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1. Introduction

Let g denote a simple Lie algebra over the field C of complex numbers. The
problem of integrating (or globalising) a given g-module consists in finding a
representation of a real Lie group G on a Hilbert (resp. Banach, Fréchet) space
H such that g is the complexification of the Lie algebra of G and a certain dense
subspace of H (e.g. K -finite vectors, smooth vectors, analytic vectors) which is
isomorphic to the g-module we started with. This problem and its variants have
received much attention (e.g. [2, 3, 7, 25, 26]). A particularly interesting case is the
case of (g, K)-modules, for which we have the following result due to Casselman:
given any finitely generated Harish-Chandra module (π, V ) over (g, K), there is
up to canonical topological isomorphism exactly one smooth representation of G of
moderate growth whose underlying (g, K)-module is isomorphic to V . Moreover,
the assignment taking V to this smooth representation of G is functorial and exact
(see [7]). In this context, the action of the compact group K is the cornerstone
for integrability.

On the other hand, fix a Cartan subalgebra h of g . A weight module is a
g-module, h-diagonalizable, having finite dimensional weight spaces. The set of
all weight g-modules is a category containing the BGG category O . This category
of weight modules has been much studied in recent years (e.g. [4, 5, 6, 9, 10, 11,
12, 16, 17, 18]). It is then a natural problem to describe those weight modules
that integrate to continuous (resp. unitary) representations of simply-connected
real Lie groups. They should form a small but interesting class of representations,
with small Gelfand-Kirillov dimension. In this paper, we give a classification of
integrable weight modules whose weight multiplicities are all equal to 1.
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Let us explain our strategy. Let G be a simply-connected real Lie group
whose complexified Lie algebra is g . Assume the g-module V integrates to a
continuous representation π of G in some Hilbert space H . Let K be a compact
subgroup of G and denote by (π|K ,H|K) the representation (π,H) restricted to
K . Then it is well known that the representation (π|K ,H|K) is unitarizable.
Therefore, we can express H|K as a direct sum of simple finite dimensional unitary
representations of K . As a consequence, the (complexified) Lie algebra of K acts
nicely on V : the module V is a k-finite g-module (see section 2 for a definition).
If K is big enough, this condition is strong enough to imply that V should be
a highest (or lowest) weight module. We then use a classification result due to
Benkart, Britten and Lemire to describe the possible modules. Then it remains to
check whether or not these modules can be integrated. The final results are stated
in theorems 3.11, 3.13, 4.1. Our results also make use of a theorem of Jørgensen
and Moore and classical results about discrete series. They are consistent with
previous works on unitarizable highest weight modules (see [8, theorem 2.4]) and
on the so-called Wallach points (see [26, theorem 5.10]).

2. Some facts about weight modules

Weight modules of degree 1. Let g denote a simple Lie algebra over the field
C of complex numbers. Fix a Cartan subalgebra h . A g-module V is called a
weight module if

1. The module V is finitely generated,

2. We have the following decomposition of V :

V =
⊕
λ∈h∗

Vλ, Vλ := {m ∈ V | ∀ H ∈ h, H ·m = λ(H)m},

3. The weight spaces Vλ are all finite dimensional.

We call degree of a weight module the supremum of the dimension of the weight
spaces:

deg(V ) = sup
λ
{dim(Vλ)} ∈ Z≥0 ∪∞.

When deg(V ) ∈ Z≥0 , we call V a bounded module. In particular, if V is a weight
g-module of degree 1, then all the non zero weight spaces are 1-dimensional. The
weight modules of degree 1 have been studied by Benkart, Britten and Lemire [1].
In particular, they constructed weight modules of degree 1, N(a) (with a ∈ Cn )
for sl(n+ 1,C) and M(b) (with b ∈ Cn ) for sp(n,C) (see [1, pp. 337-339] for the
explicit construction of these modules). Moreover, they proved the following:

Theorem 2.1 (Benkart, Britten, Lemire [1]). Let V be a simple infinite dimen-
sional weight g-module of degree 1. Then

1. The Lie algebra g is isomorphic to either sl(n+ 1,C) or to sp(n,C).

2. The Gelfand-Kirillov dimension of V equals the rank of g.
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3. If g = sl(n+ 1,C), then there is a ∈ Cn such that V ∼= N(a).

4. If g = sp(n,C), then there is b ∈ Cn such that V ∼= M(b).

For our purpose we shall need another notion. Let l be a subalgebra of g .
A g-module V is a (g, l)-module of finite type if as an l-module, V splits into a
direct sum of simple finite dimensional l-modules, with finite multiplicities. For
instance, a weight module is a (g, h)-module of finite type. The general notion of
(g, k)-module has been studied in details by Penkov, Serganova and Zuckerman in
[20, 21, 22, 23, 24].

Classification of (g, lj)-module of finite type and of degree 1. Let n be
a positive integer greater than 1. Let g denote the Lie algebra sl(n + 1,C). Let
h denote the standard Cartan subalgebra of g , consisting of diagonal matrices.
Denote by H0, H1, . . . , Hn−1 its canonical basis. Denote by Ej (resp. Fj ) the
vector in g corresponding to the elementary matrix Ej+1,j+2 (resp. Ej+2,j+1 ) for
0 ≤ j ≤ n − 1. Then g is Lie-generated by the vectors {Hj, Ej, Fj}0≤j≤n−1 .
Denote by lj the maximal standard Levi subalgebra of g Lie-generated by h and
the vectors {Ek, Fk}k 6=j .

For future use, we shall find those infinite dimensional weight g-modules
of degree 1 whose restriction to some lj is a direct sum of finite dimensional lj -
modules. To this aim, we need the following general result:

Lemma 2.2 (Fernando [9], Benkart-Britten-Lemire [1]). Let a be a simple Lie
algebra over C. Let t be a Cartan subalgebra of a. Let V be a simple weight
a-module. Let R denote the root system of (a, t). Then

1. For any α ∈ R, and any X ∈ aα \ {0}, the action of X on V is either
locally finite or injective.

2. Let α, β ∈ R be such that there are X± ∈ a±α \ {0} and Y ± ∈ a±β \ {0}
satisfying X± both act locally finitely on V and Y ± both act injectively on
V . Then α + β 6∈ R.

Proof. See [1, Section4].

Corollary 2.3. Let V be a simple weight g-module. Let 0 ≤ j ≤ n−1. Assume
that V is a (g, lj)-module of finite type. Then V is a highest weight or a lowest
weight module.

Proof. From lemma 2.2, the vectors Ek and Fk act locally finitely or injectively
on V . By hypothesis, they act locally finitely for k 6= j . Now, lemma 2.2 applied
to Ej , Fj and either Ej−1 , Fj−1 or Ej+1 , Fj+1 shows that at least one of the
vectors Ej and Fj acts locally finitely on V . In the first case, the module is a
highest weight module. In the second case, it is a lowest weight module.

Denote by {ωi}i=1..n the fundamental weights for g . Recall now the follow-
ing:
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Proposition 2.4 (Benkart-Britten-Lemire [1, Proposition 3.4]). Up to isomor-
phism, the only highest weight g-module of degree 1 are the modules with highest
weight aω1 , aωi − (1 + a)ωi+1 , and aωn , for a ∈ C.

In the notation of theorem 2.1, these modules correspond to N(a, 0, . . . , 0),
N(−1, . . . ,−1︸ ︷︷ ︸

i

,−1− a, 0, . . . , 0), and N(−1, . . . ,−1,−1− a), for a ∈ C .

In the sequel we will often work with the sl(n+1,C)-module N(a, 0, . . . , 0).
For the convenience of the reader we write down here the action of the vectors
{Hj, Ej, Fj}0≤j≤n−1 on a basis. The module N(a, 0, . . . , 0) has a basis x(k) in-
dexed by k ∈ Zn≥0 . If k = (k1, . . . , kn) ∈ Zn≥0 , we set |k| := k1 + · · · + kn . The
action is given by:

H0 · x(k) = (a− k1 − |k|)x(k) (1a)

Hj · x(k) = (kj − kj+1)x(k) (1b)

E0 · x(k) = k1x(k − ε1) (1c)

F0 · x(k) = (a− |k|)x(k + ε1) (1d)

Ej · x(k) = kj+1x(k − εj+1 + εj) (1e)

Fj · x(k) = kjx(k + εj+1 − εj) (1f)

From this classification, we are in position to prove the

Proposition 2.5. Let 0 ≤ j ≤ n − 1. Let V be a simple infinite dimensional
(g, lj)-module of finite type and of degree 1. Then

1. If j = 0, then V or its contragredient is isomorphic to N(a, 0, . . . , 0), for
some a ∈ C \ Z≥0 or to N(−1,m, 0, . . . , 0) for some m ∈ Z≥0 .

2. If j = n−1, then V or its contragredient is isomorphic to N(−1, . . . ,−1, a),
for some a ∈ C \ Z<0 or to N(−1, . . . ,−1,−1−m, 0) for some m ∈ Z≥0 .

3. If 0 < j < n− 1, then V or its contragredient is isomorphic to
N(−1, . . . ,−1︸ ︷︷ ︸

j+1

,m, 0, . . . , 0) or N(−1, . . . ,−1︸ ︷︷ ︸
j

,−1 − m, 0, . . . , 0), for some

m ∈ Z≥0 .

Proof. From corollary 2.3, V or its contragredient is a simple highest weight
module. Therefore we know that V or its contragredient is given by proposition
2.4. It thus remains to check whether or not the modules in proposition2.4 satisfy
the restriction property.

Assume that j = 0. Let 0 < k < n − 1 and consider the module
V = N(−1, . . . ,−1, a, 0, . . . , 0) where a is a complex number in position k + 1.
Then the highest weight x for this module satisfies:

Hk−1 · x = (−1− a)x, Hk · x = ax.

If k−1 6= 0, then by our assumption on V , x should generate a finite dimensional
module. This imposes that the vectors H1, . . . , Hn−1 of the Cartan subalgebra acts
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on x by non negative integers. Therefore a and −1 − a should be non negative
integers, which is impossible. The same argument shows that for k = 1 we must
have a ∈ Z≥0 .

Consider now the module N(−1, . . . ,−1, a) for a ∈ C . Using once again
the same argument, we show that necessarily a should be a negative integer. In
this case, the module is finite dimensional.

We need to show now that N(a, 0, . . . , 0) for a ∈ C \ Z≥0 and
N(−1,m, 0, . . . , 0) for m ∈ Z≥0 do satisfy the restriction property. Let us prove
it for N(a, 0 . . . , 0).

We want to find those linear combinations
∑

µkx(k) which are highest
weight vectors for the action of l0 . From the explicit action given by formulae
(1), we conclude that the highest weight vectors are the linear combinations of the
following linearly independent highest weight vectors:

x(k1, 0, . . . , 0), k1 ∈ Z≥0.

We shall prove now that the module U(l0)x(k1, 0, . . . , 0) is a simple highest weight
module. Since it is a highest weight module, it is indecomposable. It is simple
if and only if it does not contain a highest weight vector linearly independent of
x(k1, 0, . . . , 0). But any such vector is a linear combination of x(k′, 0, . . . , 0) for
some k′ ∈ Z≥0 . However the action of nH0 + (n − 1)H1 + · · · + Hn−1 , vector
generating the center of l0 , on x(k′, 0, . . . , 0) is:

(nH0 + (n− 1)H1 + · · ·+Hn−1) · x(k′, 0, . . . , 0) = na− (n+ 1)k′.

Therefore the center acting as a scalar on U(l0)x(k1, 0, . . . , 0), we conclude that
there is no highest weight vector in this module but the multiples of x(k1, 0, . . . , 0).
Thus proving that the module is simple. Hence it is clear that we have the following
branching:

N(a, 0, . . . , 0)|l0 =
⊕
k∈Z≥0

U(l0)x(k, 0, . . . , 0).

Therefore we proved that N(a, 0, . . . , 0) is a (g, l0)-module of finite type as as-
serted. The proof for N(−1,m, 0, . . . , 0) is the same.

The case j > 0 is analogous.

3. Type A case

In this section, we shall find which degree 1 sl(n + 1,C)-module integrate to a
continuous representation of some real Lie group whose complexified Lie algebra
is sl(n+ 1,C).

A natural action of SU(1, n). Let n be a positive integer. Let SU(1, n) denote
the subgroup of GL(n+ 1,C) consisting of those matrices g such that

tḡ ×
(
−1

In

)
× g =

(
−1

In

)
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and whose determinant is 1. We shall label rows and columns from 0 to n . This
is a real Lie group. It acts on Sn := {(zj) ∈ Cn |

∑n
j=1 |zj|2 = 1} via

g ·

 z1
...
zn

 =



n∑
j=0

gj1zj

n∑
j=0

gj0zj

...
n∑
j=0

gjnzj

n∑
j=0

gj0zj



,

where g = (gjk)0≤j,k≤n ∈ SU(1, n) and z0 = 1. Since SU(1, n) preserves the
quadratic form −|Z0|2 + |Z1|2 + · · ·+ |Zn|2 , the denominator is never 0 and g · z is
in Sn for any z ∈ Sn . Denote by dσ the measure on Sn induced from the Lebesgue
measure of Cn and by Ωn the volume of Sn . It is well known that Ωn = 2πn

(n−1)!
.

We also denote by H(Cn) the space of holomorphic functions from Cn to C .
Then the action of SU(1, n) on Sn induces a natural continuous representation on
L2(Sn, dσΩn

) ∩H(Cn). We can further construct a unitary representation ρ on this
space by

ρ(g)(ϕ)(z) :=

(
n∑
j=0

(g−1)j0zj

)−n
× ϕ(g−1 · z).

Let k = (kj) ∈ Zn≥0 . Set P (k)(z) :=
n∏
j=1

z
kj
j . Then the family (P (k))k∈Zn

≥0

is an orthogonal basis for the Hilbert space L2(Sn, dσΩn
) ∩ H(Cn). Moreover, we

have ‖P (k)‖2 =

n∏
j=1

kj!

|k|∏
j=1

(j + n− 1)

, where |k| :=
n∑
j=1

kj .

Consider the following 1-parameter families:

eitH1 :=



1
e−it

eit

1
. . .

1


, . . . , eitHn−1 :=


1

. . .

1
e−it

eit

 .
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etX1 :=



1
cos t − sin t
sin t cos t

1
. . .

1


, etY1 :=



1
cos t −i sin t
−i sin t cos t

1
. . .

1


,

...

etXn−1 :=


1

. . .

1
cos t − sin t
sin t cos t

 , etYn−1 :=


1

. . .

1
cos t −i sin t
−i sin t cos t

 ,

etX0 :=


cosh t − sinh t
− sinh t cosh t

1
. . .

1

 , etY0 :=


cosh t −i sinh t
i sinh t cosh t

1
. . .

1

 ,

eitH0 :=


e−it

eit

1
. . .

1

 .

Then the Lie algebra su(1, n) of SU(1, n) is generated (as a Lie algebra) by

iH0, . . . , iHn−1, X0, . . . , Xn−1, Y0, . . . Yn−1.

Set

E0 :=
X0 + iY0

2
, F0 :=

X0 − iY0

2
,

Ej := −Xj + iYj
2

, Fj :=
Xj − iYj

2
, 1 ≤ j ≤ n− 1.

Then (Hj, Ej, Fj)0≤j≤n generates a Lie algebra g isomorphic to sl(n+ 1,C). The
Cartan subalgebra h of g is the subalgebra generated by {H0, . . . , Hn−1} . We can
compute as usual the action of g on the basis (P (k))k∈Zn

≥0
. We get:

H0 · P (k) = (−n− |k| − k1)P (k)
E0 · P (k) = k1P (k − ε1)
F0 · P (k) = (−n− |k|)P (k + ε1)

, (2a)


Hj · P (k) = (kj − kj+1)P (k)
Ej · P (k) = kj+1P (k − εj+1 + εj)
Fj · P (k) = kjP (k + εj+1 − εj)

, ∀ 1 ≤ j ≤ n− 1, (2b)

where εj is the vector in Zn≥0 whose entries are all zero except the j th entry which
is 1.
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In the sequel we shall deform this infinitesimal representation and show the
1-parameter deformation thus constructed integrates to a continuous representa-
tion of the universal cover of SU(1, n). We shall further explicit those values of
the parameter such that the representation is unitary.

Deformation of the natural action of sl(n + 1,C). To each k ∈ Zn≥0 , let us
associate a vector e(k). Let

H :=


u :=

∑
k∈Zn

≥0

uke(k)

∣∣∣∣∣∣∣∣∣∣∣
∑
k∈Zn

≥0

|uk|2

n∏
j=1

kj!

|k|∏
j=1

(j + n− 1)

<∞


.

We define on H a Hilbert space structure by requiring that the basis (e(k))

is orthogonal and that ‖e(k)‖2 =

n∏
j=1

kj!

|k|∏
j=1

(j + n− 1)

. Denote by G the universal

cover of SU(1, n). According to the previous subsection, there is a continuous
representation ρ of G (in fact, a unitary representation of SU(1, n)) corresponding
to the representation of g given on H by formulae (2).

Definition 3.1. Let a ∈ C \ Z≥0 . For any l ∈ Z≥0 , set

µa(l) :=

√√√√ l∏
j=1

j + n− 1

|j − a− 1|
.

We denote by Ha the following representation of sl(n + 1,C). As a Hilbert
space, Ha = H . The action of sl(n + 1,C) on Ha is given by operators
(Hj(a), Ej(a), Fj(a))0≤j≤n−1 , satisfying:

∀ 1 ≤ j ≤ n− 1, Hj(a) = Hj, Ej(a) = Ej, Fj(a) = Fj,

(H0(a)−H0) · e(k) = (n+ a)e(k), (3a)

(E0(a)− E0) · e(k) = k1

(
µ(|k| − 1)

µ(|k|)
− 1

)
e(k − ε1), (3b)

(F0(a)− F0) · e(k) =

(
(a− |k|)µ(|k|+ 1)

µ(|k|)
+ n+ |k|

)
e(k + ε1). (3c)

Remark 3.2.

1. Note that µa(l) is a well defined positive real number. Moreover, if a = −n ,
then µ−n(l) = 1 and the operators (Hj(a), Ej(a), Fj(a))0≤j≤n−1 coincide
with the undeformed operators given by formulae (2).
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2. Set x(k) := µ(|k|)e(k). Then ‖x(k)‖2 =

n∏
j=1

kj!

|k|∏
j=1

|j − a− 1|

. Moreover, x(k) is

also a basis for Ha and the deformed action of sl(n+1,C) on Ha is precisely
the one given in [1] for the module N(a, 0, . . . , 0).

In the sequel we will use the following numbers

m−k := k1

(
µ(|k| − 1)

µ(|k|)
− 1

)
, m+

k := (a− |k|)µ(|k|+ 1)

µ(|k|)
+ n+ |k|.

Integrability of the representation Ha . To prove the integrability of the
representation Ha we shall use a criterion of Jørgensen and Moore [13]. Let
us recall it. Let H′ be a Hilbert space. Let D be a dense subspace. Denote
by ‖ · ‖0 the Hilbert norm. By A(D) we mean the set of all operators on
D . Let A0 = Id and let A1, . . . , Ad be a basis for some (finite dimensional)
Lie algebra included in A(D). We define inductively a norm ‖ · ‖

l
on D by

setting ‖u‖
l+1

:= max{‖Aku‖l , 0 ≤ k ≤ d} . Denote by Dl the completion of D
with respect to ‖ · ‖

l
and by Lj the space of continuous operators of Dj . Let

Lu(D∞) := ∩{Lj, j ≥ 0} and A∞(D) := A(D) ∩ Lu(D∞). This is the set of
operators on D bounded for all the norms ‖ · ‖

l
.

Theorem 3.3 (Jørgensen-Moore). Let G be a connected simply-connected Lie
group, whose corresponding Lie algebra is denoted gR . Let π0 be a continuous
representation of G on H′ . Set L0 := dπ0(gR). Let D := C∞(π0). Let S0 be a
set of Lie generator for L0 . Let f : S0 → A∞(D) be such that

S := {A+ f(A), A ∈ S0}
generates a finite dimensional Lie algebra L. Then the representation L can be
integrated into a continuous representation π of G such that dπ(gR) = L.

To apply the theorem to our situation, we set
S0 := {iHj, Xj, Yj, 0 ≤ j ≤ n− 1} .

The Hilbert space is H , the dense subset is

D :=

u =
∑
k∈Zn

≥0

uke(k) ∈ H

∣∣∣∣∣∣
∑
k∈Zn

≥0

|k|Nuke(k) ∈ H, ∀ N ∈ Z≥0

 .

The function f is given by the formulae (2). At this point, we need to check that
the image of f is in A∞(D), i.e. to check that the operators defined on D by
formulae (2) are bounded for all the norms ‖ · ‖

l
. As f(iHj) = f(Xj) = f(Yj) = 0

for j ≥ 1, we only need to consider the three operators f(iH0), f(X0) and f(Y0).
As f(iH0) is a scalar operator, the boundedness is clear. We have to prove it for
f(X0) and f(Y0). First we note the following:
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Lemma 3.4. The operators f(X0) and f(Y0) are bounded for all the norms
‖ · ‖

l
if and only if the operators f(E0) and f(F0) are.

Proof. This is clear since X0 and Y0 are linear combination of E0 and F0 and
vice-versa.

Lemma 3.5. The operators f(E0) and f(F0) are bounded for all the norms
‖ · ‖

l
if and only if they are bounded for all the norms constructed using the set

S̃0 := {Hj, Ej, Fj, 0 ≤ j ≤ n− 1} instead of S0 .

Proof. Again, this follows from the fact that we can express the elements of
S0 as linear combinations of those in S̃0 and vice-versa.

Proposition 3.6. The operators f(E0) and f(F0) are bounded for all the
norms ‖ · ‖

l
.

Proof. From the lemma 3.5, we can use the norms ‖ · ‖
l

constructing from the
set S̃0 . We prove the lemma by induction on l for f(E0). The proof for f(F0) is
analogous. Let u :=

∑
uke(k) ∈ D . Then

‖f(E0)u‖2 =
∑
k

|uk|2|m−k |
2‖e(k − ε1)‖2

=
∑
k|k1>0

|uk|2|m−k |
2‖e(k)‖2 |k|+ n− 2

k1

=
∑
k|k1>0

|uk|2‖e(k)‖2 × k1(|k|+ n− 2)

(
µ(|k| − 1)

µ(|k|)
− 1

)2

≤ sup
k|k1>0

{
k1(|k|+ n− 2)

(
µ(|k| − 1)

µ(|k|)
− 1

)2
}
×
∑
k

|uk|2‖e(k)‖2

= sup
k|k1>0

{
k1(|k|+ n− 2)

(
µ(|k| − 1)

µ(|k|)
− 1

)2
}
× ‖u‖2.

Using an asymptotic development of
(
µ(|k|−1)
µ(|k|) − 1

)2

we easily see that the above

supremum is finite, thus proving that f(E0) is bounded for ‖ · ‖0 . Assume now
that f(E0) is bounded for the norms ‖ · ‖

l
for 0 ≤ l ≤M − 1.

Let A1, . . . , AM be elements in S̃0 . Let u ba as above and consider the ex-
pression ‖A1 · · ·AMf(E0)u‖2 . Since A1 · · ·AM is a weight vector in the enveloping
algebra, the vectors A1 · · ·AMe(k) are mutually orthogonal. Therefore, we have

‖A1 · · ·AMf(E0)u‖2 =
∑
k

|uk|2|m−k |
2‖A1 · · ·AMe(k − ε1)‖2. (4)

Now from formulae (2), it is clear that

A1 · · ·AMe(k) = PA1···AM
(k)e(k + l(A1 · · ·AM)),
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where PA1···AM
(k) is a polynomial in (k1, . . . , kn), product of M monomials of

degree 1. For brevity, we shall denote it by P (k) in the sequel. Moreover

l(A1 · · ·AM) ∈ Zn and |l(A1 · · ·AM)| :=
n∑
j=1

|l(A1 · · ·AM)j| is a non negative

integer smaller than 2M , since for any A ∈ S̃0 , the vector Ae(k) is either a
multiple of e(k) or a multiple of e(k± ε1) or a multiple of e(k± εj ± εj+1). In the
sequel, we denote l(A1 · · ·AM) simply by l .

Let k be such that P (k − ε1) 6= 0 and k1 6= 0. If P (k) = 0 then there is
1 ≤ j ≤M such that Aj = H1 . This is proved by induction on M using the action
of S̃0 given by formulae (2). In particular, if k1 6= 0, P (k) 6= 0 and P (k− ε1) 6= 0,

then |P (k−ε1)|
|P (k)| is well-defined and is bounded by a number depending on M only.

Now we write

‖A1 · · ·AMf(E0)u‖2 =
∑

k | A1 · · ·AMe(k) 6= 0,
A1 · · ·AMe(k − ε1) 6= 0

|uk|2|m−k |
2‖A1 · · ·AMe(k − ε1)‖2

+
∑

k |A1 · · ·AMe(k) = 0,
A1 · · ·AMe(k − ε1) 6= 0

|uk|2|m−k |
2‖A1 · · ·AMe(k − ε1)‖2. (5)

Let us work with the first sum. We can rewrite it in the following form:∑
|uk|2|m−k |

2‖A1 · · ·AMe(k − ε1)‖2

‖A1 · · ·AMe(k)‖2
‖A1 · · ·AMe(k)‖2.

This in turn is equal to:∑
|m−k |

2 |P (k − ε1)|2

|P (k)|2
‖e(k + l − ε1‖2

‖e(k + l)‖2
× |uk|2‖A1 · · ·AMe(k)‖2.

Therefore we have:∑
|m−k |

2 |P (k − ε1)|2

|P (k)|2
‖e(k + l − ε1‖2

‖e(k + l)‖2
× |uk|2‖A1 · · ·AMe(k)‖2

≤ sup

{
|m−k |

2 |P (k − ε1)|2

|P (k)|2
‖e(k + l − ε1‖2

‖e(k + l)‖2

} ∑
‖A1 · · ·AMuke(k)‖2

≤ sup

{
|m−k |

2 |P (k − ε1)|2

|P (k)|2
‖e(k + l − ε1‖2

‖e(k + l)‖2

}
‖A1 · · ·AMu‖2

≤ sup

{
|m−k |

2 |P (k − ε1)|2

|P (k)|2
‖e(k + l − ε1‖2

‖e(k + l)‖2

}
× ‖u‖2

M .

We must now prove that sup
{
|m−k |2

|P (k−ε1)|2
|P (k)|2

‖e(k+l−ε1‖2
‖e(k+l)‖2

}
is bounded by a number

independent of l (but possibly depending on M ). From previous remarks, it is

sufficient to prove that |m−k |2
‖e(k+l−ε1)‖2
‖e(k+l)‖2 is bounded. Since |l| ≤ 2M , this is an

easy consequence of the explicit expression for m−k .

Let us now investigate the second sum in (5), assuming it is not empty.
As we already mentioned, there is an index j such that Aj = H1 . Then using
commutation relations in the enveloping algebra, we have:

A1 · · ·AM = A′1 · · ·A′M−1H1 + A′′1 · · ·A′′M−1.
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Therefore, we have:∑
k |A1···AMe(k)=0, A1···AMe(k−ε1)6=0

|uk|2|m−k |
2‖A1 · · ·AMe(k − ε1)‖2

≤
∑
|uk|2|m−k |

2
(
‖A′1 · · ·A′M−1H1e(k − ε1)‖2 + ‖A′′1 · · ·A′′M−1e(k − ε1)‖2

)
≤
(∑

|uk|2|m−k |
2(k1 − k2 − 1)2‖A′1 · · ·A′M−1e(k − ε1)‖2

)
+ ‖A′′1 · · ·A′′M−1f(E0)u‖2

≤ sup{(k1 − k2 − 1)2} × ‖A′1 · · ·A′M−1f(E0)u‖2 + ‖A′′1 · · ·A′′M−1f(E0)u‖2

The second sum is by induction smaller than ‖f(E0)‖2
M−1
× ‖u‖2

M−1
. For the first

sum, the induction shows that ‖A′1 · · ·A′M−1f(E0)u‖2 ≤ ‖f(E0)‖2
M−1
× ‖u‖2

M−1
.

Thus, it suffices to prove that (k1−k2− 1)2 is bounded. Since A1 · · ·AMe(k) = 0,
there is an integer j such that

Aj = H1, H1Aj+1 · · ·AMe(k) = 0 and Aj+1 · · ·AMe(k) 6= 0.

But then Aj+1 · · ·AMe(k) = C×e(k+ l′) for some non zero constant C . As above
|l′| ≤ 2M . Thus H1e(k + l′) = 0, which means that (k + l′)1 = (k + l′)2 or also
k1 − k2 − 1 = l′1 − l′2 − 1. And we have |l′1 − l′2 − 1| ≤ |l′| + 1 ≤ 2M + 1, proving
thus that sup{(k1 − k2 − 1)2} is bounded by a number depending on M only.

Altogether, we have proved that:

‖A1 · · ·AMf(E0)u‖2 ≤ C(M)× ‖u‖2
M
,

for some constant C(M) depending on M only (Note here that ‖u‖
M−1
≤ ‖u‖

M
).

As a consequence, we get

‖f(E0)u‖
M
≤
√
C(M)‖u‖

M
,

proving that f(E0) is bounded for the norm ‖ · ‖
M

.

Corollary 3.7. Let a ∈ C \ Z≥0 . Then the representation Ha of g integrates
into a continuous representation of G on the Hilbert space H .

Remark 3.8. Let a ∈ Z≥0 . Define a representation Ha as above by restricting
the index set of k to those k ∈ Zn≥0 such that |k| ≤ a . Then Ha is indeed
a representation and is finite dimensional. Therefore it also integrates into a
continuous representation of G on some Hilbert space.

Unitarisability. We now know a whole family of continuous representation of G .
We should ask then which of these are unitary. If the representation Ha is unitary
then the infinitesimal action given by the Lie basis {iHj(a), Xj(a), Yj(a)} should
be given by skew-symmetric operators. In other word, we should have (iHj(a))∗ =
−iHj(a), Xj(a)∗ = −Xj(a) and Yj(a)∗ = −Yj(a). Using the expression of the
Hj(a), Ej(a), Fj(a) in term of this basis, it is equivalent to have Hj(a)∗ = Hj(a),
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Ej(a)∗ = Fj(a) for j > 0 and E0(a)∗ = −F0(a). As Hj(a) is a diagonal operator, it
is selfadjoint if and only if its eigenvalues are real. This imposes a ∈ R . Remember
that the representation that we started with is unitary. So it only remains to prove
f(Ej)

∗ = f(Fj) for j > 0 and f(E0)∗ = −f(F0). The first condition is trivial
since f(Ej) = f(Fj) = 0. To check the second condition, we need to compare
〈f(F0)e(k), e(l)〉 and −〈e(k), f(E0)e(l)〉 . They are equal for all k and l if and
only if a ∈ R<0 .

Proposition 3.9. The continuous representation Ha of G is unitary if and
only if a ∈ R<0 .

Remark 3.10. When a ∈ Z≥0 , the representation Ha constructed in the
remark 3.2 is not unitary (unless a = 0) since it has finite dimension greater
than 1 and G is not a compact group.

SU(p, q) case. Assume n ≥ 2. Let 1 ≤ p ≤ n . Set q = n+1−p . Let Gp,q denote
the universal cover of SU(p, q). The complex Lie algebra g = sl(n + 1,C) is the
complexification of the Lie algebra of Gp,q . Moreover, Gp,q contains a compact
subgroup Kp,q isomorphic to SU(p) × SU(q), whose complexified Lie algebra is
isomorphic to the semisimple part of lp−1 . Let us now give the classification
of all simple infinite dimensional degree 1 modules coming from a continuous
representation of Gp,q on some Hilbert space.

Theorem 3.11. Let V be a simple infinite dimensional weight sl(n + 1,C)-
module of degree 1. Then V integrates into a continuous representation of Gp,q

on a Hilbert space if and only if

1. Either V or its contragredient is isomorphic to N(a, 0, . . . , 0) (for a ∈
C \ Z≥0 ) or to N(−1,m, 0, . . . , 0) (for m ∈ Z≥0 ), in case p = 1.

2. Either V or its contragredient is isomorphic to N(−1, . . . ,−1, a) (for a ∈
C \ Z<0 ) or to N(−1, . . . ,−1,−1−m, 0) (for m ∈ Z≥0 ), in case p = n.

3. Either V or its contragredient is isomorphic to N(−1, . . . ,−1︸ ︷︷ ︸
p

,m, 0, . . . , 0)

(for m ∈ Z≥0 ) or to N(−1, . . . ,−1︸ ︷︷ ︸
p−1

,−1−m, 0, . . . 0) (for m ∈ Z≥0 ), in case

1 < p < n.

Moreover, the corresponding representation of Gp,q is unitary if and only if

1. Either V or its contragredient is isomorphic to N(a, 0, . . . , 0) (for a ∈ R<0 )
or to N(−1,m, 0, . . . , 0) (for m ∈ Z≥0 ), in case p = 1.

2. Either V or its contragredient is isomorphic to N(−1, . . . ,−1, a) (for a ∈
R>0 ) or to N(−1, . . . ,−1,−1−m, 0) (for m ∈ Z≥0 ), in case p = n.
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3. Either V or its contragredient is isomorphic to N(−1, . . . ,−1︸ ︷︷ ︸
p

,m, 0, . . . , 0)

(for m ∈ Z≥0 ) or to N(−1, . . . ,−1︸ ︷︷ ︸
p−1

,−1−m, 0, . . . 0) (for m ∈ Z≥0 ), in case

1 < p < n.

Proof. First, remark that given any continuous representation π of Gp,q on a
Hilbert space, its restriction to Kp,q splits into a direct sum of finite dimensional
representations (possibly with infinite multiplicities). Therefore, the corresponding
g-module should also split into a direct sum of finite dimensional lp -modules. In
other word, a necessary condition is that the underlying g-module is a (g, lp)-
module of finite type. Therefore, by proposition 2.5, V or its contragredient
should be isomorphic to the asserted modules.

1. In case p = 1, we already know from corollary 3.7, that N(a, 0, . . . , 0) does
integrate into a continuous representation of G1 . Moreover from proposition
3.9, we know that this representation is unitary exactly when a ∈ R<0 .
Now, the module N(−1,m, 0, . . . , 0) is a highest weight module with highest
weight λm = (−1 − m,m, 0, . . . , 0) ∈ Zn . This is clearly an analytically
integral weight, and dominant with respect to the positive roots of l0 . It
is then straightforward to check that it is the underlying g-module of the
holomorphic discrete series of SU(1, n) corresponding to the parameter λm .

2. The case p = n is of course identical to the previous one up to a relabeling
of the simple roots.

3. The intermediate case 1 < p < n is easy, since the possible underlying g-
modules all correspond to holomorphic discrete series, their parameter being
(0, . . . , 0,−1−m,m, 0, . . . , ) or (0, . . . , 0,m,−1−m, 0, . . . , 0).

Remark 3.12. Compare this result with lemma 4.1 and corollary 4.2 in Wallach
[26].

SL(n,R) case. Assume that n ≥ 3. Let Gn denote the universal cover of
SL(n,R). Its complexified Lie algebra is also g = sl(n,C). The compact Lie
group Kn = SO(n) is a subgroup of Gn .

Theorem 3.13. Let V be a simple weight sl(n+ 1,C)-module. Then V can be
integrated into a continuous representation of Gn on a Hilbert space if and only if
V is finite dimensional.

Proof. Assume V can be integrated into a continuous representation of Gn in
a Hilbert space. The complexified Lie algebra of Kn contains the vectors Ej +Fj .
By lemma 2.2, these vectors should act locally finitely on V . Let Vλ be a weight
space of V . Denote by αj the weight of Ej . Then Ej + Fj : Vλ → Vλ+αj

⊕ Vλ−αj
.

Therefore Ej + Fj is locally finite if and only if both Ej and Fj are. Then the
module is finite dimensional as asserted. The converse is obvious.
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Remark 3.14. The case of SL(2,R) (or equivalently SU(1, 1)) is very different,
for any simple weight module of sl(2,C) integrates to a continuous representation

of S̃L(2,R), the universal cover of SL(2,R) (see [19, 13]).

4. Type C case

Let n be a positive integer. Let p and q be positive integers such that p+ q = n .
In this section, we consider the groups Sp(n,R) and Sp(p, q) and their universal
cover Gn and Gp,q . They contain the compact subgroup Kn and Kp,q isomorphic
to SU(n) and SP (p)×Sp(q) respectively (see for instance [14]). Denote by g the
Lie algebra sp(n,C).

Theorem 4.1. Let V be a simple infinite dimensional weight sp(n,C)-module
of degree 1. Then

1. V cannot integrate into a continuous representation of Gp,q on a Hilbert
space.

2. V integrates into a continuous representation of Gn on a Hilbert space
if and only if V or its contragredient is isomorphic to M(−1, . . . ,−1) or
M(−1, . . . ,−1,−2). In this case, the corresponding representation of Gn is
simple and unitary, and isomorphic to the even or odd part of the metaplectic
representation or its contragredient.

Proof. The proof is analogous to the proof of theorem 3.11. In the case of
Gp,q , the complexified Lie algebra of Kp,q is the Lie algebra lp whose roots with
respect to the standard Cartan subalgebra of g are (see [14, Appendix C ])

{±2εl, ±(εj ± εk) : 1 ≤ l ≤ p, 1 ≤ j 6= k ≤ p}
t{±2εl, ±(εj ± εk) : p+ 1 ≤ l ≤ p+ q, p+ 1 ≤ j 6= k ≤ p+ q}.

The module V should be a (g, lp)-module of finite type. Using an analogue of
proposition 2.5, we see that V or its contragredient should be a highest weight
module. The simple infinite dimensional highest weight module of degree 1 have
been classified by Benkart, Britten, Lemire [1, Proposition 3.6]. They are only
two: their highest weights are −1

2
ωn and ωn−1 − 3

2
ωn respectively. It is then easy

to check that the possible modules are not (g, lp)-module of finite type.

The case of Gn is analogous. The complexified Lie algebra of Kn is the Lie
algebra l whose roots are

{±(εj ± εk) : 1 ≤ j 6= k ≤ n− 1}.

Once again, V or its contragredient should be isomorphic to a highest weight
module. It is then well-known that these two highest weight modules correspond
to the even and odd part of the metaplectic representation (see e.g. [15]).
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140 Birkhäuser Boston, Inc., Boston, MA, Second Edition 2002.

[15] Li, J. S., Minimal representations & reductive dual pairs, in: “Representation
Theory of Lie Groups,” Park City, UT, 1998, IAS Park City Math. Ser. 8,
Amer. Math. Soc., Providence, RI, 2000, 293–340.



Tomasini 539

[16] Mathieu, O., Classification of irreducible weight modules, Ann. Inst. Fourier
(Grenoble) 50 (2000), 537–592.

[17] Mazorchuk, V., and C. Stroppel, Cuspidal sln -modules and deformations of
certain Brauer tree algebras, arXiv:1001.2633v1, 2010.

[18] —, Blocks of the category of cuspidal sp2n -modules, Pac. J. Math. 251 (2011),
183–196.

[19] Ørsted, B., and G. Tomasini, Unitary representations of the universal cover
of SU(1, 1) and tensor products, arXiv:1102.0374, 2011.

[20] Penkov, I., and V. Serganova, Generalized Harish-Chandra modules, Mosc.
Math. J. 2 (2002), 753–767.

[21] Penkov, I., V. Serganova, and G. Zuckerman, On the existence of (g, l)-
modules of finite type, Duke Math. J. 125 (2004), 329–349.

[22] Penkov, I., and G. Zuckerman, Generalized Harish-Chandra modules: a new
direction in the structure theory of representations, Acta Appl. Math. 81
(2004), 311–326.

[23] —, Generalized Harish-Chandra modules with generic minimal k-type, Asian
J. Math. 8 (2004), 795–811.

[24] —, Construction of generalized Harish-Chandra modules with arbitrary min-
imal t-type, Canad. Math. Bull. 50 (2007), 603–609.

[25] Schmid, W., Boundary value problems for group invariant differential equa-
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Cartan, Lyon, 1984 (1985), 311–321.

[26] Wallach, N., The analytic continuation of the discrete series, I, II, Trans.
Amer. Math. Soc. 251 (1979), 1–17, 19–37.

Guillaume Tomasini
IRMA
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