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Semigroup Actions on Adjoint Orbits
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Abstract. Let G be a connected semi-simple Lie group with finite center
and S ⊂ G a subsemigroup with intS 6= ∅ . In this article we study the control
sets for the actions of S on the adjoint orbits Ad(G)H , where H is a regular
element in the Lie algebra of G . We show here that these sets can be described
as sets of fixed points for regular elements in the interior of S . Moreover, we
shall describe the domains of attraction of this control sets and show that these
sets are not comparable with respect to the natural order on control sets.
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1. Introduction

In this paper we consider a noncompact semi-simple Lie group and a subsemigroup
S ⊂ G with interior points. The purpose is to study the action of S in certain
adjoint orbits of G , namely those containing the split elements in the Lie algebra
g of G .

Precisely let g = k⊕a⊕n be an Iwasawa decomposition of g . Then we look
at the adjoint orbits Ad(G)H , H ∈ a . A special role is played by the orbits where
H is split-regular, that is, α (H) 6= 0 for every root α . Any such regular orbit can
be identified with the homogeneous space G/MA where MA is the centralizer of
a in G . This homogeneous space fibers equivariantly onto any other split orbit,
so that the results obtained about the action on G/MA imply analogous results
on the other orbits by projection.

In the study of the action of a semigroup S in a topological space X a basic
concept is that of control set, which is a subset D ⊂ X such that (i) cl (Sx) = D
for all x ∈ D (where cl means closure and Sx = {g (x) : g ∈ S} is the orbit of S
through x ∈ X ), and (ii) D is maximal with respect to the first property. (In our
context of actions on homogeneous spaces we assume moreover that intD 6= ∅ .)

The control sets for the action of a semigroup S ⊂ G on the flag manifolds
of G where described before (see [6], [5]). The main features of this description
is that the control sets are determined by the fixed points of the split-regular
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elements in intS and the control sets are parametrized by the Weyl group W of
g .

Here we prove similar results for the action on the split-adjoint orbits: The
control sets are given as well by the set of fixed points of the split-regular elements
in intS , which allows us to relate them to the Weyl group. In particular we show
that in the regular orbit the control sets are permuted under the right action of
the Weyl group. The results on the flag manifolds are used via an identification
of G/MA with the open orbit of the diagonal action of G on F × F , where F is
the maximal flag manifold of G .

We also describe the domain of attraction of the control sets in the adjoint
orbits, where the domain of attraction A (D) of a control set D is the set of those
points x such that Sx ∩ D 6= ∅ . Here a new phenomenon shows up, namely
for any control set D its domain of attraction A (D) does not contain any other
control set except D itself. This means that the orbit of S through an element of
a control set D does not meet a control set different from D . This phenomenon
does not happen in the flag manifolds and more generally in compact spaces, since
compactness ensures that cl (Sx) contains an invariant control set for any x . Also,
we show that in the adjoint orbits there are no invariant control sets.

In concluding this introduction we explain briefly some reasons for our
choice of the split adjoint orbits. The action of semigroups on flag manifolds
were studied elsewhere ([2], [6]) with several consequences on the structure of the
semigroups themselves. In order to get further information about the semigroups
the idea then is to look at their actions on homogeneous spaces closer to the group,
namely the split adjoint orbits. In fact any such orbit fibers over a flag manifold
(for instance in the regular case G/MA→ F = G/MAN , with fiber N ).

2. Split adjoint orbits

Let G be a connected noncompact semi-simple Lie group. We assume once and
for all that G has finite center. Let g be the Lie algebra of G and take a Cartan
decomposition g = k ⊕ s , a split abelian subalgebra a ⊂ s and a Weyl chamber
a+ ⊂ a . We denote by Π the set of roots, by Π+ the positive roots associated
with a+ and Σ ⊂ Π+ the simple roots.

We use the following notation for an element H ∈ a :

• ZH and zH are the centralizer of H in G and g , respectively.

• pH is the parabolic subalgebra pH =
∑

α gα with the sum extended over the
roots α with α (H) ≥ 0. (Here gα is the root space associated with α .)

• n+
H the nilradical of pH which is n+

H =
∑

α(H)>0 gα .

• PH = NormG (pH) the parabolic subgroup with Lie algebra pH .

• FH = G/PH the corresponding flag manifold. We usually suppress H when
it is regular and write F for the full flag manifold.
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• Let w0 be the principal involution of the Weyl group W (the element of
highest length) and suppose that H is in the closure cla+ of the Weyl
chamber. Then we put H∗ = −w0H and say that FH∗ is the flag manifold
dual to FH . In particular FH∗ is still the maximal flag manifold if H is
regular, that is, the maximal flag manifold is self-dual.

There is no loss of generality in assuming that H ∈ cl(a+). With this
assumption, it is well known that these subalgebras and subgroups depend only
on the subset ΘH = {α ∈ Σ : α (H) = 0} and not on H itself. Sometimes we
follow the common usage of writing the above objects with a subscript Θ, where Θ
is a subset of Σ. Then it is to be understood that Θ = ΘH for some H ∈ a . When
Θ = ΘH we say that H is Θ-regular (split-regular when Θ = ∅). Also, ZΘ is the
centralizer of the subspace aΘ which is the orthogonal complement to the subspace
a (Θ) spanned by Hα , α ∈ Θ, where Hα ∈ a is defined by α (·) = 〈Hα, ·〉 .

Clearly, ZH ⊂ PH so there is a natural fibration G/ZH → FH which
associates with the coset gZH the coset gPH . Also, if ΘH ⊂ ΘH1 then ZH ⊂ ZH1 ,
hence there is a fibration G/ZH → G/ZH1 .

For the homogeneous spaces FH and G/ZH we use several geometric re-
alizations. First G/ZH is identified with the adjoint orbit Ad (G)H . The flag
manifold FH is identified either with the set of parabolic subalgebras conjugate to
pH or to the set of the nilradicals of these parabolic subalgebras, that is, to the
conjugates of n+

H . In terms of these realizations the map G/ZH → FH associates
with a conjugate X of H the parabolic subalgebra pX (respectively the nilradical
n+
X ) given by the sum of the eigenspaces of ad (X) associated with nonnegative

(respectively positive) eigenvalues.

Beyond these identifications, if H is regular then G/ZH can also be realized
as the set of translates Ad (g) · a+ of the Weyl chamber a+ , which contains the
several Weyl chambers within the different split subalgebras of g . In this case
the projection G/ZH → F is obvious. A similar statement holds for the set of
conjugates gA+g−1 where A+ = exp a+ .

For another realization we consider the diagonal action of G on the product
FH∗ × FH : (g, (x, y)) 7→ (gx, gy), g ∈ G , x, y ∈ F . As we check next it has one
open and dense orbit which is G/ZH .

Let x0 be the origin of FH . Since G acts transitively on FH , all the G-
orbits of the diagonal action have the form G · (y, x0), with y ∈ FH∗ . Thus, the
G-orbits are in bijection with the orbits of the action of PH∗ on FH∗ . It is known
that every PH∗ -orbit in FH∗ contains a point w̃y0 , where w̃ is a representative of
w ∈ W in K and y0 is the origin of FH∗ . Hence the G-orbits are G · (w̃y0, x0),
w ∈ W .

Now let w0 be the principal involution of W .

Proposition 2.1. The orbit G · (w̃0y0, x0) is open and dense in FH∗ × FH ,
and identifies with G/ZH . (Here and elsewhere w̃ stands for a representative of
w ∈ W in K .)

Proof. The isotropy subgroup at (w̃0y0, x0) is the intersection of the isotropy
subgroups at w̃0y0 and x0 . The first one is the parabolic subgroup P−H associated
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with w̃0H
∗ = −H , and the second one is PH . Since ZH = PH ∩ P−H the

identification follows. Now the Lie algebra zH = pH ∩ p−H of PH ∩ P−H is
complemented in g by n+

H ∩ n+
−H , with n+

−H =
∑

α(H)<0 gα . Hence, the dimension

of G · (w̃0y0, x0) is the same as the dimension of FH∗ × FH , so that the orbit is
open. An analogous reasoning shows that this is the only open orbit and hence
dense.

In terms of this realization of G/ZH as an open orbit, the map G/ZH → FH
is just the projection onto the second factor. Also, the projection G/ZH → G/ZH1

(if ΘH ⊂ ΘH1 ) is inherited from the projections FH∗ → FH∗
1

and FH → FH1 .

Notation: In the sequel we write OH for any one of the orbits giving G/ZH as
described above. If H is regular the subscript is suppressed. We write also OΘ

instead of OH , where Θ = ΘH .

Viewing the flag manifolds as sets of parabolic subalgebras the open orbit
OH ⊂ FH∗ × FH is characterized by transversality: Two parabolic subalgebras
p1 ∈ FH∗ and p2 ∈ FH are transversal if g = p1 +p2 , or equivalently if n (p1)∩p2 =
p1 ∩ n (p2) = {0} , where n (·) stands for the nilradical (cf. [1], [3], [4]). Then OH
is the set of pairs of transversal subalgebras. In particular, the set of subalgebras
transversal to the origin x0 ∈ FH is the open cell N+w̃0y0 with y0 the origin of
FH∗ . More generally the set of subalgebras transversal to gx0 , g ∈ G , is the open
cell gN+w̃0x0 .

The fixed points of a split-regular element h ∈ A+ = exp a+ in a flag
manifold FΘ are isolated. The set of fixed points is the orbit through the origin
of M∗ and factors down to the Weyl group W . We denote them by fixΘ (h,w),
w ∈ W . Here the labelling satisfies the convention that fixΘ (h, 1) is the origin of
FΘ , that is, the attractor fixed point of h , while fixΘ (h,w0) is the only repeller
fixed point, where w0 is the element of maximal length of W .

The fixed points of an arbitrary split-regular element h1 = ghg−1 , g ∈ G ,
h ∈ A+ = exp a+ are also isolated and are the image under g of the fixed points
of h . We use also the notation fixΘ (h1, w), namely fixΘ (h1, w) = gfixΘ (h,w).

The fixed points of the split-regular elements in a space OΘ are also given
by the Weyl group. For instance take the realization of OΘ as the principal orbit in
FΘ∗×FΘ and h ∈ A+ . The h-fixed points in FΘ∗×FΘ have the form (w̃1y0, w̃2x0),
where w1, w2 ∈ W and x0 and y0 are the origins of FΘ∗ and FΘ , respectively.
The transversality condition says that (w̃1y0, w̃2x0) is in the principal orbit if and
only if w1 ∈ WΘw2w0 . Hence the h-fixed points are (w̃w̃0x0, w̃x0), w ∈ W , and
for a split-regular element h1 = ghg−1 the fixed points are given by elements of
W . We denote them with fixOΘ

(h1, w).

In the particular case of the regular adjoint orbit O the fixed points are
obtained by a right action of W as follows: MA is a normal subgroup of M∗A ,
so that the equivariant fibration G/MA→ G/M∗A defines G/MA as a principal
bundle over G/M∗A , with structural group M∗A/MA ≈ W . Thus, W acts on
the right on G/MA via (gMA) · w = gMAw̃ = gw̃MA . Then it is easy to see
that fixO (h1, w) = fixO (h1, 1)w , h1 ∈ g (exp a+) g−1 and fixO (h1, 1) = gMA .
This coset identifies with the Weyl chamber g (exp a+) g−1 containing h1 if we
view O as the set of chambers. This implies that if we view O as an adjoint orbit
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and H ∈ O then fix(expH, 1) is H itself. Also, the above W -action implies that

fixO(h,w) = (fix(h,ww0), fix(h,w)) ∈ F× F.

Note that when w = 1 we have fixO(h, 1) = (fix(h,w0), fix(h, 1)) with fix(h,w0)
and fix(h, 1) the repeller and attractor h-fixed points in F , respectively. This
means that an element H of an adjoint orbit identifies with the pair in F × F
given by the repeller and the attractor of expH .

3. Control sets in O

In this section we prove some of the main results of the paper, namely the de-
scription of the control sets in the split adjoint orbits as sets of fixed points of
split-regular elements inside the interior of the semigroup. Our strategy consists
in working out first the regular orbit O = G/MA and then project the control
sets to the nonregular orbits OΘ .

Let us recall previous results on control sets on flag manifolds to be used
subsequently (see [6]).

Let S ⊂ G be a semigroup with nonempty interior and D a control set for
the action of S on a homogeneous space of G . The subset

D0 = {x ∈ D : ∃g ∈ intS with gx = x}

is called the set of transitivity or core of D . It is known that D0 is open and dense
in D and that for all x, y ∈ D0 there exists g ∈ intS such that gx = y (see [6]).

It was proved in [6] that for each w ∈ W there exists a control set D(w) ⊂ F
such that x ∈ (D(w))0 if and only if x = fix (h,w) for some h ∈ intS . Moreover,
any control set D ⊂ F is D(w) for some w ∈ W and D(1) is the only invariant
control set in F . In a partial flag manifold FΘ there exists also only one invariant
control set, which is given by π(D(1)), where π : F → FΘ is the canonical
projection. The full information about the control sets in FΘ is given in the
next proposition.

Proposition 3.1. Let E ⊂ FΘ be a control set for S . Then, there exists
w′ ∈ W such that π((D(w))0) = E0 for all w ∈ w′WΘ . The subset W(S) =
{w ∈ W : D(w) = D(1)} is a parabolic subgroup of W and for w1, w2 ∈ W ,
D(w1) = D(w2) if and only if w1w

−1
2 ∈ W(S) ([6], Theorem 4.5).

In the sequel we say that the subset Θ(S) such that W(S) is generated
by the reflections with respect to the simple roots in Θ(S) is the parabolic type
of S . Alternatively, we denote the parabolic type of S by the corresponding flag
manifold F(S) = FΘ(S) . The invariant control set in this flag manifold have the
following properties (see [6], Theorem 4.3 and Proposition 4.8):

Theorem 3.2. Let π : F→ F(S) the canonical projection and denote by C(S)
the invariant control set for S on F(S). Then π−1(C(S)) = D(1). Moreover,
if h ∈ intS is a split-regular element then C(S) is contained in the open stable
manifold of the attractor fixed point of h in F (S).
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Notation: We denote by R(S) the set of the split-regular elements h such that
h ∈ intS .

Now we begin the description of the control sets for the action of S on O .

Proposition 3.3. Let D ⊂ O be a control set for S . Then for all x ∈ D0

there are h ∈ R (S) and w ∈ W such that x = fixO(h,w).

Proof. Since every point of the adjoint orbit is split-regular, it follows that
the isotropy subgroup at x has the form M ′A′ for some Iwasawa decomposition
G = K ′A′N ′ (here M ′ denotes the centralizer of A′ in K ′ ). Put

τ = {m ∈M ′ : ∃h ∈ A′ with mh ∈ intS}

This is a semigroup with nonempty interior in M ′ because M ′A′ ∩ intS 6= ∅ .
Since M ′ is a compact group, we have that 1 ∈ τ , that is, A′ ∩ intS 6= ∅ . Now,
the set of split-regular elements is dense in A′ . So there exists h split-regular in
A′ ∩ intS . Hence, x is a fixed point for h ∈ R(S). Therefore, x = fixO(h,w) for
some w ∈ W .

The next step is to prove that the fixed points of same type w belong to
the same control set. We consider first the case where w = 1.

Proposition 3.4. If h1, h2 ∈ R(S) then fixO(h1, 1) and fixO(h2, 1) are in the
same control set for S on O .

Proof. It is well known that any fixed point of an element in intS belongs to
the interior of a control set. Denote by DO(h1, 1) and DO(h2, 1) the control sets
containing fixO(h1, 1) and fixO(h2, 1), respectively. Recall that

fixO(hi, 1) = (fix(hi, w0), fix(hi, 1)) i = 1, 2.

Since fix(h1, 1) and fix(h2, 1) are in D(1)0 , there exists g ∈ intS such that
g−1fix(h1, 1) = fix(h2, 1). Hence,

h−k2 g−1 · fixO(h1, 1) = h−k2 · (g−1fix(h2, w0), fix(h2, 1)→ fixO(h2, 1)

as k →∞ . Therefore, DO(h1, 1) is attained from DO(h2, 1). Reversing the roles
of h1 and h2 we conclude that the control sets are equal.

Theorem 3.5. Let h1, h2 ∈ R(S). Then for all w ∈ W the fixed points
fixO(h1, w) and fixO(h2, w) belong to the same control set in O = G/MA.

Proof. We have that

fixO(h1, w) = fixO(h1, 1) · w

and

fixO(h2, w) = fixO(h2, 1) · w.
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By the last proposition, fixO(h1, 1) and fixO(h2, 1) are in the set of transitivity of
the same control set. Hence, there exists g1 ∈ intS such that g1 · fixO(h1, 1) =
fixO(h2, 1). Since the left action of g1 commutes with the right action of w , it
follows that g1 · fixO(h1, w) = fixO(h2, w). Analogously we find g2 ∈ intS such
that g2 · fixO(h2, w) = fixO(h1, w), which shows that the control sets containing
fixO(h1, w) and fixO(h2, w) are the same.

Notation: We denote by DO(w) the control set in O = G/MA containing the
fixed points of type w for the regular elements in intS .

Up to now we showed that a control set in O contains fixed points for split-
regular elements in intS and that fixed points of same type w are in the same
control set. To complete the picture we check that every element of (DO(w))0 is
a fixed point of type exactly w for some h ∈ R (S). For simplicity of notation,
we identify G/MA with the adjoint orbit through H0 ∈ a+ and assume that
A+ ∩ intS 6= ∅ .

Lemma 3.6. Let w ∈ W . For each H ∈ (DO(w))0 there exists h ∈ R(S) such
that H = fixO(h,w).

Proof. Take H ∈ (DO(w))0 . By Proposition 3.3 there are h ∈ R(S) and
w1 ∈ W such that H = fixO(h,w1). We assume without loss of generality that
h ∈ A+ and thus H = w̃1 ·H0 . Let H ′ = w̃ ·H0 be the h-fixed point of type w .
By assumption, H and H ′ are in (DO(w))0 so there are g, g′ ∈ intS such that

g ·H ′ = H = w̃1 ·H0 = w̃1w̃
−1 ·H ′

and

g′ ·H = H ′ = w̃ ·H0 = w̃w̃−1
1 ·H.

Hence, w̃w̃−1
1 g and w̃1w̃

−1g′ are in the isotropy subgroups of H ′ and H , respec-
tively. Now, H ′ and H are split-regular elements in a so their isotropy sub-
groups are equal to MA . Therefore, g ∈ w̃1w̃MA and g′ ∈ w̃w̃−1

1 MA so that
g = w̃1w̃

−1h1 and g′ = w̃w̃−1
1 h2 , with h1, h2 ∈ A . Moreover, ghkg′ ∈ intS for all

positive integers k . But,

ghkg′ = w̃1w̃
−1h1h

kw̃w̃−1
1 h2 = w̃1w̃

−1h1h
kh3w̃w̃

−1
1

for some h3 ∈ A because M∗ normalizes A . Since h ∈ A+ , it follows that for
k large enough h1h

kh3 ∈ A+ so that h4 = w̃1w̃
−1h1h

kh3w̃w̃
−1
1 ∈ w̃1w̃

−1A+w̃w̃−1
1 .

Now, h4 ∈ intS and

fixO(h4, w) = w̃1w̃
−1w̃ ·H0 = w̃1 ·H0 = H,

concluding the proof.

Summarizing the previous results we get the following description of the
control sets in O by means of the fixed points of the regular elements in R (S).
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Theorem 3.7. For each w ∈ W there exists a control set DO (w) such that

(DO (w))0 = {fixO(h,w) : h ∈ R (S)}.

Furthermore the DO (w), w ∈ W , exhaust the S -control sets in O .

The right action on G/MA of w ∈ W satisfies

fixO(h,w) = fixO(h, 1) · w.

Hence the following corollary to the above theorem follows at once.

Corollary 3.8. (DO (w))0 = (DO (1))0 · w .

Remark: If we identify the coset G/MA with the set of Weyl chambers gA+g−1 ,
g ∈ G then the set of transitivity (DO (1))0 is identified with the set of Weyl
chambers that meet intS . This is because a split-regular element h belongs to
one and only one Weyl chamber which identifies with fixO (h, 1). (The set of Weyl
chambers meeting intS were used in [6] to describe the control sets in the flag
manifold F .)

We conclude this section with some comments on the number of distinct
control sets DO (w), w ∈ W . Define

W (S,O) = {w ∈ W : DO (w) = DO (1)}.

By Corollary 3.8 it follows that W (S,O) is the subgroup leaving invariant
(DO (1))0 :

W (S,O) = {w ∈ W : (DO (1))0 · w = (DO (1))0}.

Hence W (S,O) is a subgroup of the Weyl group. Again by Corollary 3.8 the
control sets in O are in bijection with the set of cosets W (S,O) \W , and hence
the number of control sets is |W| / |W (S,O)| .

On the other hand by the results of [6] the number of control sets in the
flag manifold F is the order of the coset space W (S) /W , where W (S) is the
subgroup of W defined by

W (S) = {w ∈ W : D (w) = D (1)}

Now, the equivariant fibration π : O = G/MA→ F = G/MAN maps the control
set DO (w) onto the control set D (w). Therefore,

W (S,O) ⊂ W (S) .

To prove the reverse inclusion we exploit the realization of G/MA as
the open orbit F × F . We denote this open orbit by O as well. Recall that
fixO(h,w) = (fix(h,ww0), fix(h,w)) where fix(h,w) and fixO(h,w) are h-fixed
points (h ∈ G) in F and in the open orbit in F × F , respectively, and w0 is the
principal involution of W . The equality W (S,O) =W (S) is a direct consequence
of the following statement.
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Proposition 3.9. DO(w) = DO(1) if w ∈ W(S).

Proof. The assumption w ∈ W(S) implies the following equalities of the
control sets in F : D (w) = D (1) and D (ww0) = D (w0), where the former is the
invariant control set and the later the minimal one (see [6]).

Now, take g ∈ R(S). Since D (w) = D (1), it follows that there exists
h ∈ R (S) such that fix(g, 1) = fix(h,w). Hence,

fixO(h,w) = (fix(h,ww0), fix(h,w)) = (fix(h,ww0), fix(g, 1)).

This pair belongs to the open orbit in F × F , so that fix(h,ww0) is transversal
to fix(g, 1) which implies that g−kfix(h,ww0) → fix(g, w0) as k → +∞ , where
fix(g, w0) is the repeller fixed point of g . Hence

g−k · fixO(h,w) = g−k · (fix(h,ww0), fix(g, 1))→ fixO(g, 1)

which shows that DO(w) is attainable from DO(1). Conversely, from the equality
D(ww0) = D(w0) we find h1 ∈ R(S) such that fix(g, ww0) = fix(h1, w0). Hence,

fixO(g, w) = (fix(g, ww0), fix(g, w)) = (fix(h1, w0), fix(g, w)).

Again by transversality

hk1 · fixO(g, w) = hk1 · (fix(h1, w0), fix(g, w))→ fixO(h2, 1),

so that DO(1) is attainable from DO(w), concluding the proof.

Remark: This proposition shows in particular that W (S) is a subgroup, with an
alternative and simpler proof than that of [6].

The above proposition has the following consequence.

Corollary 3.10. D(w1) = D(w2) if and only if DO(w1) = DO(w2). Hence the
number of S -control sets on G/MA and on G/MAN+ coincide.

Proof. If D(w1) = D(w2) then w1w
−1
2 ∈ W(S) =W(S,O). Hence, DO(w1) =

DO(1) · w1 = DO(1) · w2 = DO(w2).

4. Order of control sets in O

In this section we look at the order between the control sets. The main result is
Theorem 4.2, which says that different control sets in O are not attained from
each other under the action of S . This is a somewhat surprising phenomenon. It
does not happen, for instance, in compact spaces where every control set can be
steered to an invariant one. In this regard we prove in Proposition 4.3 below that
there are no invariant control sets in O , unless S = G .

We start by proving the following relationship between control sets in F
and in O , viewed as the open orbit in F× F .
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Proposition 4.1. Realizing the adjoint orbit as the open orbit in F × F we
have, for each w ∈ W , the inclusions

(DO(w))0 ⊂ (D(ww0))0 × (D(w))0 and DO(w) ⊂ D(ww0)×D(w).

Proof. The first inclusion is a direct consequence of Theorem 3.7 and the
equality fixO(h,w) = (fix(h,ww0), fix(h,w)) where fix(h,w) and fixO(h,w) are
h-fixed points in F and in the open orbit in F× F , respectively.

For the inclusion of the control set itself, let (x, y) ∈ DO(w) and take
(a, b) ∈ (DO(w))0 . Since DO(w) ⊂ cl(S · (x, y)) there exists a sequence

((snx, sny))n∈N , with sn ∈ S , n ∈ N ,

such that (snx, sny) → (a, b) as n → ∞ . Hence, b ∈ cl(Sy) and thus cl(Sb) ⊂
cl(Sy). Moreover, we also have that DO(w) ⊂ cl(S · (a, b)). Consequently, there
exists a sequence ((s′na, s

′
nb))n∈N , with sn ∈ S , n ∈ N , such that (sna, snb) →

(x, y) as n → ∞ . Thus, y ∈ cl(Sb) and hence cl(Sy) ⊂ cl(Sb). Therefore,
cl(Sy) = cl(Sb). Since cl(Sb) = cl(Sz) for all z ∈ D(w), we have cl(Sy) = cl(Sz)
for all z ∈ D(w). We conclude that

D(w) ∪ {y} ⊂ cl(Sz) for all z ∈ D(w) ∪ {y}.

By the maximality condition in the definition of control sets we have y ∈ D(w).
Analogously we prove that x ∈ D(ww0). Therefore, (x, y) ∈ D(ww0)×D(w).

In the sequel we write D1 ≤ D2 if D1, D2 are control sets such that S ·D1∩D2 6= ∅ ,
that is, D2 is attained from D1 . This is equivalent to S · (D1)0 ∩ (D2)0 6= ∅ and
defines an order in the set of control sets. In [5], Section 4, the order of the
control sets in F was characterized in terms of the algebraic Bruhat-Chevalley
order in the Weyl group W . The main result (see [5], Theorem 4.1) states that
D (w1) ≤ D (w2) if and only if there exists w ∈ W such that D (w) = D (w2) and
w ≤ w1 (with respect to the Bruhat-Chevalley order in W ).

To prove the next theorem we use this characterization together with the
following well known facts about the order in W (w1, w2 ∈ W and w0 is the
principal involution):

1. w1 ≤ w2 if and only if w−1
1 ≤ w−1

2 .

2. w1 ≤ w2 if and only if w0w2 ≤ w0w1 .

3. w1 ≤ w2 if and only if w0w1w0 ≤ w0w2w0 .

It follows that D (w1) ≤ D(w2) is equivalent to D(w0w2) ≤ D(w0w1) and
to D(w0w1w0) ≤ D(w0w2w0).

Theorem 4.2. Let w1, w2 ∈ W . Then DO(w1) = DO(w2) if DO(w1) ≤
DO(w2) .

Proof. By the proposition 4.1 we have DO(w1) ⊂ D(w1w0) × D(w1) and
DO(w2) ⊂ D(w2w0)×D(w2). Hence, DO(w1) ≤ DO(w2) implies that

(SD(w1w0)× SD(w1)) ∩ (D(w2w0)×D(w2)) 6= ∅,
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that is,
D(w1w0) ≤ D(w2w0) and D(w1) ≤ D(w2).

The first of these inequalities is equivalent to D(w0w2w0) ≤ D(w0w1w0),
which in turn is equivalent to D(w2) ≤ D(w1). Combining with the second
inequality we arrive at D(w1) = D(w2). Therefore, by Theorem 3.10, we conclude
that DO(w1) = DO(w2).

Finally we show that no control set in O = G/MA is invariant.

Proposition 4.3. Suppose that S 6= G. Then, for any w ∈ W , DO(w) is not
an invariant control set.

Proof. Every point of (DO(w))0 has the form

(fix(h,ww0), fix(h,w))

for some h ∈ R(S). Now, D(ww0) and D(w) can not be both invariant because
if w and ww0 are in W(S) then w−1ww0 = w0 ∈ W(S) and so D(w0) = D(1).
But this occurs if and only if S = G . Hence if S 6= G then there exists g ∈ G
such that g · fix(h,ww0) 6 ∈D(ww0) or g · fix(h,w) 6 ∈D(w). Therefore, S ·DO(w)
cannot be contained in DO(w).

5. Domains of attraction in O

In this section we describe the domain of attraction of the control sets on O .
Recall that the domain of attraction A(D) of a control set D is the subset

A(D) = {x : ∃g ∈ S, gx ∈ D}.

It is known (and easy to prove) that A(D) is open and if x ∈ A(D) then there
exists g ∈ intS such that gx ∈ D0 (see e.g. [5], Proposition 2.1).

To get the domains of attraction of the control sets DO(w) we first reduce
to DO(1) via the right action of W .

Proposition 5.1. For each w ∈ W we have

A(DO(w)) = A(DO(1)) · w.

Proof. Fix w ∈ W and take (x, y) ∈ A(DO(w)). Then there exists g ∈ intS
such that g · (x, y) ∈ (DO(w))0 . Hence by Theorem 3.7, there exists h ∈ R (S)
such that

g · (x, y) = fixO(h,w) = fixO(h, 1) · w,

or equivalently,
(x, y) = (g−1 · fixO(h, 1)) · w.

Since fixO(h, 1) ∈ DO(1) it follows that g−1 · fixO(h, 1) ∈ A(DO(1)). Hence,
(x, y) = (g−1 · fixO(h, 1)) · w ∈ ( A(DO(1))) · w , showing that A(DO(w)) ⊂
A(DO(1)) · w .
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For the reverse inclusion, take (x, y) ∈ (A(DO(1))) · w . Then (x, y) =
(x1, y1) · w for some (x1, y1) ∈ A(DO(1)), and there exists g ∈ intS with g ·
(x1, y1) ∈ (DO(1))0 , that is, g · (x1, y1) = fixO(h1, 1) for some h1 ∈ R(S). Hence,

g · (x, y) = g · ((x1, y1) · w) = (g · (x1, y1)) · w = fixO(h1, 1) · w = fixO(h1, w)

or, equivalently, (x, y) = g · fixO(h1, w). Since fixO(h1, w) ∈ (DO(w))0 , it follows
that (x, y) ∈ A(DO(w)).

Now we observe that since DO(w) ⊂ D(ww0)×D(w), it follows that

A(DO(w)) ⊂ A(D(ww0))× A(D(w)).

In particular,
A(DO(1)) ⊂ (D(w0)× F) ∩ O

because A(D(w0)) = D(w0) and A(D(1)) = F (here O stands for the open orbit
in F× F). Actually this inclusion is an equality:

Proposition 5.2. A(DO(1)) = (D(w0)× F) ∩ O .

Proof. Take h ∈ R(S) and (x, y) ∈ (D(w0) × F) ∩ O . Then there exists
g ∈ intS such that g · x = fix(h,w0). Thus,

g · (x, y) = (fix(h,w0), gy) ∈ O

and hence
hkg · (x, y) = hk · (fix(h,w0), gy)→ fixO(h, 1)

as k → ∞ . Since fixO(h, 1) ∈ (DO(1))0 , we have (x, y) ∈ A(DO(1)). Therefore,
(D(w0) × F ∩ O ⊂ A(DO(1)), showing that A(DO(1)) ⊃ (D(w0) × F) ∩ O and
concluding the proof.

In other words Proposition 5.2 says that

A(DO(1)) = {(x, y) ∈ O : x ∈ D(w0)}.

But if x ∈ D(w0) then x = fix(h,w0) for some h ∈ R(S). Taking an Iwasawa
decomposition G = KAN+ we have h ∈ gA+g−1 for some g ∈ G . Denote by N−h
the subgroup gN−g−1 . Then, the set of the elements in F which are transversal
to fix(h,w0) is the open cell N−h · (fix(h, 1). Therefore,

A(DO(1)) = {(x, y) ∈ O : x ∈ D(w0)}
= {(fix(h,w0), n · fix(h, 1)) : h ∈ R(S), n ∈ N−h }
= {n · (fix(h,w0), fix(h, 1)) : h ∈ R(S), n ∈ N−h }
= {n · fixO(h, 1) : h ∈ R(S), n ∈ N−h }
=

⋃
h∈R(S)

N−h · fixO(h, 1).

Finally by taking the right action A(DO(w)) = (ADO(1)) ·w we obtain the
domains of attraction A(DO(w)).
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Theorem 5.3. Retain the above notations. Then for each w ∈ W , we have

A(DO(w)) =
⋃

h∈R(S)

N−h · fixO(h, 1) · w.

6. General split adjoint orbits

In this section we extend the previous results to the control sets in other split-
adjoint orbits apart from the regular one.

Denote by OΘ the adjoint orbit through H∈a (with Θ={α∈Σ: α(H) = 0}) as
well as the other realizations of the coset space G/ZH discussed in Section 2. Also
denote by πΘ and πΘ∗ the projections of F→ FΘ and F→ FΘ∗ , respectively and
πΘ : O → OΘ .

The basic result is the following projection of control sets.

Theorem 6.1. If E is a control set for S on OΘ then there exists w′ ∈ W
such that πΘ((DO(w))0) = E0 for all w ∈ w′WΘ .

The proof of this theorem is similar to the proof that the projections between
flag manifolds map control sets onto control sets (see [6], Section 5). It exploits
the fact that the fibers of πΘ : O → OΘ are identified with a regular adjoint orbit
in a smaller group (likewise the fiber of F → FΘ which is a flag manifold of a
subgroup). In fact, the fiber of O → OΘ is the coset space ZΘ/MA where ZΘ

and MA are the centralizer of split-regular and a Θ-regular element, respectively.
On the other hand we have the following facts regarding the structure of ZΘ (see
[7], sections 1.2.3 and 1.2.4):

1. MA meets every connected component of ZΘ . Hence

ZΘ/MA = (ZΘ)0 / (MA)0

is connected.

2. (ZΘ)0 = MΘAΘ where MΘ is a connected reductive group and AΘ = exp aΘ .
Moreover AΘ centralizes MΘ , so that AΘ is a normal subgroup of (ZΘ)0 .

3. The subalgebra g (Θ) generated by gα , α ∈ 〈Θ〉 is semi-simple, where 〈Θ〉
is the set of roots spanned by Θ and gα the root space.

4. Denote by G (Θ) the connected subgroup with Lie algebra g (Θ). Then
G (Θ) ⊂MΘ .

5. Let Z(g (Θ)) be the centralizer of g (Θ) in MΘ . Then Z(g (Θ)) is normal
in MΘ and MΘ/Z(g (Θ)) has Lie algebra isomorphic to g (Θ).

From these facts we get

ZΘ

MA
≈ (ZΘ)0

M0A
≈

(ZΘ)0

Z(g(Θ))

M0A
Z(g(Θ))

≈ G(Θ)

ZG(Θ)(H)
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where ZG(Θ)(H) is the centralizer in G (Θ) of the split-regular element H ∈ g (Θ).
Therefore the fiber ZΘ/MA of πΘ : G/MA → G/ZΘ identifies with a regular
adjoint orbit in g (Θ) as claimed.

Proof of Theorem 6.1: We first check that an element y ∈ E0 is fixed by
some split-regular element in intS . Clearly any y ∈ E0 ⊂ G/ZΘ is fixed by
some g ∈ intS . We can assume without loss of generality that y is the origin of
G/ZΘ and hence that ZΘ ∩ intS 6= ∅ . Since ZΘ has a finite number of connected
components it follows that the semigroup SΘ := (ZΘ)0 ∩ intS 6= ∅ . The action of
SΘ in the fiber (πΘ)−1({y}) = ZΘ/MA factors through the action of ΓΘ = SΘ/AΘ ,
since AΘ is normal in ZΘ and has a fixed point in the fiber (πΘ)−1({y}). Now we
factor Z(g (Θ)) to get an open semigroup S(Θ) := ΓΘ/Z(g (Θ) in G(Θ). Now take
a split regular h ∈ ZΘ ∩ intS . Since its action on the fiber (πΘ)−1({y}) factors
through the action of S(Θ), it follows that h has fixed points in (πΘ)−1({y}).
Therefore,

y = πΘ(fixO(h,w)) = πΘ(fix(h,ww0), fix(h,w))

for some w ∈ W . Moreover, since the Weyl group of G(Θ) is WΘ , the number of
such fixed points is |WΘ| . This shows y ∈ πΘ(DO(w))0 for every w in a coset of
WΘ , concluding the proof. �

Notation: The control set in OΘ such that πΘ((DO(w))0) = (DΘ
O(w))0 is denoted

by DΘ
O(w) . These exhaust the control sets in OΘ .

Corollary 6.2. For each w ∈ W we have

(DΘ
O(w))0 ⊂ (DΘ∗

(ww0))0 × (DΘ(w))0.

Proof. In fact,

(DΘ
O(w))0 = πΘ((DO(w))0) ⊂ πΘ((D(ww0))0 × (D(w))0)

⊂ πΘ∗((D(ww0)0) × πΘ((D(w))0)
= (DΘ(ww0))0 × (DΘ(w))0

With the same argument used in the proof of the proposition 4.1, we have
also the following result:

Corollary 6.3. For each w ∈ W ,

DΘ
O(w) ⊂ DΘ∗

(ww0)×DΘ(w).

When Θ = Θ(S), we have that (DO(1))0 is given by the inverse image of
the set of transitivity of DΘ

O(1).

Theorem 6.4. If Θ = Θ(S) then (πΘ)−1((DΘ
O(1))0) = (DO(1))0 .

Proof. It was proved in [6], page 75, that when Θ = Θ(S) the equality
G(Θ) = S(Θ) holds. Therefore, S acts transitively on each fibre (πΘ)−1({y}),
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y ∈ (DΘ
O(1))0 . Let x1, x2 ∈ (πΘ)−1((DΘ

O(1))0). Then, there exists g ∈ intS such
that πΘ(gx1) = gπΘ(x1) = πΘ(x2). Hence, gx1 ∈ (πΘ)−1({x2}) and thus there
exists g1 ∈ S such that g1gx1 = x2 . Similarly, we find g2 ∈ S such that g2x2 = x1 ,
which shows that (πΘ)−1((DΘ

O(1))0) ⊂ (DO(1))0 . Since the opposed inclusion is
valid in general, the equality holds.

7. Maximal Semigroups

In this section we introduce in the adjoint orbits concepts of transversality similar
to those for flag manifolds, discussed in [3]. Moreover, we will show that if S is a Θ-
maximal semigroup then DΘ

O(1) is given by the Cartesian product DΘ(w0)×DΘ(1).

We denote by OΘ∗ the set of pairs of parabolic subalgebras (q1, q2) ∈
FΘ × FΘ∗ such that q1>q2 . This set is identified with an adjoint orbit and
we say that it is the adjoint orbit dual to OΘ . Two pairs (p1, p2) ∈ OΘ and
(q1, q2) ∈ OΘ∗ are said to be transversal if p1>q1 and p2>q2 , and use the same
notation (p1, p2)>(q1, q2) to indicate this transversality.

The dual of a subset C ⊂ OΘ is defined as the set C∗ ⊂ OΘ∗ given by

C∗ = {(q1, q2) ∈ OΘ∗ : (q1, q2)>(p1, p2) for all (p1, p2) ∈ C}.

We have the following result:

Proposition 7.1. Suppose that S is the compression semigroup of its invariant
control set DΘ(1) on FΘ . Then

(DΘ
O(1))0 = (DΘ∗

(w0))0 × (DΘ(1))0.

Proof. When S = SDΘ(1) , we have that Θ(S) = Θ and hence (DΘ∗
(w0))0 ⊂

DΘ(1) (see [4], proposition 1.9). Thus, if (ξ, η) ∈ (DΘ∗
(w0))0 × (DΘ(1))0 then

the corresponding parabolic subalgebras are transversal, that is, η ∈ σξ . Take
x ∈ π−1

Θ∗({η}). Since η ∈ σξ = σπΘ∗ (x) = πΘ(σx), then there exists y ∈ σx such
that η = πΘ(y). Therefore, there exists (y, x) ∈ O with πΘ(y, x) = (ξ, η). Take
h in the positive chamber defined by (x, y). We have that DΘ(1) is contained
in the open cell in FΘ determined by h and hkz → ξ0 for all z in this cell.
Thus, hk0DΘ(1) ⊂ (DΘ(1))0 for some k0 ≥ 0, which implies that hk0 ∈ intS . But
(x, y) = fixO(h, 1) and thus (x, y) ∈ (DO(1))0 . Therefore, (ξ, η) ∈ πΘ((DO(1))0) =
(DΘ
O(1))0 .

Remark: By the same argument it can be shown also that (DΘ
O(w0))0 = (DΘ(1))0×

(DΘ∗
(w0))0 .

Now, let Θ1 ⊂ Σ be a subset such that Θ ⊂ Θ1 . Then, MΘAΘ ⊂MΘ1AΘ1

and thus we can consider the fibration πΘ,Θ1 : OΘ → OΘ1 . Since (DΘ
O(1))0 projects

onto (DΘ1
O (1))0 , we have the following result:

Proposition 7.2. If (DΘ
O(1))0 = (DΘ∗

(w0))0 × (DΘ(1))0 , then for all Θ1 such
that Θ ⊂ Θ1 we have that (DΘ1

O (1))0 = (DΘ∗
1(w0))0 × (DΘ1(1))0 .
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Proof. In fact, we have that

(DΘ1
O (1))0 = πΘ,Θ1((DΘ

O(1))0)

= πΘ,Θ1((DΘ∗
(w0))0 × (DΘ(1))0)

= (DΘ∗
1(w0))0 × (DΘ1(1))0

as claimed.

Now we improve Proposition 7.1 by showing that DΘ
O(1) itself is a Cartesian

product when S is the compression semigroup of its invariant control set on FΘ .

Proposition 7.3. If S is as in Proposition 7.1 then

DΘ
O(1) = DΘ∗

(w0)×DΘ(1).

Proof. The inclusion DΘ
O(1) ⊂ DΘ∗

(w0) × DΘ(1) holds in general (with the
proof as Proposition 4.1). To show the reverse inclusion, take

(y, x) ∈ DΘ∗
(w0)×DΘ(1).

Since DΘ(1) = cl((DΘ(1))0), it follows that there exists a sequence xn → x with
xn ∈ (DΘ(1))0 for all n ∈ N . Moreover, we have that DΘ∗

(w0) = (DΘ∗
(w0))0 , so

that (y, xn) ∈ (DΘ∗
(w0))0× (DΘ(1))0 = (DO(1))0 . Since (y, xn)→ (y, x), we have

that (y, x) ∈ cl((DO(1))0) ⊂ cl(S · (z, w)) for all (z, w) ∈ DO(1)). On other hand,
since DΘ∗

(w0) ⊂ (DΘ(1))∗ , we have that y>x . Moreover, there exists h ∈ R(S)
such that y = πΘ∗(fix(h,w0)). Thus, the pair (y, x1) = (fix(h,w0), fix(h, 1))
belongs to (DΘ

O(1))0 . Since x and x1 are both transversal to y , they are in
the same open cell σ , whose attractor for h1 is x1 . Therefore, hk · (y, x)→ (y, x1)
as k → ∞ and hence (y, x1) ∈ cl(S · (y, x)), which implies that cl(S · (y, x1)) ⊂
cl(S ·(y, x)) and thus cl(S ·(z, w)) ⊂ cl(S ·(y, x)) for all (z, w) ∈ DΘ

O(1). Therefore,
DΘ
O(1) ∪ {(y, x)} ⊂ cl(S · (z, w)) for all (z, w) ∈ DΘ

O(1) ∪ {(y, x)} and, by the
maximality condition in the definition of control sets we have (y, x) ∈ DΘ

O(1).

Since a Θ-maximal semigroup is the compression semigroup of its control
set in FΘ we have the following result:

Theorem 7.4. Let S be a Θ-maximal semigroup. Then

(DΘ
O(1))0 = (DΘ∗

(w0))0 × (DΘ(1))0

and

DΘ
O(1) = DΘ∗

(w0)×DΘ(1).

We conclude with the following relationship with the B -convex sets of [3].

Theorem 7.5. Let CΘ ⊂ FΘ be an admissible set satisfying CΘ = cl(int(CΘ)
and S = SCΘ

. Then, CΘ is B -convex if and only if DΘ
O(1) = C−Θ∗ × CΘ ,

DΘ∗
O (w0) = CΘ×C−Θ∗ and (DΘ

O(1))∗ = DΘ∗
O (w0), where C−Θ∗ is the minimal control

set for S on FΘ∗ .
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Proof. Assume that CΘ is B -convex. Since S = SCΘ
, it follows that the

parabolic type of S is Θ and CΘ is the invariant control set of S on FΘ . Thus,
the last proposition ensures that DΘ

O(1) = C−Θ∗ × CΘ and DΘ∗
O = CΘ × C−Θ∗ .

Moreover, S is Θ-maximal and hence (CΘ)∗ = C−Θ∗ (see [3], Proposition 5.3 and
Proposition 6.3). Thus, (C−Θ∗)∗ = (CΘ)∗∗ = CΘ . Since

(DΘ
O(1))∗ = {(ξ, η) ∈ OΘ∗ : ξ>ξ1 for all ξ1 ∈ C−Θ∗ and η>η1 for all η1 ∈ CΘ}

= {(ξ, η) ∈ OΘ∗ : ξ ∈ (C−Θ∗)∗ and η ∈ (CΘ)∗}

we have that

(DΘ
O(1))∗ = ((C−Θ∗)∗ × (CΘ)∗) ∩ OΘ∗

= (CΘ × C−Θ∗) ∩ OΘ∗

= CΘ × C−Θ∗

Therefore, (DΘ(1))∗ = DΘ∗
O (w0). Reciprocally, assume that DΘ

O(1) = C−Θ∗ × CΘ ,
DΘ∗
O (w0) = CΘ × C−Θ∗ and (DΘ

O(1))∗ = DΘ∗
O (w0). The equality

(DΘ
O(1))∗ = {(ξ, η) ∈ OΘ∗ : ξ ∈ (C−Θ∗)∗ and η ∈ (CΘ)∗}

= CΘ × C−Θ∗

implies that (C−Θ∗)∗ = CΘ and (CΘ)∗ = C−Θ∗ . Therefore,

(CΘ)∗∗ = (C−Θ∗)∗ = CΘ,

that is, CΘ is B -convex.
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