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Hilbert Ideals of Vector Invariants of s2 and S3
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Abstract. The Hilbert ideal is the ideal generated by positive degree invari-
ants of a finite group. We consider the vector invariants of the natural action
of Sn . For S2 we compute the reduced and universal Gröbner bases for the
Hilbert ideal. As well, we identify all initial form ideals of the Hilbert ideal and
describe its Gröbner fan. In modular characteristics, we show that the Hilbert
ideal for S3 can be generated by polynomials of degree at most three and the
reduced Gröbner basis contains no polynomials that involve variables from four
or more copies. Our results give support for conjectures for improved degree
bounds and regularity conditions on the Gröbner bases for the Hilbert ideal of
vector invariants of Sn .
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Introduction

Let G be a finite group and V be a G-module which is finite dimensional over
a field F . The action of G extends to the symmetric algebra S(V ) which is the
polynomial algebra in a basis of V . A polynomial f ∈ S(V ) is called invariant if
g(f) = f for all g ∈ G . The Hilbert ideal, denoted H(G, V ), is the ideal in S(V )
generated by homogeneous invariant polynomials of strictly positive degree.

The Hilbert ideal plays an important role in constructive aspects of invariant
theory and some papers have been published which determine this ideal for various
classes of groups. It has been conjectured that H(G, V ) is always generated by
invariants of degree up to group order, [5, 3.8.6.]. This conjecture is known to
hold if V is a trivial source module (in particular a permutation module) [6] or if
|G| ∈ F ∗ [6] or if G = Z/p and V is a modular indecomposable Z/p-module [11],
where p is a prime number. The reduced Gröbner bases for the Hilbert ideal of
several representations of Z/p has been computed in [12] in connection with the
study of the module structure of the coinvariant ring. The situation where G is a
permutation group acting naturally on V also has some interesting applications.
The reduced Gröbner bases for the full symmetric group Sn has been given in [2],
where these bases are used in a solution of Lagrange’s problem. Gröbner bases
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of Sn can also be used in coding theory, see [9]. The reduced and the universal
Gröbner bases for the alternating group An has been computed in [16]. In fact,
H(Sn, V ) and H(An, V ) coincide over some characteristics and whenever they are
different the respective reduced Gröbner bases differ by a monomial only, [16, 2.4].
For some other recent results on the Hilbert ideals, we direct the reader to [8], [13]
and [14].

In this paper we study the case where G = S2 or G = S3 and V is a direct
sum of arbitrarily many (finite) copies of the natural permutation representation
of G . In Section 1, we compute the reduced and the universal Gröbner bases
for H(S2, V ). We give two bases; one for characteristic two and one for other
characteristics. It turns out that in both cases these bases contain no polynomial
that involves variables from three different copies. Actually in characteristic two,
bases polynomials come from only one copy. We note that in [4] a generating
set has been computed for the vector invariants of Z/p acting on copies of two
dimensional Jordan blocks in characteristic p . This set can be refined to a Gröbner
basis for the Hilbert ideal again consisting of polynomials that depend on only one
copy. Therefore our results for characteristic two in Section 1 should be seen
as a reproduction of the nice Gröbner basis in [4] for a different (permutation)
vector space basis for V . In Section 2 we identify the equivalence classes of
vectors that generate the same initial form ideal of H(S2, V ) and consequently
describe its Gröbner fan. Moreover, we give generating sets for all initial form
ideals of H(S2, V ). In Section 3 we study H(S3, V ) in modular cases i.e., over
fields of characteristic two and three. For both characteristics we give generating
sets and the reduced Gröbner bases for H(S3, V ). As in the case for H(S2, V )
respective bases are different, and again, a parallel result holds for H(S3, V ) in
both characteristics: There is a generating set of polynomials of degree at most
three and the reduced Gröbner basis (with respect to the lexicographic order)
consists of polynomials that involve variables from at most three copies. Together
with these results, our computations with the software GAP [7] for H(Sn, V ) for
various characteristics and term orders give ground for the following conjecture.

Conjecture 0.1. Let V be a direct sum of finitely many copies of the natural
representation of Sn . Then

1. H(Sn, V ) can be generated by polynomials of degree at most n;

2. For any term order, the reduced Gröbner basis for H(Sn, V ) consists of
polynomials that involve variables from at most n copies.

We remark that when n! ∈ F ∗ , elementary multisymmetric polynomials generate
the invariant ring (and hence the Hilbert ideal), see [3]. The degree of an elemen-
tary multisymmetric polynomial is at most n and therefore the first statement of
the conjecture is void for n! ∈ F ∗ . By [3] again, elementary multisymmetric poly-
nomials almost never generate the invariant ring if the characteristic of F divides
n! , and so the first statement is an improvement of the Fleischmann’s bound [6]
on the degrees of the generators of H(Sn, V ) for all modular characteristics. Also,
to the best of our knowledge there is no result in the literature that establishes a
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type of regularity for the Gröbner basis for the Hilbert ideal of vector invariants
as indicated by the second statement.

As a general reference for invariant theory we recommend [5] or [10].

1. The Reduced and Universal Gröbner bases for H(S2, V )

In this section σ denotes the non-trivial element in G = S2 . Let k be a positive
integer and V be the direct sum of k copies of the natural representation of
S2 . We identify S(V ) with R := F [xi, yi | 1 ≤ i ≤ k] . We will denote by
RG the subalgebra in R of invariant polynomials. For each 1 ≤ i ≤ k , the set
{xi, yi} spans the two dimensional permutation representation, i.e., σ(xi) = yi
and σ(yi) = xi . We denote the corresponding Hilbert ideal H(G, V ) by H . Let
< denote a term order on R with yi < xi for 1 ≤ i ≤ k . We begin with the easy
case when the characteristic of F is not equal to two.

Proposition 1.1. Assume that the characteristic of F is not equal to two.
Then the set A =

{
xi + yi, y

2
i , ypyq | 1 ≤ i ≤ k , 1 ≤ p < q ≤ k

}
is the reduced

Gröbner basis for H with respect to <.

Proof. Note that y2i = yi(xi + yi)− xiyi . Since xiyi and xi + yi are in RG , we
have that y2i ∈ H for 1 ≤ i ≤ k . From the equality

ypyq =
(xpxq + ypyq)− xq(xp + yp) + yp(xq + yq)

2

we get ypyq ∈ H. So it follows that all polynomials in A lie in H . Notice also
that the set of monomials in R that are not divisible by a leading monomial of an
element in A is precisely the set {yi | 1 ≤ i ≤ k} . But none of yi for 1 ≤ i ≤ k is
a leading monomial of a polynomial in H because xi appears in every invariant
polynomial of degree one in which yi appears.

For the rest of the section the characteristic of F is two. We say a monomial
m = xa11 y

b1
1 x

a2
2 y

b2
2 · · ·x

ak
k y

bk
k ∈ R is of multidegree d(m) = (d1, d2, . . . , dk) ∈ Nk ,

where di = ai+ bi for 1 ≤ i ≤ k . We let o(m) denote the orbit sum of a monomial
m . Also define suppx(m) = {0 ≤ i ≤ k | ai > 0} which we call the x-support of
m . Let I denote the ideal in R generated by xi + yi for 1 ≤ i ≤ k . We prove a
reduction formula for a monomial with respect to I .

Lemma 1.2. Let m = xa11 y
b1
1 x

a2
2 y

b2
2 · · ·x

ak
k y

bk
k ∈ R be a monomial with multide-

gree d(m) = (d1, d2, . . . , dk). Then

m ≡
∏

1≤i≤k

ydii mod I.

Proof. The proof is by induction on | suppx(m)| . If suppx(m) = ∅ , then we
already have m =

∏
1≤i≤k y

di
i . If | suppx(m)| > 0, pick j ∈ suppx(m). Then

m ≡ m+
m(xj + yj)

xj
=
myj
xj

mod I.
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Therefore by reducing successively modulo xj+yj , we see that m ≡ my
aj
j

x
aj
j

mod I .

Set m′ =
my

aj
j

x
aj
j

. Note that the multidegree of m and m′ are the same. Moreover,

we have | suppx(m
′)|+ 1 = | suppx(m)| . Therefore by induction we get

m′ ≡
∏

1≤i≤k

ydii mod I.

Hence m ≡
∏

1≤i≤k y
di
i mod I because m ≡ m′ mod I .

Now we give the reduced Gröbner basis for the characteristic two case.

Proposition 1.3. Assume that the characteristic of F is two. Then the set
A′ = {xi + yi, y

2
i | 1 ≤ i ≤ k} is the reduced Gröbner basis for H with respect to

<.

Proof. Let I ′ be the ideal generated by the polynomials in A′ . Since y2i =
yi(xi+yi)+yixi ∈ H , we have I ′ ⊆ H . Since the leading monomials of polynomials
in A′ are relatively prime, A′ is the reduced Gröbner basis for the ideal I ′ .
Therefore it suffices to show that I ′ is equal to H . That is we need to show
that o(m) ∈ I ′ for any monomial m . Notice that if o(m) = m , then m is divisible
by xjyj for some 1 ≤ j ≤ k . But since xjyj = yj(xj + yj) + y2j ∈ I ′ , it follows that
m = o(m) ∈ I ′ . Otherwise o(m) = m + σ(m). Since σ permutes xi and yi , the
multidegrees of m and σ(m) are the same. Assume that the multidegree of m is
d(m) = d(σ(m)) = (d1, d2, . . . , dk). By the previous lemma we get

m ≡
∏

1≤i≤k

ydii ≡ σ(m) mod I.

Therefore, o(m) = m + σ(m) ≡ 2(
∏

1≤i≤k y
di
i ) = 0 mod I. Since I ⊆ I ′ , we have

o(m) ∈ I ′ , as desired.

Let A be a subset of {1, 2, . . . , k} and let A< denote the set of term orders
such that xi > yi if and only if i ∈ A . Notice that the computation of the
reduced Gröbner bases above just relied on the ordering of the variables within
the summands only. Therefore, by virtue of Propositions 1.1 and 1.3, we have the
following.

Theorem 1.4. Let < be a term order in A< and let Ac denote the complement
of A in {1, 2, . . . , k}.

1. If the characteristic of F is not equal to two, then the set

{xi + yi}1≤i≤k ∪ {x2i }i∈Ac ∪ {y2i }i∈A ∪ {xiyj}i∈Ac,j∈A

is the reduced Gröbner basis for H with respect to <.

2. If the characteristic of F is equal to two, then the set
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{xi + yi}1≤i≤k ∪ {x2i }i∈Ac ∪ {y2i }i∈A
is the reduced Gröbner basis for H with respect to <.

By putting together the reduced Gröbner bases in Theorem 1.4, we get a
universal Gröbner basis for H .

Theorem 1.5. If the characteristic of F is not equal to two, the set
{xi + yi}1≤i≤k ∪ {x2i }1≤i≤k ∪ {y2i }1≤i≤k, {xiyj}i 6=j 1≤i,j≤k

is a universal Gröbner basis for H . Similarly the set
{xi + yi}1≤i≤k ∪ {x2i }1≤i≤k ∪ {y2i }1≤i≤k

is a universal Gröbner basis of H if the characteristic of F is equal to two.

2. Initial form ideals of H(S2, V )

We assume the notation and the convention of the previous section. For a term
order < , a real vector w ∈ R2k and a polynomial f ∈ R , let LT<(f) and INw(f)
denote the lead term and initial form of f with respect to < and w . Also we
denote the corresponding lead term and initial form ideals of H by LT<(H) and
INw(H). Note that INw(H) is not necessarily a monomial ideal. Nevertheless,
for any term order < , there exists a non-negative integer vector w such that
LT<(H) = INw(H). For a background on representation of term orders by vectors,
see [15, §1].

For disjoint subsets A and B of {1, 2, . . . , k} , let C(A,B) denote the set
of real vectors (a1, b1, . . . , ak, bk) ∈ R2k such that ai > bi for i ∈ A , aj = bj for
j ∈ B and at < bt for t ∈ {1, 2, . . . , k} \ (A ∪ B). We say that two vectors in
R2k are in the same class if they both lie in C(A,B) for some disjoint sets A,B
in {1, 2, . . . , k} . Note that the collection of C(A,B) forms a partition of R2k . In
the following lemma we show that these classes are exactly the equivalence classes
of vectors with respect to the initial form ideals they produce.

Lemma 2.1. Let w and w′ be two vectors in R2k . Then, INw(H) = INw′(H)
if and only if w and w′ are in the same class.

Proof. If w and w′ are in different classes, then there exists an index 1 ≤ i ≤ k
such that INw(xi + yi) 6= INw′(xi + yi). If xi appears in an invariant polynomial
of degree one, then yi also appears in this polynomial. It follows that INw(H) 6=
INw′(H).

Conversely, assume that w and w′ are in the same class. We show that
the corresponding initial form ideals are the same. Since H is homogeneous,
there exist non-negative vectors w+, w

′
+ ∈ R2k

≥0 such that INw(H) = INw+(H) and
INw′(H) = INw′

+
(H), see [15, 1.12]. Since w and w+ produce the same initial

form ideal, they are in the same class from the previous paragraph. Similarly w′

and w′+ are in the same class. Therefore by replacing w by w+ and w′ by w′+ , we
may assume that both w and w′ are in R2k

≥0 . Fix a term order < and let S denote
the reduced Gröbner basis of H with respect to <w , where <w is the term order
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obtained by comparing the monomials first with using w and then with < as a
tie breaker (we need the non-negativity of w here). We define the term order <w′

similarly. Since any reduced Gröbner basis of H consists of monomials together
with xi + yi for 1 ≤ i ≤ k by Theorem 1.4, we have INw(g) = INw′(g) for all
g ∈ S . But INw(H) is generated by {INw(g) | g ∈ S} , see [15, 1.9]. Therefore
it follows that INw(H) ⊆ INw′(H) because initial forms of elements in S with
respect to w and w′ are the same. If this inclusion were proper, then it would
stay proper after taking the lead term ideals with respect to < , that is we would
have a proper inclusion LT<w(H) ⊂ LT<w′ (H). This is impossible since there can
not be a proper inclusion between the lead term ideals of H arising from term
orders, see for instance [15, 1.1].

Now we identify the classes of vectors with monomial initial form ideals.
Since H is homogeneous, these are precisely the lead term ideals arising from
term orders.

Lemma 2.2. Let w be a vector in C(A,B). Then INw(H) is a monomial ideal
if and only if B = ∅.

Proof. Let w be a vector in C(A,B) with B 6= ∅ . Pick i ∈ B . Then
INw(xi+yi) = xi+yi . Since xi and yi appear in a degree one invariant polynomial
always together, it follows that INw(H) is not a monomial ideal.

Conversely, let w ∈ C(A, ∅). We may assume that w ∈ R2k
≥0 by [15, 1.12].

Fix a term order < and let S be the Gröbner basis of H with respect to <w .
Since S consists of monomials and {xi + yi}1≤i≤k by Theorem 1.4, we have that
INw(g) is a monomial for all g ∈ S . So INw(H) is a monomial ideal since it is
generated by {INw(g) | g ∈ S} , [15, 1.9].

We now give a generating set for each non-monomial initial form ideal of
H .

Proposition 2.3. Let w ∈ C(A,B) with B 6= ∅. Assume that the character-
istic of F is equal to two and set D = {1, 2, . . . , k} \ (A ∪ B). Then INw(H) is
generated by {xi}i∈A ∪ {xi + yi}i∈B ∪ {yi}i∈D ∪ {x2i }i∈D ∪ {y2i }i∈A∪B.

Proof. We may assume that w ∈ R2k
≥0 by [15, 1.12]. Also note that w lies in

the Euclidean closure of C(A ∪ B, ∅). Let w′ ∈ C(A ∪ B, ∅) ∩ R2k
≥0 be arbitrary.

Then w + εw′ ∈ C(A ∪B, ∅) for all ε > 0. Since INw′(INw(H)) = INw+εw′(H) for
sufficiently small ε , see [15, 1.13], it follows that

INw′(INw(H)) = INw′(H).

By the previous lemma, INw′(H) is a monomial ideal and hence a lead term ideal
with respect to a term order, say < . From Theorem 1.4, we see that the set

{xi + yi}1≤i≤k ∪ {x2i }i∈D ∪ {y2i }i∈A∪B

is the reduced Gröbner basis for H with respect to < . By taking the lead term
ideal of both sides in the above equality of initial form ideals with respect to < ,
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one sees that this set is also the reduced Gröbner basis with respect to (<′)w ,
where <′=<w′ . It now follows from [15, 1.9]) that

{INw(xi + yi)}1≤i≤k ∪ {INw(x2i )}i∈D ∪ {INw(y2i )}i∈A∪B

generates INw(H). But this set is equal to

{xi}i∈A ∪ {xi + yi}i∈B ∪ {yi}i∈D ∪ {x2i }i∈D ∪ {y2i }i∈A∪B,

as desired.

Remark 2.4. Along the same lines, one can get the following result for a field
of characteristic not equal to two. Let w ∈ C(A,B) with B 6= ∅ and let D denote
the complement of A ∪B in {1, 2, . . . , k} . Then INw(H) is generated by

{xi}i∈A ∪ {xi + yi}i∈B ∪ {yi}i∈D ∪ {x2i }i∈D ∪ {y2i }i∈A∪B ∪ {xiyj}i∈D, j∈A∪B.

Recall that the Gröbner fan of H is the polyhedral complex consisting of the
Euclidean closures of equivalence classes of vectors with respect to the initial form
ideals they produce. Therefore by Lemma 2.1, the Gröbner fan of H is the set of
the closures C(A,B), where A,B varies over the disjoint subsets of {1, 2, . . . , k} .
We refer the reader to [15, §2] for basic facts regarding fans. We have the following
face relations among these polyhedra.

Proposition 2.5. C(A1, B1) is a face of C(A2, B2) if and only if A2 ∪B2 ⊆
A1 ∪B1 and A1 ⊆ A2 .

Proof. Since a Gröbner fan is a complex [15, 2.4], it suffices to show that
C(A1, B1) ⊆ C(A2, B2) if and only if A2 ∪B2 ⊆ A1 ∪B1 and A1 ⊆ A2 .

Pick w = (a1, b1, . . . , ak, bk) ∈ C(A1, B1). Then A2 ⊆ A1 ∪ B1 implies
ai ≥ bi for all i ∈ A2 and B2 ⊆ B1 implies ai = bi for all i ∈ B2 and

{1, 2, . . . , k} \ (A2 ∪B2) ⊆ {1, 2, . . . k} \ A1

implies ai ≤ bi for all i ∈ {1, 2, . . . , k} \ (A2 ∪ B2). Hence w ∈ C(A2, B2).
Conversely if A1 * A2 , then pick i ∈ A1 \ A2 . For w = (a1, b1, . . . , ak, bk)

in C(A1, B1) we have ai > bi and hence w is not in C(A2, B2). Similarly, if
A2 ∪ B2 * A1 ∪ B1 , then pick i ∈ (A2 ∪ B2) \ (A1 ∪ B1). Then any element

w = (a1, b1, . . . , ak, bk) in C(A1, B1) satisfies bi > ai . Hence w /∈ C(A2, B2).

3. The Reduced Gröbner basis for H(S3, V )

In this section G = S3 and F is a field of characteristic two or three. Let k be a
positive integer and V be the direct sum of k copies of the natural representation
of G . Let H denote H(S3, V ) and R denote S(V ) = F [xi, yi, zi | 1 ≤ i ≤ k] .
For each 1 ≤ i ≤ k , the set {xi, yi, zi} spans the three dimensional representation
on which G acts by permuting the variables. We use the lexicographic order with
xi > yi > zi for 1 ≤ i ≤ k and zi > xi+1 for 1 ≤ i ≤ k − 1. As before let
RG denote the subalgebra of invariant polynomials. We recall and extend some
of the definitions from Section 1. A monomial m = xa11 y

b1
1 z

c1
1 · · ·x

ak
k y

bk
k z

ck
k ∈ R is
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said to be of multidegree d(m) = (d1, d2, . . . , dk) ∈ Nk , where di = ai + bi + ci for
1 ≤ i ≤ k . Define supp(m) = {0 ≤ i ≤ k | di > 0} which we call the support of m .
Also let suppx(m) denote the set {0 ≤ i ≤ k | ai > 0} which we call the x-support
of m . The y -support and the z -support of m are defined similarly and denoted
by suppy(m) and suppz(m), respectively. Furthermore define the rank r(m) of m
to be the size of supp(m). Similarly we let rx(m), ry(m), rz(m) denote the sizes
of suppx(m), suppy(m) and suppz(m). We call these numbers x-rank, y -rank

and z -rank, respectively. Also set mx =
∏

i∈supp(m) x
di
i , my =

∏
i∈supp(m) y

di
i and

mz =
∏

i∈supp(m) z
di
i . Define αx(m) = 1 if rx(m) = 0 and αx(m) = 0 if rx(m) > 0.

The numbers αy(m) and αz(m) are defined similarly.

We handle characteristic two and characteristic three cases separately.

3.1. *. Characteristic two case Assume that F has characteristic two. Let B
denote the set of following polynomials in H :

ei = o(xi) = xi + yi + zi for 1 ≤ i ≤ k,

fi = o(xiyi) + (yi + zi)ei = y2i + yizi + z2i for 1 ≤ i ≤ k,

gi = o(xiyizi) + zifiyiziei = z3i for 1 ≤ i ≤ k,

ui,j = o(xiyj) + (yj + zj)ei + (yi + zi)ej = yizj + yjzi for 1 ≤ i < j ≤ k,

ai,j = o(xix
2
j) + (y2j + z2j )ei + xie

2
j + zifj + zjumin{i,j},max{i,j}

= ziz
2
j for 1 ≤ i 6= j ≤ k,

pi,j, l = o(xiyjyl) + yjui, l + xlui,j + (yjyl + zjzl)ei + (yi + zi)xlej + (yiyj + zizj)el

= ziyjyl + zizjyl for 1 ≤ i < j < l ≤ k,

pi,j = o(xiyiyj) + (yiyj + yixj + zixj + zizj)ei + yiziej + (xj + yj)fi + aj,i

= yiziyj + z2i yj for 1 ≤ i < j ≤ k,

bi,j, l = zjzlui, l + yiaj, l = zizjylzl for 1 ≤ i < j < l ≤ k.

We first show that these polynomials generate H . This needs some prepa-
ration. Let I denote the ideal generated by the set B in R . Let m be
any monomial and s denote the maximum integer in supp(m). Define m =(∏

j∈supp(m)\{s} z
dj
j

) (
ysz

ds−1
s

)
. For example if m = y1z2y3z4 , then m = z1z2z3y4 .

Notice that the multidegree of a monomial m uniquely determines m , i.e., if
d(m) = d(m′), then m = m′ .

Lemma 3.1. If rx(m) = 0, ry(m) > 0, and rz(m) > 0, then m ≡ m mod I .

Proof. Let s denote the biggest integer in supp(m), and t ≤ s denote the
smallest integer in suppy(m). We proceed by reverse induction on t . We first

consider the situation when y2t divides m . Notice that in this case m ≡ m+ mft
y2t

=

mzt
yt

+
mz2t
y2t

mod I . Since rz(m) > 0, there exits 1 ≤ j ≤ k such that z2t zj divides
mz2t
y2t

. Hence
mz2t
y2t

is a multiple of either gt or aj,t . That is
mz2t
y2t
∈ I . It follows

that m ≡ mzt
yt

mod I . Furthermore, rx(
mzt
yt

) = 0 and both ry(
mzt
yt

) and rz(
mzt
yt

)
are positive because yt and zt divide mzt

yt
. Also, since m and mzt

yt
have the same
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multidegree we have m = (mzt
yt

). Therefore by replacing m with mzt
yt

repeatedly,

we may assume that y2t does not divide m .

Assume that t = s . Since y2t does not divide m , we have m = m and the
assertion holds trivially. Hence we may take t < s . We now consider two cases.
First assume that there exists an integer t < t′ ≤ s such that t′ ∈ suppz(m).
Then m is divisible by ytzt′ . Consider the monomial m′ = m +

mut,t′

ytzt′
. Clearly,

m ≡ m′ mod I . Also, since m′ is obtained from m by just replacing yt with
zt and replacing zt′ with yt′ , we have rx(m) = rx(m

′), ry(m) = ry(m
′) and

rz(m) = rz(m
′) and the multidegree of m is equal to the multidegree of m′ .

Moreover, the smallest integer in suppy(m
′) is strictly bigger than t . Hence the

result follows by induction because m = m′ . Next assume that suppz(m) does
not contain any integer that is strictly bigger than t . Hence m is also divisible by
ys . As we did in the first case, by induction it suffices to show that there exists a
monomial m′ ≡ m mod I with same multidegree and the same ranks with respect
to each variable such that the smallest integer in suppy(m

′) is strictly bigger that
t . Note that since rz(m) > 0, there exists i ≤ t such that zi divides m . If i < t ,
then m is divisible by ziytys and so m′ = m +

mpi,t,s
ziytys

is a monomial that meets

the requirements. If i = t , then m is divisible by ytztys and so m′ = m + mpt,s
ytztys

meets the requirements.

We are ready to show that the ideal I generated by B is actually H .

Theorem 3.2. We have H = I .

Proof. It is clear that I ⊆ H . Hence it suffices to show that the orbit sum
o(m) lies in I for any monomial m in R . Set m = xa11 y

b1
1 z

c1
1 · · ·x

ak
k y

bk
k z

ck
k .

Reducing successively modulo the polynomials ei for i ∈ suppx(m), we see
that

m ≡ m∏
i∈suppx(m) x

ai
i

( ∏
i∈suppx(m)

(yi + zi)
ai
)

mod I.

Clearly, the x-ranks of the monomials in the above expansion are all zero
and these monomials share a common multidegree with m . Notice also that all
monomials in the above expansion have strictly positive y -rank if and only if the
y -rank of m is strictly positive. Moreover if the y -rank of m is zero, then there
is precisely one monomial in the above expansion with zero y -rank which is mz .
Similarly the assertions of the last two sentences still hold if one interchanges y
with z in these sentences. Therefore all monomials in the above expansion except
possibly two have strictly positive y -rank and z -rank and therefore reduce to the
same monomial m by the previous lemma. So we have

m ≡ αy(m)mz + αz(m)my + (2a1+a2+···+ak − αy(m)− αz(m))m

≡ αy(m)mz + αz(m)my + (αx(m) + αy(m) + αz(m))m mod I.

Taking the summation over the monomials σ(m) in the orbit of m , we see
that o(m) is equivalent to∑
σ(m)

(
αy(σ(m))σ(m)z+αz(σ(m))σ(m)y+(αx(σ(m))+αy(σ(m))+αz(σ(m)))σ(m)

)
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modulo the ideal I . Note that since the multidegree of m and σ(m) are equal for
all σ ∈ G , it follows that m = σ(m) and my = σ(m)y and mz = σ(m)z for all
σ ∈ G . Notice also that

∑
σ(m) αx(σ(m)),

∑
σ(m) αy(σ(m)) and

∑
σ(m) αz(σ(m))

are exactly the numbers of monomials in the orbit o(m) that have zero x-rank,
y -rank and zero z -rank respectively, where the summation is taken over the
monomials that are in the orbit of m . Since G is the full symmetric group on
{xi, yi, zi} for 1 ≤ i ≤ k , these numbers are equal. Combining all this information
we get

o(m) ≡
∑
σ(m)

αy(σ(m))mz +
∑
σ(m)

αy(σ(m))my +
∑
σ(m)

αy(σ(m))m mod I.

Note also that since G = S3 , the number of monomials in o(m) that have zero y -
rank is either zero, one or two. Therefore from the last identity we have o(m) ∈ I
except for the situation

∑
σ(m) αy(σ(m)) = 1. So it suffices to consider this

case. Without loss of generality we assume that m = xa11 z
c1
1 · · ·x

ak
k z

ck
k is the only

monomial in its orbit with zero y -rank. Say, (d1, d2, . . . , dk) is the multidegree of
m . Then we have ai = ci for 1 ≤ i ≤ k because otherwise a permutation in G that
interchanges xi with zi for 1 ≤ i ≤ k would send m to another distinct monomial
in the orbit with zero y -rank, contradicting that m is the only monomial with
zero y -rank in the orbit. Hence if di is non-zero for some i , it is at least two. First
assume that r(m) is one. Then o(m) is in the ideal generated by ei , fi , gi by
[9], hence o(m) ∈ I . We next assume r(m) > 1. Then there exist 1 ≤ i < j ≤ k
such that di, dj ≥ 2. Then both mz and m are divisible by z2i zj = aj,i and so
mz,m ∈ I . We finish the proof by showing that my ∈ I as well. Note that my

is divisible by y2i y
2
j . Then my ≡ my + myfi

y2i
≡ myzi

yi
+

myz2i
y2i

mod I . But since yj

divides my , both myzi
yi

and
myz2i
y2i

have positive y -rank and z -rank. Moreover they

have the same multidegree and zero x-rank. Therefore by the previous lemma we

get (myzi
yi

) = (
myz2i
y2i

). So my ≡ myzi
yi

+
myz2i
y2i
≡ 2(myzi

yi
) = 0 mod I , as desired.

Remark 3.3. Note that the polynomials bi,j, l ∈ B for 1 ≤ i < j < l ≤ k are
combinations of ui, l and aj, l hence are not needed in a minimal generating set
for H . Therefore the previous theorem shows that H is generated by polynomials
up to degree three independently of the number k of the copies of the natural
representation we consider. The reason for including bi,j, l in B is that they are
needed in the Gröbner basis as we shall see in the next theorem.

We next show that the set B is the reduced Gröbner basis for the ideal H
with respect to the order we fixed in the beginning of the section. A standard way
to do this is to show that the polynomials in B satisfy the Buchberger’s Criterion.
We need to recall some definitions to describe this criterion. The s-polynomial
s(f1, f2) of two polynomials f1 , f2 in R is defined to be M

LT(f1)
f1− M

LT(f2)
f2 , where

M is the monic least common multiple of the leading monomials of f1 and f2 , and
LT(f) denotes the lead term of the polynomial f . Also for polynomials f, g, h in
R , with g 6= 0, we say f reduces to h modulo g in one step if LT(g) divides a
non-zero term T in f and h = f − T

LT(g)
g . We denote this by f ≡ h mod g . For



Sezer and Ünlü 1191

a set of non-zero polynomials J = {f1, . . . , fs} we say that f reduces to h modulo
J , if there exists a sequence of indices i1, i2, . . . , it ∈ {1, 2, . . . , s} and a sequence
of polynomials f = h0, h1, . . . , ht−1, ht = h such that hj ≡ hj+1 mod fij+1

for
0 ≤ j ≤ t− 1. We denote this by f ≡ h mod J . The Buchberger Criterion says
that a set of polynomials J = {f1, f2, . . . , fs} in R is a Gröbner basis for the ideal
they generate in R if and only if for i 6= j , we have s(fi, fj) ≡ 0 mod J . For
more back ground on this criterion we direct the reader to [1, §1].

Remark 3.4. Assume the notation of Lemma 3.1. Note that all the reductions
modulo B in the proof of Lemma 3.1 are obtained by dividing a monomial in
the remainder with the leading monomial of a polynomial in B . Therefore the
proof of Lemma 3.1 actually shows that m ≡ m mod B . It follows that two
monomials m and m′ with the same multidegree satisfying rx(m) = rx(m

′) = 0
and ry(m), ry(m

′) > 0, and rz(m), rz(m
′) > 0 reduce to the same monomial

modulo B . Hence m+m′ ≡ 0 mod B . In this case we say m and m′ cancel.

Theorem 3.5. The set B is the reduced Gröbner basis for H with respect to the
lexicographic order with xi > yi > zi for 1 ≤ i ≤ k and zi > xi+1 for 1 ≤ i ≤ k−1.

Proof. We show that the s-polynomial of any pair of polynomials in B reduces
to zero modulo B . In the proof, a well known fact that we use is that if the leading
monomials of two polynomials are relatively prime then the s-polynomial of this
pair reduces to zero. We will also be using the assertion of the previous remark.

Let B be the subset of B containing the polynomials {ui,j | 1 ≤ i <
j ≤ k} , {pi,j,l | 1 ≤ i < j < l ≤ k} and {pi,j | 1 ≤ i < j ≤ k} . We show
that the s-polynomial of any two polynomials in B reduce to zero modulo B as
follows. Notice that each polynomial in B is a sum of two monomials both of
which have positive y -rank and z -rank. In particular, the s-polynomial of any
two polynomials in B will be either zero or a sum of two monomials with positive
ranks with respect to y and z . It follows that this sum reduces to zero by the
previous remark because the x-ranks of these monomials are zero and they have
the same multidegree.

We check the s-polynomial of all pairs (excluding pairs of monomials) in
B in the order of appearance in the list in the beginning of the section except for
the cases cleared by the previous paragraph.

Note that since xi does not divide any leading monomial in B other than
itself we see that the s-polynomial of ei with all other polynomials in B reduce
to zero.

The polynomials in B whose leading term are not relatively prime to y2i are
ui,j , pt,i,l , pt,j,i , pi,j , pt,i , bj,t,i . We consider the s-polynomial of fi with these ones.
Note that s(fi, ui,j) = yiziyj +yizizj +z2i zj and this reduces to zero because by the
previous remark first two monomials cancel and the third monomial is divisible
by aj,i . We have s(fi, pt,i,l) = z2i ztyl and this is zero modulo at,i . Similarly
s(fi, pt,j,i) = yiziztyj + z2i ztyj + y2i ztyj reduces to zero because z2i ztyj is divisible
by at,i and the remaining two monomials cancel. Also s(fi, pi,j) = z3i yj and this is
divisible by gi . Similarly, s(fi, pt,i) = ytztyizi+ztz

2
i +z2t y

2
i reduces to zero because
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the first and the third monomials cancel and the second one is divisible by at,i .
Finally, s(fi, bj,t,i) = zjztz

2
i yi + zjztz

3
i reduces to zero modulo aj,i .

Next we consider the s-polynomials of gi with other polynomials down the
list. We have s(gi, ut,i) = ztyiz

2
i and this is divisible by at,i . Also s(gi, pi,j,l) =

z3i zjyl and s(gi, pi,j) = z4i yj are both divisible by gi .

Next polynomial down the list is ui,j . Note that s(ui,j, aj,t) = z2t ziyj is
divisible by ai,t . Meanwhile s(ui,j, at,j) = zizjztyj . This monomial is divisible by
aj,i if t = i and by ai,j if t = j . Otherwise, zizjztyj is equal to bi,t,j or bt,i,j
provided t < j . Finally if j < t , then zizjztyj reduces to ziz

2
j yt modulo uj,t but

ziz
2
j yt is divisible by ai,j . Note also that s(ui,j, bq,l,i) = yjz

2
i zqzl is divisible by

aq,i . We also have s(ui,j, bq,j,l) = yjzizqylzl . This is divisible by bi,q,l if i < q ,
by bq,i,l if q < i and by al,i if i = q . Also s(ui,j, bq,l,j) = zqzlziy

2
j reduces to

zqzlziyjzj + zqzlziz
2
j modulo fj . This further reduces to zero modulo bq,l,j and

ai,j . The polynomial s(ui,j, bj,q,l) is seen to reduce to zero along the same lines.

Next we consider the s-polynomials of ai,j with the other members down
the list. These polynomials are easily seen to reduce to zero modulo B because
s(ai,j, pi,q,l), s(ai,j, pj,q,l), s(ai,j, pi,q) and s(ai,j, pj,q) are all divisible by ai,j .

As for the s-polynomials involving pi,j,l , it is easy to see that s(pi,j,l, bi,q,t),
s(pi,j,l, bi,q,j), s(pi,j,l, bi,q,l), s(pi,j,l, bq,i,t), s(pi,j,l, bq,i,j) and s(pi,j,l, bq,i,l) are divis-
ible by bi,q,t , ai,j , bi,q,l , bq,i,t , ai,j and bq,i,l respectively. Moreover s(pi,j,l, bq,t,i),
s(pi,j,l, bq,t,j) and s(pi,j,l, bq,t,l) are divisible by bq,t,i , ai,j and bq,t,l respectively.

We finish with the s-polynomials of pi,j with bq,t,l . Let m denote the
least common multiple of pi,j and bq,t,l where the sets {i, j} and {q, t, l} are
not necessarily disjoint. Then rz(

m
yiziyj

) is strictly positive and so there exists

1 ≤ r ≤ k such that zr divides m
yiziyj

and therefore s(pi,j,l, bq,t,l) is divisible by

z2i zr . But this is ar,i if i 6= r and gi if i = r .

Remark 3.6. We remark that the reduced Gröbner basis for the Hilbert ideal of
the natural action of Sn and An is determined by the ordering of the variables, see
[2] and [16]. In Section 1 we saw that this property is preserved for any direct sum
of the two dimensional representation of S2 : The lead term ideal is determined
with the ordering of the variables in each copy. But the reduced Gröbner basis we
just computed in Theorem 3.5 reveals that this property does not hold in general
for the vector invariants of Sn : With the notation of this section, the monomial
ziyj is not in LT(H) if i < j . However, if we use the graded reverse lexicographic
order with the same ordering of the variables then ziyj is the leading monomial of
ui,j .

3.2. *. Characteristic three case We assume that F has characteristic three and
we continue with the notation in the previous subsection for the characteristic
two case. For 1 ≤ i 6= j ≤ k define ti,j = −(yj + zj)ei + xi(ej) − o(xixj) =
yiyj − yizj − ziyj + zizj . Let B denote the set consisting of polynomials ei , fi ,
gi , ti,j for 1 ≤ i 6= j ≤ k . Again, let I denote the ideal in R generated by B .
We first show that it suffices to check o(m) ∈ I for only certain monomials m to
deduce that I = H . All equivalences are modulo I unless otherwise stated.
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Lemma 3.7. I = H if and only if o(m) ∈ I for all monomials m ∈ R such
that m = mz .

Proof. Since H is generated by the set of all orbit sums, I = H implies
I contains all orbit sums. Conversely, let m′ ∈ R be an arbitrary monomial.
Reducing m′ modulo ei , fi and ti,j for 1 ≤ i 6= j ≤ k we have m′ ≡

∑
m ,

where each m in the summation satisfies m = mz or m = yimz/zi for some
i ∈ supp(m). We may assume m′ is an not invariant monomial (otherwise it is in
the ideal generated by ei, fi, gi for 1 ≤ i ≤ k ). So the stabilizer in S3 of m′ is
either trivial or has order two and since we are in characteristic three, summing
m′ =

∑
m over the elements in S3 expresses o(m′) in terms of the orbit sums

o(m) of monomials that appear in the summation modulo I . To finish the proof
of the lemma, we show that o(yimz/zi)+o(mz) ∈ I for all monomials m ∈ R with
i ∈ supp(m). Identify x, y, z with 1, 2, 3 respectively. Then we have e(yimz/zi) +
(12)(yimz/zi) = yimz/zi + ximz/zi ≡ yimz/zi + (−yi − zi)mz/zi = −mz . We
also have (23)(yimz/zi) + (213)(yimz/zi) = (zimy/yi) + (ximy/yi) ≡ (zimy/yi) +
((−yi − zi)my/yi) = −my and similarly, (13)(yimz/zi) + (123)(yimz/zi) ≡ −mx .
It follows that o(yimz/zi) ≡ −(mx +my +mz) = −o(mz) as desired.

To show o(m) ∈ I for all monomials m = mz we reduce some special type
of monomials modulo I .

Lemma 3.8. Let m = yb11 z
c1
1 · · · y

bk
k z

ck
k be a monomial such that bi ≤ 1 for

1 ≤ i ≤ k . Then

m ≡ (1− ry(m))mz +
∑

s∈suppy(m)

(ysmz/zs).

Proof. We proceed with induction on the size ry(m) of suppy(m). If ry(m) =
0, then m = mz and there is nothing to prove. If ry(m) = 1, then y = yimz/zi ,
where {i} = suppy(m) and the assertion holds trivially as well. So assume that
ry(m) > 1 and pick i, j ∈ suppy(m). Reducing modulo ti,j we see that

m ≡ mzi/yi +mzj/yj −mzizj/yiyj.

Call the monomials on the right hand side of the equivalence as m′ , m′′ and
m′′′ , respectively. Since the multidegrees of m , m′ , m′′ , m′′′ are all the same
we have mz = m′z = m′′z = m′′′z and also ry(m

′) = ry(m
′′) = ry(m) − 1 and

ry(m
′′′) = ry(m)− 2. Moreover, since suppy(m) = suppy(m

′)∪{i} = suppy(m
′′)∪

{j} = suppy(m
′′′) ∪ {i, j} , it follows that

zimz/yi +
∑

s∈suppy(m′)

(ysmz/zs) =
∑

s∈suppy(m)

(ysmz/zs).

Similarly we have

zjmz/yj +
∑

s∈suppy(m′′)

(ysmz/zs) =
∑

s∈suppy(m)

(ysmz/zs) and
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zjmz/yj + zimz/yi +
∑

s∈suppy(m′′′)

(ysmz/zs) =
∑

s∈suppy(m)

(ysmz/zs).

Therefore
∑

s∈suppy(m)(ysmz/zs) is equal to∑
s∈suppy(m′)

(ysmz/zs) +
∑

s∈suppy(m′′)

(ysmz/zs)−
∑

s∈suppy(m′′′)

(ysmz/zs).

Note that by induction we have m′ ≡ (2 − ry(m))mz +
∑

s∈suppy(m′)(ysmz/zs)

because (1 − ry(m
′))m′z ≡ (2 − ry(m))mz Hence the result follows by applying

inductive hypothesis to m′ , m′′ as well since m ≡ m′ +m′′ −m′′′ .

Theorem 3.9. We have H = I .

Proof. In view of Lemma 3.7, it suffices to show o(m) ∈ I for all monomials
such that m = mz . Then we have o(m) = mx + my + mz . We assume that
di ≤ 2 for 1 ≤ i ≤ k because otherwise mz is divisible by some gi and hence
o(m) ∈ I . As well, we take r(m) > 1 because if r(m) = 1, then o(m) is in the
ideal generated by ei , fi , gi by [9], where {i} = supp(m). Write supp(m) = EtO ,
where E = {i ∈ supp(m) | di = 2} and O = {i ∈ supp(m) | di = 1} .

Reducing my modulo fi for i ∈ E , we have

my =
∏

i∈supp(m)

ydii ≡ (
∏
i∈O

yi)(
∏
i∈E

(−yizi − z2i )).

Similarly, reducing first by ei and then by fi we get x2i ≡ (−1)2(yi + zi)
2 =

y2i + 2yizi + z2i ≡ yizi . It follows that

mx =
∏

i∈supp(m)

xdii ≡ (
∏
i∈O

−(yi + zi))(
∏
i∈E

yizi).

Note that the multiplicity of yi for i ∈ supp(m) in the monomials that appear on
the right hand side of the equivalences for my and mx is at most one. Therefore
the previous lemma applies and we compute o(m) modulo I as follows. Note
that the coefficients of the monomials that appear in the expansion of my and
mx are −1|E| and −1|O| , respectively. Let s ∈ supp(m). Then ys divides 2|E\{s}|

many monomials in the expansion of my and similarly, ys divides 2|O\{s}| many
monomials in the expansion of mx . Meanwhile the y -rank of the monomials that
appear in the expansion of my varies between |O| and |O|+|E| and for 0 ≤ j ≤ |E|
the number of monomials in the expansion with y -rank |O|+ j is

(|E|
j

)
. Similarly,

the y -rank of the monomials that appear in the expansion of mx varies between
|E| and |O|+ |E| and for 0 ≤ j ≤ |O| the number of monomials in the expansion
with y -rank |E|+ j is

(|O|
j

)
. Then it follows from the previous lemma that

o(m) ≡
∑

s∈supp(m)

((−1)|E|2|E\{s}| + (−1)|O|2|O\{s}|)(ysmz/zs)

+
(
1 +

|E|∑
j=0

(−1)|E|
(
|E|
j

)
(1− |O| − j) +

|O|∑
j=0

(−1)|O|
(
|O|
j

)
(1− |E| − j)

)
mz.
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We show that all coefficients of ysmz/zs and mz in the expansion above are zero.
Fix s ∈ supp(m). Without loss of generality assume s ∈ E . Then (−1)|E|2|E\{s}| =
(−1)(−1)|E|−12|E|−1 = −1 and (−1)|O|2|O\{s}| = (−1)|O|2|O| = 1. It follows that

the coefficient of ysmz/zs is zero. Since
∑|E|

j=0(−1)|E|
(|E|
j

)
= 1, we get that the

coefficient of mz is zero once we show
∑|E|

j=0(−1)|E|
(|E|
j

)
j +

∑|O|
j=0(−1)|O|

(|O|
j

)
j =

−(|E|+ |O|). But this follows from Lemma 3.10.

Lemma 3.10. Let a be a non-negative integer. Then
∑a

j=0(−1)aj
(
a
j

)
≡ −a

mod 3.

Proof. Note that the equation is trivially true for a = 0. For positive a ,
differentiating the expansion (x + y)a =

∑a
j=0

(
a
j

)
xjya−j with respect to x and

then evaluating at x = y = 1 gives the desired equality.

Showing that the set B is the reduced Gröbner basis for H turns out to be
much simpler compared to the characteristic two case.

Theorem 3.11. The set B is the reduced Gröbner basis for H with respect
to the lexicographic order with xi > yi > zi for 1 ≤ i ≤ k and zi > xi+1 for
1 ≤ i ≤ k − 1.

Proof. We have already noted in the characteristic two case that if the leading
monomials of two polynomials are relatively prime, then the s-polynomial of this
pair reduces to zero. Therefore it suffices to consider the s-polynomials s(fi, ti,j)
and s(ti,j, ti,l) for distinct i, j, l with 1 ≤ i, j, l ≤ k . Note that s(fi, ti,j) =
yjfi−yiti,j reduces to −yiyjzi+yizizj+yjz2i −z2i zj modulo fi which is a multiple of
ti,j . Secondly, s(ti,j, ti,l) = ylti,j − yjti,l reduces to −yizjyl + zizjyl + yizjzl− zizjzl
modulo ti,j which is a multiple of ti,l .

Acknowledgment. We thank the referee for helpful remarks. Specifically, the
quick and the simple proof of Lemma 3.10 is pointed to us by the referee.
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