + 11481631k6

+ 35402983k7

C7
1 + 49k + 1197k2 + 19250k3 + 224070k4 + 1912512k5 + 11123084k6

+ 33742440k7

D7
1 + 42k + 861k2 + 11340k3 + 105630k4 + 712236k5 + 3300892k6

+ 8271168k7

E7
1 + 63k + 1953k2 + 39375k3 + 572670k4 + 6242670k5

+ 50021748k6 + 248454360k7

A8
1 + 36k + 630k2 + 7056k3 + 55755k4 + 320544k5 + 1316574k6

+ 3542940k7 + 4782969k8

B8
1 + 64k + 2044k2 + 43232k3 + 673190k4 + 8011136k5 + 71657404k6

+ 439552864k7 + 1400424097k8

C8
1 + 64k + 2044k2 + 43176k3 + 669620k4 + 7906864k5 + 69909280k6

+ 422739232k7 + 1326439432k8

D8
1 + 56k + 1540k2 + 27496k3 + 353780k4 + 3418128k5 + 24687488k6

+ 123995296k7 + 334582920k8

E8

1 + 120k + 7140k2 + 279720k3 + 8070300k4

+ 181243440k5 + 3244615920k6 + 45648947520k7

+ 438191214480k8

Table 4: Ehrhart polynomials for the representations V kρ for the lower-rank
semisimple Lie algebras
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χ(1,0) = Θ(1,0)

χ(0,1) = Θ(0,1)

χ(2,0) = Θ(2,0)

χ(0,2) = Θ(0,2)

χ(2,1) = Θ(2,1) + Θ(1,0)
...

χ(4,3) = Θ(4,3) + Θ(3,2) + Θ(2,1) + Θ(1,0)
...

χ(4,6) = Θ(4,6) + Θ(3,5) + Θ(2,4) + Θ(1,3) + Θ(0,2)

χ(6,5) = Θ(6,5) + Θ(5,4) + Θ(4,3) + Θ(3,2) + Θ(2,1) + Θ(1,0)
...

Table 5: Characters of A2 expressed as sums of girdles in the weight basis

as long as λ is regular, otherwise it is equal to just dimV λ . From this, by
expressing λ in the weight basis, we obtain the following

Corollary 3.5. If λ = (x, y) is a dominant integral weight for the Lie algebra
A2 expressed in the weight basis, then

|P λ| = 1

2
x2 + 2xy +

1

2
y2 +

3

2
x+

3

2
y + 1.

Table 6 shows the evaluation of formula (15) for the simple Lie algebras of
rank 2. It is not hard to do the same for the simple Lie algebras of rank 3, but
the polynomials get significantly bigger. The next corollary shows this for A3 .

Algebra |P λ| (λ = (x, y) in the weight basis)

A2
1
2
x2 + 2xy + 1

2
y2 + 3

2
x+ 3

2
y + 1

B2 2x2 + 4xy + y2 + 2x+ 2y + 1
G2 3x2 + 9y2 + 12xy + 3x+ 3y + 1

Table 6: The polynomials |P λ| for the rank-2 algebras

Corollary 3.6. If λ = (x, y, z) is dominant integral for the Lie algebra A3

expressed in the weight basis, then

|P λ| =
1

6
x3 + x2y +

3

2
x2z + 2xy2 + 6xyz +

3

2
xz2 +

2

3
y3 + 2y2z + yz2 +

1

6
z3

+ x2 + 4xy + 3xz + 2y2 + 4yz + z2 +
11

6
x+

7

3
y + 116z + 1.

Exact formulas for the multiplicities. It is sometimes possible to obtain
exact formulas for the multiplicities themselves by solving the recurrences. We
carry this out for the multiplicity mλ(0, 0) of the representation V λ of the Lie
algebras B2 and G2 . It is known that these are also the dimensions for certain
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representations of the Weyl group W . The techniques we used for solving the
recurrences can be found for instance in [2, Chapitre II].

For B2 , the zero weight space occurs only when λ = (p, 2q) in the weight
basis, where p and q are non-negative integers, so for simplicity, let us consider
ap,2q = m̃(p,2q)(0, 0). Now, Table 2 says that

χλ = Θλ + χ̃λ−α1−α2 + χ̃λ−α1−2α2 − χ̃λ−2α1−3α2 ,

where α1 = (−2, 2) and α2 = (2,−1) in the weight basis, hence by considering
λ = (p+ 1, 2p+ 2) in this formula we get the recurrence relation

ap+1,2q+2 = 1− ap,2q+2 − ap+1,2q + ap,2q,

which is valid for all integers p, q ≥ 0. Multiplying both sides of this identity by
xpy2q , summing over all p, q ≥ 0, and solving for

G(x, y) =
∑
p,q≥0

ap,2qx
py2q,

we finally arive at the generating function for the ap,2q , namely

G(x, y) =
1 + xy2

(1− x)(1− x2)(1− y2)2
.

Expanding the right hand side as in [2, Chapitre II, §5], we obtain the following
rational decomposition:

G(x, y) =
1

4(1 + x)(1− y2)
+

1

4(1− x)(1− y2)
+

1 + y2

2(1− x)2(1− y2)2
.

Now each term in this decomposition can be represented as the product of two
geometric series, except for the rightmost one which is the product of two series
of the type

1

(1− z)k
=
∑
n≥0

(
n+ k − 1
k − 1

)
zn, k ∈ N, (21)

From the decomposition we can easily isolate the coefficient ap,2q . Finally, if we
multiply the result by a suitable factor, we can lift the restriction on the weights
being of the form (p, 2q), obtaining the following result.

Corollary 3.7. For any integers p, q ≥ 0, the dimension of the zero weight
space of V (p,q) of the Lie algebra B2 is equal to the quasipolinomial

m(p,q)(0, 0) =

(
1 + (−1)p

4
+

(p+ 1)(q + 1)

2

)
1 + (−1)q

2
.

Of course this means that whenever q is odd, then m(p,q)(0, 0) = 0.

For G2 , the zero weight space occurs in every irreducible representation, so
we may index these spaces by λ = (p, q), where p and q are non-negative integers.
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Following a procedure similar to that which was carried out for B2 , and using the
information on Table 2, we arrive at the generating function

G(x, y) =
g(x, y)

(1− x)2(1− x2)(1− x3)(1− y)3(1− y2)
,

where

g(x, y) = 1− x− y + x2 + 3yx+ y2 − 2yx2 − 2y2x− 2yx4 −
− 2y2x3 + yx5 + 3y2x4 + y3x3 − y2x5 − y3x4 + y3x5.

This, in turn, may be decomposed in the following way:

G(x, y) =
1

2(1− x)3(1− y)3
+

1

2(1− x)2(1− y)4
+

29

72(1− x)2(1− y)2
−

− 5

12(1− x)3(1− y)2
− 3

4(1− x)2(1− y)3
+

1

6(1− x)4(1− y)2
+

+
3

8(1− x2)(1− y2)
+

2− 2x

9(1− x3)(1− y)2
.

Now, each term may be expressed as a product of either a geometric series or a
series like (21), and the coefficient of xpyq can be easily identified. This gives us
the following result.

Corollary 3.8. For any integers p, q ≥ 0, the dimension of the zero weight
space of V (p,q) of the Lie algebra G2 is equal to the quasipolinomial

m(p,q)(0, 0) =
1

2

(
p+ 2

2

)(
q + 2

2

)
+

1

2
(p+ 1)

(
q + 3

3

)
+

29

72
(p+ 1)(q + 1)−

− 5

12

(
p+ 2

2

)
(q + 1)− 3

4
(p+ 1)

(
q + 2

2

)
+

1

6

(
p+ 3

3

)
(q + 1) +

+
4
√

3

27
sin

(
2π(p+ 1)

3

)
+

3

32
(1 + (−1)p)(1 + (−1)q).

4. Proof of the Main Result

The purpose of this section is to prove our main result. We shall be regarding
certain functions as rational functions of the e−αi , i.e, as elements in the field
C(e−α1 , . . . , e−αn) or in the ring of formal Laurent series C〈〈e−α1 , . . . , e−αn〉〉 . In
order to simplify the notation, we shall sometimes replace e−αi with xi by means of
the appropriate homomorphism. Thus, for instance, if α = a1α1+a2α2+· · ·+anαn ,
where ai ∈ Z , then e−α = (e−α1)a1(e−α2)a2 · · · (e−αn)an ≡ xa1

1 x
a2
2 · · ·xann . We shall

also be adopting the following expansion convention:

(1− e−α)−1 = 1 + e−α + e−2α + · · · , for α > 0 , (22)

and
(1− e−α)−1 = −eα − e2α − · · · , for α < 0 , (23)
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which can be regarded as formal power series in the x1, x2, . . . , xn .

As we mentioned, the statements in our main result, Theorem 2.1, will
follow by proving that both sides of (7) are actually equal to the following “rational
function”: ∑

w∈W

w · eλ∏
α∈∆(1− e−α)

. (24)

This amounts to proving Theorems 2.3 and 2.4. The statement on the triangularity
will require some arguments on the dominance partial order which will be given
at the end of this section.

We would like to begin by proving Theorem 2.4, which will follow as a
consequence of the usual WCF. We only need to show that the WCF still holds
true for our signed characters.

Lemma 4.1 (WCF). If λ is any integral weight and χ̃λ is a signed character
then

aρχ̃λ = aλ+ρ, (25)

where aµ =
∑

w∈W (−1)l(w)ewµ .

Here we shall use the fact [4, Lemma 24.3] that

aρ = eρ
∏
α∈R+

(1− eα).

Proof. 4.1 First observe that aµ is W -alternating, that is waµ = awµ =
(−1)l(w)aµ . This follows at once from the fact that the simple reflections in W
permute R+ and send exactly one positive root to its negative. If λ is dominant
integral, then (25) is just the usual WCF, and there is nothing to show. Now, if
λ+ ρ is not regular, then sα(λ+ ρ) = λ+ ρ for some positive root α , hence

aλ+ρ = asα(λ+ρ)

=
∑
w∈W

(−1)l(w)ewsα(λ+ρ)

=
∑
u∈W

(−1)l(usα)eu(λ+ρ)

= −
∑
u∈W

(−1)l(u)eu(λ+ρ) = −aλ+ρ,

therefore aλ+ρ = 0. Here it is useful to recall that detw = (−1)l(w) , so (−1)l(usα) =
det(usα) = det(u) det(sα) = −(−1)l(u) . However, in this case, the left-hand side
of (25) is also zero by definition, so the equality holds.
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Finally, if λ+ρ is regular, then λ = wλ(λ+ρ)−ρ is dominant integral and

aλ+ρ =
∑
w∈W

(−1)l(w)ew(λ+ρ)

=
∑
u∈W

(−1)l(uw
−1
λ )euwλ(λ+ρ)

= (−1)l(wλ)
∑
u∈W

(−1)l(u)eu(λ+ρ)

= (−1)l(wλ)aλ+ρ,

which, by the usual WCF, is equal to aρ(−1)l(wλ)χλ , and hence equal to aρχ̃λ , by
the definition of signed character.

Proof. (of 2.4) With the above considerations, we just have to carry out a
straightforward calculation:

aρ
∑
w∈W

w · eλ∏
α∈∆(1− e−α)

=

=
∑
w∈W

(−1)l(w)w ·

eλ+ρ
∏

α∈R+\∆

(1− e−α)


=

∑
w∈W

(−1)l(w)w ·

eλ+ρ

1 +
∑
〈Φ〉∈F

c〈Φ〉e
−〈Φ〉


= aλ+ρ +

∑
〈Φ〉∈F

c〈Φ〉
∑
w∈W

(−1)l(w)ew(λ−〈Φ〉+ρ)

= aλ+ρ +
∑
〈Φ〉∈F

c〈Φ〉aλ−〈Φ〉+ρ

= aρχλ + aρ
∑
〈Φ〉∈F

c〈Φ〉χ̃λ−〈Φ〉,

where the last step is due to the WCF for signed characters, Lemma 4.1.

Now, in order to show Theorem 2.3, we shall need a few technical lemmas
and also bit of notation. For each w in W let Φw = w−1R− ∩ R+ be the set of
all positive roots that are sent to negative roots by w and set ∆w = Φw ∩∆, the
set of simple roots sent to their negatives by w . It will be shown below (Lemma
4.7) that, unless w = 1, Φw contains at least one simple root and hence ∆w

is nonempty. The complement of this set in the set of positive simple roots is
∆′w = ∆\∆w .

With this notation, we let Kwλ be the half-open “cone” generated by the
linearly independent vectors wα (α ∈ ∆w ) and −wα (α ∈ ∆′w ) with vertex at
wλ , namely the set

Kwλ =

wλ+
∑
α∈∆w

kαwα−
∑
α∈∆′w

kαwα

 ,
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where the kα are integers, kα > 0 for α ∈ ∆w , and kα ≥ 0 for α ∈ ∆′w . It is
clear that, if λ is dominant integral and w = 1, then P λ ⊂ Kλ , however, the next
lemma will show that P λ actually lies in the “complement” of all such cones, if
w 6= 1

Let δwλ be the characteristic function of Kwλ , ie δwλ(µ) = 1 when µ ∈ Kwλ

and zero otherwise.

Lemma 4.2. If λ a dominant integral weight, then P λ ∩Kwλ is empty, unless
w = 1.

Proof. In effect, it is well known that µ ∈ P λ if and only if wµ ≤ λ for all w in
W , hence if and only if λ−wµ =

∑
α∈∆ jα(w)α where the jα(w) are non-negative

integers. Therefore µ ∈ P λ if and only if

µ = wλ+
∑
α∈∆w

(−jα(w−1))wα−
∑
α∈∆′w

jα(w−1)wα,

which clearly does not belong to Kwλ , unless w = 1.

Regarding (24) as a formal infinite sum on the weights (by means of the
expansion convention above), to prove that (9) holds true, we must only show
that the coefficients on its lefthand-side are all equal to zero, except for those
corresponding to a weight in P λ , and show that these nonzero coefficients are
actually all equal to 1. This is what we shall prove next.

Proposition 4.3. Consider the formal series
∑

µ∈P cλµe
µ to be the formal

expansion of (24) according to the conventions adopted above. Then the coefficient
of eµ in that expansion is equal to

cλµ =
∑
w∈W

(−1)|∆w|δwλ(µ).

Furthermore, if µ ∈ P λ then cλµ = 1.

Proof. Since ∆ is linearly independent, given w and µ we can solve

wλ+
∑
α∈∆w

(kα + 1)wα−
∑
α∈∆′w

kαwα = µ

uniquely for k = (kα). Now a straightforward formal calculation shows that:
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∑
w∈W

w · eλ∏
α∈∆(1− e−α)

=

=
∑
w∈W

ewλ
∏
α∈∆w

(1− e−wα)−1
∏
α∈∆′w

(1− e−wα)−1

=
∑
w∈W

ewλ
∏
α∈∆w

(
−ewα

∞∑
kα=0

ekαwα

) ∏
α∈∆′w

(
∞∑

kα=0

e−kαwα

)

=
∑
w∈W

(−1)|∆w|
∑
k∈Z|∆|+

exp

wλ+
∑
α∈∆w

(kα + 1)wα−
∑
α∈∆′w

kαwα


=

∑
w∈W

(−1)|∆w|
∑
µ∈Kwλ

eµ

=
∑
µ∈P

(∑
w∈W

(−1)|∆w|δwλ(µ)

)
eµ.

This proves the cλµ are of the specified form. The fact that cλµ = 1 when µ ∈ P λ

follows from the previous lemma.

At this point we know for sure that the following formal identity is true:∑
w∈W

w · eλ∏
α∈∆(1− e−α)

= Θλ +
∑

µ∈P\Pλ
cλµe

µ, (26)

It remains to show that the extra term on the right hand side vanishes. To show
this, we shall regard the left hand side as a rational function and the right hand
side as a Laurent power series as we discussed at the beginning of this section.
It might be useful to recall that eµ can be regarded as a shorthand notation for
the function t 7→ et〈µ,ρ〉 , t ∈ C . In this sense the following technical lemma will
guarantee the existence of a region in which that rational function is represented
by the Laurent power series on the right hand side.

Lemma 4.4. For each w in W and λ in P , the series

(−1)|∆w|
∑
k∈Z|∆|+

exp

wλ+
∑
α∈∆w

(kα + 1)wα−
∑
α∈∆′w

kαwα

 (27)

converges absolutely to the rational function

ewλ∏
α∈∆(1− e−wα)

(28)

when we set xj = e−αj for j = 1, . . . , n in the polydisc U = {x ∈ Cn | |xi| < 1},
where n = |∆|. Furthermore in eq. (26) the right hand side converges absolutely
to the left hand side in U .
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Proof. For j = 1, . . . , n , set wαj = w1jα1 + · · · + wnjαn , where n = |∆| .
For a fixed j , since αj > 0, we must have either all wij ≤ 0 (wαj < 0) or all
wij ≥ 0 (wαj > 0) for i = 1, . . . , n . Hence the terms in (27) and the denominator
in (28) involve only non-negative integral powers of xj = e−αj for j = 1, . . . , n .
Furthermore, in series (27), all terms have exp(wλ +

∑
α∈∆w

wα) as a common
factor and, once this is factored out, the remaining expression is a multigeometric
series in the xj , so it converges absolutely in the polydisc U and uniformly in
compacta K ⊂ U to the rational function

1∏
α∈∆w

(1− ewα)
∏

α∈∆′w
(1− e−wα)

,

hence, (27) converges to the rational function

(−1)|∆w| exp(wλ+
∑

α∈∆w
wα)∏

α∈∆w
(1− ewα)

∏
α∈∆′w

(1− e−wα)
.

However, dividing the numerator and the denominator in this expression by
(−1)|∆w| exp(

∑
α∈∆w

wα) =
∏

α∈∆w
(−ewα), we obtain

ewλ∏
α∈∆w

(−e−wα)
∏

α∈∆w
(1− ewα)

∏
α∈∆′w

(1− e−wα)
=

ewλ∏
α∈∆(1− e−wα)

,

which is (28). The second statement is a consequence of the absolute convergence
since the series on the right hand side of (26) is obtained by summing (27) over
W (a finite sum) and rearranging its terms.

The following proposition completes the proof of Theorem 2.3 in showing
that the extra term on the right hand side of (26) is equal to zero.

Proposition 4.5. If λ is dominant integral and µ is not in P λ , then

cλµ =
∑
w∈W

(−1)|∆w|δwλ(µ) = 0.

Proof. It is useful to recall once more that we can regard eµ as a shorthand
for the function t 7→ et〈µ,ρ〉 , which allows us to look at certain expressions, like the
one on left hand side of (26), as a rational function, and regard the right hand side
of that same equation as a Laurent power series. We shall do the same with both
sides of equation (10).

Now, from Lemma (4.4), we know that in (26) the rational function in the
lefthand side, namely ∑

w∈W

w · eλ∏
α∈∆(1− eα)

,

is represented in the polydisc U by the power series in the right hand side. On the
other hand, we know from Theorem 2.4, that the same expression is formally equal,
and thus converges in U , to the Laurent polynomial in the right hand side of (10).
From the uniqueness of the expansion, we conclude that series and polynomial
are identical, and hence the right hand side of (26) must be supported on P λ , as
required.
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To complete the proof of our main result, it only remains to show the
triangularity, namely that the weights λ − 〈Φ〉 in (7) are strictly smaller than λ
in the dominance order. For this we shall need a lemma of Kostant and a few
auxiliary results. Some of the ideas that follow can be found in greater generality
and beauty in [7], but here we preferred to state less general statements and provide
elementary proofs.

Lemma 4.6 (Kostant). Let µ be a weight in P . Then µ belongs to P ρ if and
only if µ = ρ − 〈Φ〉 for some subset Φ of R+ . Moreover, the multiplicity mρ(µ)
is equal to the number of such subsets.

Proof. This is Lemma 5.9 in [7].

For each w in the Weyl group W , recall the definition of Φw = w−1R−∩R+ ,
the set of all positive roots that are sent to negative roots by w , and let Φ′w be
its complement in R+ .

Lemma 4.7. Let w ∈ W . If Φw is nonempty then it contains a simple root.

Proof. Let w0 be the longest element in W , namely the unique element in W
such that w0R

+ = R− . First we observe that

Φ′w = R+\(w−1R− ∩R+) = w−1R+ ∩R+ = w−1w0R
− ∩R+

= (w0w)−1R− ∩R+ = Φw0w.

Now, if Φw contains ∆, then, in particular, the positive system w−1R−

contains the simple system ∆, so w−1R− = R+ . Thus w−1 = w0 and Φ′w is
empty.

Repeating the same argument with w0w instead of w we see that if Φ′w
contains ∆ then Φw is empty.

Lemma 4.8. If Φ is a subset of R+ then

〈ρ− 〈Φ〉, ρ− 〈Φ〉〉 ≤ 〈ρ, ρ〉,

and equality holds if and only if Φ = Φw for some w in W .

Proof. Let w ∈ W be the (unique) element such that µ = w(ρ − 〈Φ〉) is
dominant. By Lemma 4.6, ρ − 〈Φ〉 ∈ P ρ , hence µ ∈ P ρ . This also means that
τ = ρ− µ is a sum of positive roots [4, §21.3], so 〈τ, µ〉 ≥ 0. It follows that

〈ρ, ρ〉 = 〈τ + µ, τ + µ〉 = 〈τ, τ〉+ 2〈τ, µ〉+ 〈µ, µ〉
≥ 〈µ, µ〉 = 〈ρ− 〈Φ〉, ρ− 〈Φ〉〉,

which shows the inequality.

Now suppose that the equality holds, so we must actually have τ = 0.
Therefore µ = ρ , so w−1ρ = ρ − 〈Φ〉 . On the other hand, if this identity is true
for some w ∈ W , then obviously 〈ρ− 〈Φ〉, ρ− 〈Φ〉〉 = 〈ρ, ρ〉 .
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It follows at once from the definition that w−1ρ = ρ − 〈Φw〉 , but since
the multiplicity mρ(w

−1ρ) = mρ(ρ) = 1, we conclude from Lemma 4.6 that
Φ = Φw .

We are finally in place to prove our main result, Theorem 2.1.

Proof. (of 2.1) As we mentioned above, Theorems 2.3 and 2.4 together imply
that (7) is true.

Now we shall prove that all the weights of the form λ− 〈Φ〉 for which
λ−〈Φ〉 occur in (7) are strictly smaller than λ in the dominance order. That is to
show that when λ is dominant integral and Φ is a nonempty subset of ∆′ , then
λ− 〈Φ〉 = w(λ− 〈Φ〉+ ρ)− ρ < λ , where w ∈ W is the unique element such that
w(λ− 〈Φ〉+ ρ) is dominant. It is useful to notice that Φ contains no simple root,
so it cannot be equal to any set of the type Φw by Lemma 4.7.

Put µ = λ− 〈Φ〉 . Since λ− 〈Φ〉+ ρ ≤ λ+ ρ , then

µ+ ρ = w(λ− 〈Φ〉+ ρ) ≤ λ+ ρ,

so µ ≤ λ . If we had µ = λ , then we would also have

〈λ− 〈Φ〉+ ρ, λ− 〈Φ〉+ ρ〉 = 〈λ+ ρ, λ+ ρ〉.

But, in this case, Lemma 4.8 would imply that

0 ≤ 2〈λ, 〈Φ〉〉 = 〈ρ− 〈Φ〉, ρ− 〈Φ〉〉 − 〈ρ, ρ〉 ≤ 0,

that is 〈ρ− 〈Φ〉, ρ− 〈Φ〉〉 = 〈ρ, ρ〉 , and thus Φ = Φw for some w ∈ W . But, as it
was remarked, this is impossible, hence µ < λ , as required.

5. Conclusions

We have discovered a new character formula for complex semisimple Lie algebras
and compact Lie Groups which seems to be very different from previously-known
formulas, and we have shown a few consequences and applications. We believe
that our formula could offer some new, interesting insights into the combinatorics
of root systems. The existence of (7) suggests that one could perhaps find a
combinatorial formula for the characters. We know that for the Lie algebras of
type A this is true, the characters being essentially the Schur polynomials. We
intend to investigate this possibility in our future work.

The fact that it might be possible to solve the recursions and obtain exact
formulas for the multiplicities also seems to open intriguing possibilities, since
formulas of this kind seem to be mostly unknown. It is conceivable that using
techniques like those developed by Erhart [2, Chap. II, §5], many of our recursions
could be solved exactly.

Since the scalar product is W -invariant, we can rewrite expression (15) as

∑
w∈W

1∏n
i=1〈wρ, αi〉

n∑
j=0

〈wρ, λ〉j

j!
Tn−j(〈wρ, α1〉, . . . , 〈wρ, αn〉) (29)
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which becomes a sum on the orbit of the regular weight ρ . This formula might
be slightly more interesting than (15), for there exist efficient algorithms for
generating the weights in a Weyl group orbit sequentially which do not require
the storage of a large amount of information.

There seems to be other intriguing possibilities and applications and we
intend to be addressing them in future works, for instance the relationship between
our coefficients and the Kostant partition function.
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