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Abstract. In this paper, we present a connection between binary and ternary
orthogonal codes and finite-dimensional modules of simple Lie algebras. The
Weyl groups of the Lie algebras are symmetries of the related codes. It turns
out that certain weight matrices of sl(n,C) and o(2n,C) generate doubly-
even binary orthogonal codes and ternary orthogonal codes with large minimal
distances. Moreover, we prove that the weight matrices of F4 , E6 , E7 and E8

on their minimal irreducible modules and adjoint modules all generate ternary
orthogonal codes with large minimal distances. In determining the minimal
distances, we have used the Weyl groups and branch rules of the irreducible
representations of the related simple Lie algebras.
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1. Introduction

Let m be a positive integer and denote Zm = Z/mZ . A code C of length n is
a subset of (Zm)n for some m , where the ring structure of Zm may not be used.
The elements of C are called codewords. The (Hamming) distance between two
codewords is the number of different coordinates. The minimal distance of a code
is the minimal number among the distances of all its pairs of codewords in the
code. A code with minimal distance d can be used to correct J(d − 1)/2K errors
in signal transmissions. We refer to [6], [15], [23] for more details. Examples of
the well-known infinite families of codes are cyclic codes, quadratic residue codes,
Goppa codes, algebraic geometry codes, arithmetic codes, Hadamard codes and
Pless double-circulant codes, etc. The names of these families also indicate the
methods of constructing codes. In this paper, we introduce a new infinite family
of codes arising from finite-dimensional representations of simple Lie algebras,
which we may call Lie theoretic codes. One of the important features of these
codes is that the corresponding Weyl group acts on them isometrically (although
it may not be faithful).

A linear code C over the ring Zm is a Zm -submodule of (Zm)n . The

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



648 Xu

(Hamming) weight of a codeword in a linear code C is the number of its nonzero
coordinates. In this case, the minimal distance of C is exactly the minimal weight
of the nonzero codewords in C . The inner product in (Zm)n is defined by

(a1, . . . , an) · (b1, . . . , bn) =
n∑
i=1

aibi. (1.1)

Moreover, C is called orthogonal if

C ⊆ {~a ∈ (Zm)n | ~α ·~b = 0 for ~b ∈ C}. (1.2)

When the equality holds, we call C a self-dual code. Orthogonal linear codes
(especially, self-dual codes) have important applications to the other mathematical
fields such as sphere packings, integral linear lattices, finite group theory, etc. We
refer to References [2]-[6], [9]-[14], [17]-[21] and [24] for more details. A code is
called binary if m = 2 and ternary when m = 3. A binary linear code is called
even (doubly-even) if the weights of all its codewords are divisible by 2 (by 4).

Let G be a finite-dimensional simple Lie algebras over C , the field of
complex numbers. Take a Cartan subalgebra H and simple positive roots
{α1, α2, . . . , αn} . Moreover, we denote by {h1, h2, . . . , hn} the elements of H such
that the matrix

(αi(hj))n×n is the Cartan matrix of G (1.3)

(e.g., cf. [7]). For a finite-dimensional G -module V , it is well known that V has
a weight-subspace decomposition:

V =
⊕
µ∈H∗

Vµ, Vµ = {v ∈ V | h(v) = µ(h)v for h ∈ H}. (1.4)

Take a maximal linearly independent set {u1, u2, . . . , uk} of weight vectors with
nonzero weights in V such that the order is compatible with the partial order of
weights (e.g., cf. [H]). Write

hi(uj) = ci,juj, C(V ) = (ci,j)n×k. (1.5)

By the representation theory of simple Lie algebras, all ci,j are integers. We
call C(V ) the weight matrix of G on V . Identify integers with their images
in Zm when the context is clear. Denote by Cm(V ) the linear code over Zm
generated by C(V ). Two codes that differ by a permutation on coordinate indices
are viewed as equivalent codes in coding theory. So our Cm(V ) is independent of
the choice of basis {u1, u2, . . . , uk} and only depends on the weight set of V and
weight multiplicities. This fact is equivalent to that the eigenvalues of a linear
transformation is independent of the bases of the underlying space.

In this paper, we prove that C2(V ) and C3(V ) for certain finite-dimensional
irreducible modules of special linear Lie algebras are doubly-even binary orthog-
onal codes with large minimal distances and ternary orthogonal codes with large
minimal distances, respectively. Moreover, C3(V ) for certain finite-dimensional
modules of orthogonal Lie algebras are also ternary orthogonal codes with large
minimal distances. Furthermore, we prove that the codes C3(V ) of the exceptional
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simple Lie algebras F4 , E6 , E7 and E8 on their minimal irreducible modules and
adjoint modules are all ternary orthogonal codes with large minimal distances.
This coding theoretic phenomenon was observed when we investigated the poly-
nomial representations of these algebras in [26]-[28]. It is also well known that
determining the minimal distance of a linear code is in general very difficult. We
have used the Weyl groups and branch rules of irreducible representations of the
related simple Lie algebras in determining the minimal distances of the codes in
question. Note also that our code Cm(V ) carries the important information of the
simple root vectors acting on the weight vectors ui via the weight matrix C(V )
(e.g., c.f. [7]). Below we give more technical details.

Suppose that the weight of ui is µi . Set

Hm =
n∑
i=1

Zmhi. (1.6)

We define a map = : Hm → (Zm)k by

=(
n∑
i=1

lihi) = (
n∑
i=1

liµ1(hi),
n∑
i=1

liµ2(hi), . . . ,
n∑
i=1

liµk(hi)) (1.7)

Then
Cm(V ) = =(Hm) (1.8)

Denote by W(G) the Weyl group of the simple Lie algebra G . For any σ ∈ W(G),
there exists a linear automorphism σ̂ of V such that

σ̂(Vµ) = Vσ(µ), σ(µ)(σ(h)) = µ(h) for h ∈ H (1.9)

(e.g., cf. [7]). Moreover, we define an action of W(G) on Hm by

σ(
n∑
i=1

lihi) =
n∑
i=1

liσ(hi) for σ ∈ W(G) (1.10)

According to (1.9),

wt =(σ(h)) = wt =(h) for σ ∈ W(G), h ∈ Hm (1.11)

So the number of the distinct weights of codewords in Cm(V ) is less than or equal
to the number of W(G)-orbits in Hm . Expression (1.11) will be used later in
determining minimal distances.

Let Λ(V ) be the set of nonzero weights of V . The module V is called
self-dual if Λ(V ) = −Λ(V ). In this paper, we are only interested in the binary and
ternary codes. We call C2(V ) the binary weight code of G on V . If V is self-dual,
then the weight matrix C(V ) = (−A,A) and C3(V ) is orthogonal if and only if
A generates a ternary orthogonal code (e.g., cf. [15]). For this reason, we call the
ternary code generated by A the ternary weight code of G on V if V is self-dual.
When V is not self-dual, then C3(V ) is the ternary weight code of G on V .

Denote by VX(λ) the finite-dimensional irreducible module of a simple Lie
algebra of type X with the highest weight λ . Let p be a prime number. Then Zp
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is a finite field, which is traditionally denoted by Fp . A linear code C of length n
over Fp is a linear subspace of Fnp over Fp . If dim C = k , we say that C is of type
[n, k] . When d is the minimal distance of C , we call C an [n, k, d]-code. Take the
labels of simple roots from [7]. Denote by λi the ith fundamental weight of the
related simple Lie algebra. We summarize the main results in this paper as the
following three theorems.

The special linear Lie algebra sl(n,C) consists of all n × n matrices with
zero trace, which is a simple Lie algebra of type An−1 .

Theorem 1.

1. The binary weight code C2(VA2m−1(λ2)) of sl(2m,C) is a doubly-even orthog-
onal [m(2m− 1), 2(m− 1), 4(m− 1)]-code if m ≥ 2.

2. The binary weight code C2(VAn−1(λ3)) of sl(n,C) is a doubly-even orthogonal
[
(
n
3

)
, n− 1, (n− 2)(n− 3)]-code if n > 9 and n ≡ 2, 3 (mod 4).

3. The ternary weight code of sl(3m+ 2,C) on VA3m+1(λ2) is an orthogonal
[
(

3m+2
2

)
, 3m+ 1, 6m]-code if m > 0.

4. The ternary weight code of sl(3m,C) on VA3m−1(λ3) is an orthogonal
[
(

3m
3

)
, 3m− 2, 3(m− 1)(3m− 2)]-code. Moreover, the ternary weight code of

sl(3m+2,C) on VA3m+1(λ3) is an orthogonal [
(

3m+2
3

)
, 3m+1, 3m(3m+1)/2]-

code.

5. The ternary weight code of sl(3m,C) on the adjoint module sl(3m,C) is an
orthogonal [

(
3m
2

)
, 3m− 2, 3(m− 1)]-code if m > 1.

The Lie algebra o(2n,C) consists of all 2n× 2n skew-symmetric matrices,
which is a simple Lie algebra of type Dn .

Theorem 2.

1. The ternary weight code of o(6m + 2,C) on VD3m+1(λ2) is an orthogonal
[2m(3m+ 1), 3m+ 1, 6m]-code if m > 0.

2. The ternary weight code of o(2m,C) on VDm(λ3) is an orthogonal
[m(m − 1)(2m − 1)/3,m, (m − 1)(2m − 3)]-code if m 6≡ −1 (mod 3) and
m > 3.

3. The ternary code C3(VDm(λm)) of o(2m,C) is of type [2m−1,m, 2m−2] if
6 6= m > 3 and of type [32, 6, 12] when m = 6, where the representation
of o(2m,C) on C3(VDm(λm)) is the spin representation.

4. The ternary weight code of o(12m+ 4,C) on o(12m+ 4,C) +VD6m+2(λ6m+2)
is an orthogonal [(6m+ 2)(6m+ 1) + 26m, 6m+ 2, 24m+ 1 + 26m−1]-code for
m > 0.

There are five exceptional finite-dimensional simple Lie algebras, labeled as
G2, F4, E6, E7 and E8 . They have broad applications. We find the following
common coding theoretic feature of the simple Lie algebras of types F4, E6, E7

and E8 .
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Theorem 3.

1. The ternary weight code of F4 on its minimal module is an orthogonal
[12,4,6]-code.

2. The ternary weight code of F4 on its adjoint module is an orthogonal [24,4,15]-
code.

3. The ternary weight code of E6 on its minimal module is an orthogonal
[27,6,12]-code.

4. The ternary weight code of E6 on its adjoint module is an orthogonal [36,5,21]-
code.

5. The ternary weight code of E7 on its minimal module is an orthogonal
[28,7,12]-code.

6. The ternary weight code of E7 on its adjoint module is an orthogonal [63,7,27]-
code.

7. The ternary weight code of E8 on its minimal (adjoint) module is an orthog-
onal [120,8,57]-code.

Section 2 is devoted to the study of the binary and ternary weight codes
of sl(n,C). In Section 3, we prove Theorem 2. Section 4 is about the ternary
weight codes of F4 on its minimal module and adjoint module. In Section 5, we
investigate the ternary weight codes of E6 on its minimal module and adjoint
module. We deal with the ternary weight codes of E7 and E8 on their minimal
module and adjoint module in Section 6.

This work is supported by Chinese National Science Foundation
NSF 11171324.

2. Codes Related to Representations of sl(n,C)

In this section, we study the binary and ternary codes related to representations
of sl(n,C), where n > 1 is an integer.

We denote

εi = (0, . . . ,
i

1, 0, . . . , 0) ∈ Rn. (2.1)

So

Rn =
n∑
i=1

Rεi. (2.2)

the inner product “(·, ·)” is Euclidian, that is,

(
n∑
i=1

kiεi,
n∑
j=1

ljεj) =
n∑
i=1

kili. (2.3)
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Denote by Ei,j the square matrix with 1 as its (i, j)-entry and 0 as the
others. The special linear Lie algebra

sl(n,C) =
∑

n≤i<j≤n

(CEi,j + CEj,i) +
n−1∑
r=1

Chr, hr = Er,r − Er+1,r+1. (2.4)

The subspace HAn−1 =
∑n−1

i=1 Chi forms a Cartan subalgebra of sl(n,C). The root
system

ΦAn−1 = {εi − εj | i, j ∈ {1, . . . , n}, i 6= j}. (2.5)

Take the simple positive roots

αi = εi − εi+1 for i ∈ {1, . . . , n− 1}. (2.6)

The corresponding Dynkin diagram is p

An−1 : e
1

e
2

. . . e
n-2

e
n-1

The Weyl group WAn−1 of sl(n,C) is exactly the full permutation group Sn on
{1, . . . , n} , which acts on HAn−1 and Rn by permuting sub-indices of Ei,i and εi ,
respectively.

Let A be the associative algebra generated by {θ1, θ2, . . . , θn} with the
defining relations:

θiθj = −θjθi for i, j ∈ {1, . . . , n}. (2.7)

The generators θi are called spin variables. The representation of the Lie algebra
sl(n,C) on A is given by

Ei,j = θi∂θj for i, j ∈ {1, . . . , n}. (2.8)

Set
Ar =

∑
1≤i1<i2<···<ir≤n

Cθi1θi2 · · · θir for r ∈ {1, . . . , n}. (2.9)

Then Ar forms an irreducible sl(n,C)-submodule of highest weight λr (the rth
fundamental weight) for r ∈ {1, . . . , n − 1} , that is, Ar ∼= VAn−1(λr). The Weyl
group WAn−1 acts on A by permuting sub-indices of θi .

Two k1 × k2 matrices A1 and A2 with entries in Zm are called equivalent
in the sense of coding theory if there exist an invertible k1 × k1 matrix K1 and
an invertible k2 × k2 monomial matrix K2 such that A1 = K1A2K2. Equivalent
matrices generate isomorphic codes. Take any order of the basis

{xr,1, xr,2, . . . , xr,(nr)} = {θi1θi2 · · · θir | 1 ≤ i1 < i2 < · · · < ir ≤ n}. (2.10)

Then we have
hi(xr,j) = ai,j(r)xr,j, ai,j(r) ∈ Z. (2.11)

Modulo equivalence, the weight matrix

C(Ar) = [ai,j(r)](n−1)×(nr)
. (2.12)
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Theorem 2.1. When n = 2m ≥ 4 is even, C2(A2) is a doubly-even binary
orthogonal [m(2m− 1), 2(m− 1), 4(m− 1)]-code.

Proof. Denote by ξi the ith row C2(A2). Since all the hi are in same orbit
under the Weyl group, their corresponding code vector ξi have the same weight (the
number of nonzero coordinates). Calculating the number of nonzero eigenvalues
of h1 associated with the eigenvectors {θ1θ2, θ1θr, θ2θr, θrθs | 3 ≤ r < s ≤ n} , we
get

wt ξi = 2(n− 2) for i ∈ {1, . . . , n− 1}. (2.13)

Moreover,
m−1∑
i=0

ξ2i+1 = 0 in C2(A2). (2.14)

Furthermore,

ξi · ξj = 4 ≡ 0 if i+ 1 < j (2.15)

and

ξi · ξi+1 = 2(m− 1) ≡ 0. (2.16)

Write

Ei,i(xr,j) = bi,j(r)xr,j, Br = [bi,j(r)]n×(nr)
. (2.17)

Denote by ζi the ith row of B2 . Note that the Weyl group sl(n,C) is the
permutation group Sn and σ(ζi) = ζσ(i) for σ ∈ Sn . Since the elements of sl(n,C)
have trace 0, any nonzero codeword in C2(A2) is a sum of even number of ζi and
so is conjugated to the codeword

u =
2t∑
s=1

ζs ∈ Fn(n−1)/2
2 for some t ∈ {1, . . . ,m− 1}. (2.18)

By (1.11), the elements in an Sn -orbit have the same weight. Calculating the
number of nonzero eigenvalues of

∑2t
s=1Es,s associated with the eigenvectors

{θrθs | 1 ≤ r < s ≤ n} , we get

wt u = 4t(m− t) = −4t2 + 4mt. (2.19)

Since the function −4t2 + t(4m− 1) attains maximal at t = m/2, wtu is minimal
at t = 1 or m− 1. Note

wt u = 4(m− 1) if t = 1 or m− 1. (2.20)

Thus the code C2(A2) has the minimal distance 4(m− 1). Replacing C in (2.9),
we get a representation of sl(2m,F2). Note that sl(2m,F2)/(F2I2m) is a simple
Lie algebra and (2.14) shows that the representation of sl(2m,F2) induces a
representation of sl(2m,F2)/(F2I2m), which must be faithful due to the simplicity.
Note that the dimension of C2(A2) is the dimension of the subspace of diagonal
elements in sl(2m,F2)/(F2I2m), which is 2(m− 1).
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When m = 2, C2(A2) is a doubly-even binary orthogonal [6, 2, 4]-code. If
m = 3, C2(A2) becomes a doubly-even binary orthogonal [15, 4, 8]-code. These
two code are optimal linear codes (e.g., cf. [1]). In the case of m = 4, C2(A2) is a
doubly-even binary orthogonal [28, 6, 12]-code.

Theorem 2.2. The code C2(A3) is a doubly-even binary orthogonal [
(
n
3

)
, n −

1, (n− 2)(n− 3)]-code if n > 9 and n ≡ 2, 3 (mod 4).

Proof. Denote by ξi the ith row the weight matrix C(A3). Then directly
calculate by (2.8), (2.10) and (2.11) that

wt ξi = (n− 2)(n− 3) for i ∈ {1, . . . , n− 1}. (2.21)

Moreover,

ξi · ξj = 4(n− 4) if i+ 1 < j (2.22)

and

ξi · ξi+1 = n− 3 +

(
n− 3

2

)
=

(n− 2)(n− 3)

2
. (2.23)

So C2(A3) is a doubly-even binary orthogonal code under the assumption.

Denote by ζi the ith row of B3 (cf. (2.17)). By the same arguments in the
paragraph above (2.18), any nonzero codeword in C2(A3) has the same weight as
the codeword

u(t) =
2t∑
s=1

ζs ∈ Fn2 for some t ∈ {1, . . . , Jn/2K}. (2.24)

We calculate

f(t) = 3wt u(t) = 3

(
2t

3

)
+ 6t

(
n− 2t

2

)
= t[16t2 − 12nt+ 3n(n− 1) + 2] (2.25)

directly by (2.8), (2.10) and (2.17). Moreover,

f ′(t) = 48t2 − 24nt+ 3n(n− 1) + 2 = 48
(
t− n

4

)2

− 3n+ 2. (2.26)

Thus

f ′(t0) = 0 =⇒ t0 =
n

4
± 1

4

√
n− 2

3
. (2.27)

Since f ′(0) = 3n(n− 1) + 2 > 0, f(t) attains local maximum at

t =
n

4
− 1

4

√
n− 2

3
(2.28)

and local minimum at

t =
n

4
+

1

4

√
n− 2

3
. (2.29)
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According to (2.21) and (2.25), f(1) = 3(n− 2)(n− 3). Furthermore,

f

(
n

4
+

1

4

√
n− 2

3

)

=

(
n

4
+

1

4

√
n− 2

3

)[
16

(
n

4
+

1

4

√
n− 2

3

)2

(2.30)

−12n

(
n

4
+

1

4

√
n− 2

3

)
+ 3n(n− 1) + 2

]
=

1

4

(
n+

√
n− 2

3

)(n+

√
n− 2

3

)2

− 3n

(
n+

√
n− 2

3

)
+ 3n(n− 1) + 2


=

1

4

(
n+

√
n− 2

3

)[
n

(
n−

√
n− 2

3

)
− 2n+

4

3

]

=
1

4

[
n3 − 3n2 + 2n+

(
4

3
− 2n

)√
n− 2

3

]
>

1

4
(n3 − 5n2 + 2n). (2.31)

Thus

f

(
n

4
+

1

4

√
n− 2

3

)
− f(1)

>
1

4
(n3 − 5n2 + 2n)− 3(n− 2)(n− 3) =

1

4
(n3 − 17n2 + 62n− 72)

>
n2(n− 17)

4
. (2.32)

If n ≥ 17, we have

f

(
n

4
+

1

4

√
n− 2

3

)
> f(1) (2.33)

and

f(n/2)− f(1)

=
n

2
[4n2 − 6n2 + 3n(n− 1) + 2]− 3(n− 2)(n− 3)

=
n(n− 1)(n− 2)

2
− 3(n− 2)(n− 3)

=
(n− 2)(n2 − 7n+ 9)

2
> 0 if n ≥ 6. (2.34)

Thus the minimal weight is f(1)/3 = (n− 2)(n− 3) when n ≥ 17.
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When n = 10, we calculate

Table 2.1

t 1 2 3 4 5
wt u(t) 56 64 56 64 120

If n = 11, we find

Table 2.2

t 1 2 3 4 5
wt u(t) 72 88 80 80 120

When n = 14, we obtain

Table 2.3

t 1 2 3 4 5 6 7
wt u(t) 132 184 188 176 180 232 364

If n = 15, we get

Table 2.4

t 1 2 3 4 5 6 7
wt u(t) 156 224 216 224 220 256 364

The dimension of C2(A3) is n − 1 because In|A3 6= 0 when A3 in (2.9) with C
replaced by F2 becomes an sl(n,F2)-module with respect to (2.8). This prove the
conclusion in the theorem.

Note that when n = 6, we find p

Table 2.5

t 1 2 3
wt u(t) 12 8 20

p

So C2(A3) is a doubly-even binary orthogonal [20, 5, 8]-code. Moreover, if n = 7,
we find

Table 2.6

t 1 2 3
wt u(t) 20 16 20

p Hence C2(A3) a doubly-even binary orthogonal [35, 6, 16]-code. In both cases,
the above theorem fails and both codes are the best even codes among the binary
codes with the same length and dimension (e.g., cf. [1]).

According to the above theorem, C2(A3) is a doubly-even binary orthogonal
[120, 9, 56]-code when n = 10, [165, 10, 72]-code if n = 11, [364, 13, 132]-code
when n = 14 and [455, 14, 156]-code if n = 15.
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Next let us consider the ternary codes. Again by symmetry, any nonzero
codeword in C3(Ar) has the same weight as the codeword

u(s, t) =
s∑
r=1

ζr −
t∑
i=1

ζs+i ∈ F(nr)
3 (2.35)

for some nonnegative integers s, t , where ζι is the ιth row of the matrix Br in
(2.17). Moreover,

wt u(s, t) = wt u(t, s). (2.36)

Furthermore, we calculate

wt u(s, t) = (s+ t)(n− s− t) +

(
s

2

)
+

(
t

2

)
in C3(A2) (2.37)

and

wt u(s, t) = (s+ t)

(
n− s− t

2

)
+ (n− s)

(
s

2

)
+ (n− t)

(
t

2

)
in C3(A3) (2.38)

directly by (2.8), (2.10) and (2.17).

For convenience, we denote

f(s, t) = 2wt u(s, t) = 2(s+ t)(n− s− t) + s(s− 1) + t(t− 1)

= (2n− 1)(s+ t)− s2 − t2 − 4st (2.39)

in C3(A2) and

g(s, t) = 2wt u(s, t)

= (s+ t)(n− s− t)(n− s− t− 1) + (n− s)s(s− 1) + (n− t)t(t− 1)

= (s+ t)3 − (2n− 1)(s+ t)2 + n(n− 1)(s+ t)− s3 − t3

+(n+ 1)(s2 + t2)− n(s+ t)

= 3st2 + 3s2t+ (2− n)(s2 + t2)− 2(2n− 1)st+ n(n− 2)(s+ t) (2.40)

in C3(A3).

Note

f(3, 0) = 3(2n− 1)− 9 = 6(n− 2), f(n, 0) = n(2n− 1)− n2 = n(n− 1), (2.41)

f(1, 1) = 2(2n− 1)− 6 = 4(n− 2), f(1, n− 1) = (n− 1)(n− 2). (2.42)

Since geometrically f(s, t) has only local minimum, it attains the absolute mini-
mum at boundary points. Thus

min{f(s, t) | s ≡ t (mod 3)} = 4(n− 2) if n ≥ 5. (2.43)

Now

gs(s, t) = 3t2 + 6st+ 2(2− n)s− 2(2n− 1)t+ n(n− 2), (2.44)

gt(s, t) = 3s2 + 6st+ 2(2− n)t− 2(2n− 1)s+ n(n− 2). (2.45)



658 Xu

Suppose that gs(s0, t0) = gt(s0, t0) = 0 for s0, t0 ≥ 0, that is,

3t20 + 6s0t0 + 2(2− n)s0 − 2(2n− 1)t0 + n(n− 2) = 0, (2.46)

3s2
0 + 6s0t0 + 2(2− n)t0 − 2(2n− 1)s0 + n(n− 2) = 0. (2.47)

By (2.45)− (2.46), we get

(t0 − s0)(3t0 + 3s0 − 2(n+ 1)) = 0 =⇒ t0 = s0 or 3t0 + 3s0 = 2(n+ 1). (2.48)

If s0 = t0 , then we find

9s2
0 − 2(n− 1)s0 + n(n− 2) = 0 ∼ 8s2

0 + (s0 − n+ 1)2 − 1 = 0, (2.49)

which leads to a contradiction because n > 1. Thus 3t0 + 3s0 = 2(n− 1). Denote
s1 = 3t0 and t1 = 3t0 . Then s1 + t1 = 2(n+ 1) and (2.45) becomes

t21 +2(2(n+1)− t1)t1 +2(2−n)(2(n+1)− t1)−2(2n−1)t1 +3n(n−2) = 0, (2.50)

equivalently,

t21−2(n+1)t1+(n−2)(n+4) = 0 ∼ (t1−n−1)2−9 = 0 =⇒ t1 = n+4, n−2. (2.51)

Therefore,

s0 =
n+ 4

3
, t0 =

n− 2

3
or t0 =

n+ 4

3
, s0 =

n− 2

3
. (2.52)

We calculate

g(s0, t0) =
2(n− 2)(n2 − n− 3)

9
, (2.53)

g(1, 0) = g(n−1, 0) = (n−1)(n−2), g(3, 0) = 3(n−2)(n−3), g(n, 0) = 0. (2.54)

g(1, 1) = g(n− 2, 1) = 2(n− 2)(n− 3), g(n− 2, 0) = 2(n− 2)2. (2.55)

Moreover,
g(s0, t0) ≥ g(1, 0), g(1, 1) if n ≥ 6. (2.56)

When n = 5, we calculate

g(1, 0) = g(1, 1) = g(2, 1) = g(2, 2) = g(3, 1) = g(4, 0) = g(4, 1) = 12, (2.57)

g(2, 0) = g(3, 0) = g(3, 2) = 18. (2.58)

In summary, we have:

Theorem 2.3. Let n ≥ 5. The the matrix B3 (cf. (2.17)) generates a ternary[(
n
3

)
, n− 1,

(
n−1

2

)]
-code, which is equal to C3(A3) if n 6≡ 0 (mod 3). If n = 3m+ 2

for some positive integer m, C3(A2) is a ternary orthogonal [
(

3m+2
2

)
, 3m+ 1, 6m]-

code and C3(A3) is a ternary orthogonal [
(

3m+2
3

)
, 3m + 1, 3m(3m + 1)/2]-code.

The code C3(A3) is a ternary orthogonal
[(
n
3

)
, n− 2, (n− 2)(n− 3)

]
-code when

n ≡ 0 (mod 3).
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Proof. The part of minimal distances has been proved by the above arguments.

Note that In|A3 = 0 when A3 in (2.9) with C replaced by F3 becomes
an sl(n,F3)-module with respect to (2.8). Moreover, sl(n,F3) is simple if n 6≡
0 (mod 3). When n ≡ 0 (mod 3), I3 ∈ sl(n,F3) and sl(n,F3)/(F3In) is simple.
The first conclusion and the dimensions of C3(A3) are obtained by the above facts.
The dimension of C3(A2) comes from the fact In|A2 6= 0. Now we only need to
prove orthogonality.

Suppose n = 3m + 2. In C3(A2), ξr stands for the rth row of the weight
matrix C(A2) and

ξi · ξj = 2− 2 = 0 for 1 ≤ i < j − 1 ≤ n− 2, (2.59)

ξr · ξr+1 = −(n− 2) = −3m, ξs · ξs = 2(n− 2) = 6m (2.60)

for r ∈ {1, . . . , n − 2} and s ∈ {1, . . . , n − 1} . So C3(A2) is orthogonal. Now ζr
stands for the rth row of B3 (cf. (2.17)). Observe

n∑
i=1

ζi = 0 ∈ F(n3)
3 (2.61)

by (2.8) and (2.9). Moreover,

ζi · ζj = n− 2 = 3m, ζi · ζi =

(
n− 1

2

)
=

3m(3m+ 1)

2
, i 6= j. (2.62)

Thus B3 generate a ternary orthogonal code.

Assume that n = 3m for some nonnegative integer m . In C3(A3), we also
use ξr for the rth row of the weight code C(A3) and

ξi · ξj = 2(n− 4)− 2(n− 4) = 0 for 1 ≤ i < j − 1 ≤ n− 2, (2.63)

ξs · ξs = 2ξr · ξr+1 = (n− 2)(n− 3) = 3(3m− 2)(m− 1) ≡ 0 (2.64)

for r ∈ {1, . . . , n− 2} and s ∈ {1, . . . , n− 1} . So C3(A3) is orthogonal.

According to the above theorem, C3(A2) is a ternary orthogonal [10, 4, 6]-
code when n = 5 (which is optimal (e.g., cf. [1])), [28, 7, 12]-code when n = 8,
and [55, 10, 18]-code when n = 11. Moreover, C3(A3) is a ternary orthogonal
[10, 4, 6]-code when n = 5, [15, 4, 12]-code if n = 6, [56, 7, 21]-code when n = 8,
[84, 7, 42]-code if n = 9, [165, 10, 45]-code when n = 11 and [220, 10, 90]-code
when n = 12.

Finally, we consider the adjoint representation of sl(n,C). Note that
{Ei,j | 1 ≤ i < j ≤ n} are positive root vectors. Given an order

{y1, . . . , y(n2)
} = {Ei,j | 1 ≤ i < j ≤ n}, (2.65)

we write
[hi, yj] = ki,jyj, [Er,r, yj] = lr,jyj. (2.66)

Denote
K = (ki,j)(n−1)×(nr)

, L = (li,j)n×(nr)
. (2.67)
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Let K be the ternary code generated by K and let L be the ternary code generated
by L . Moreover, ~ki stands for the ith row of K and ~lr stands for the rth row of
L . Set

u(s, t) =
s∑
i=1

~li −
t∑

j=1

~ls+j. (2.68)

For any nonzero codeword v ∈ L , using negative root vectors, we can prove

wt (v,−v) = wt (u(s, t),−u(s, t)) (2.69)

for some s and t by symmetry (cf. (1.9)-(1.11)). Thus

wt v = wt u(s, t) = (s+ t)(n− s− t) + st = φ(s, t). (2.70)

Note

φ(s, t) = n2 − 1

2
[(s− n)2 + (t− n)2 + (s− t)2]. (2.71)

So φ(s, t) has only local maximum. Thus it attains the absolute minimum at the
boundary points. We calculate

φ(1, 0) = φ(n− 1, 0) = n− 1, φ(n− 3, 0) = 3(n− 3), (2.72)

φ(1, 1) = 2n− 3, φ(n− 2, 1) = 2(n− 1). (2.73)

Since
n∑
i=1

~li = 0, (2.74)

K = L if n 6= 0 (mod 3). (2.75)

~ki · ~kj = 2− 2 = 0 1 ≤ i < j − 1 ≤ n, (2.76)

~kr · ~kr+1 = 6− n, ~ks · ~ks = 2n− 3. (2.77)

In summary, we have: p

Theorem 2.4. The code L is a ternary [
(
n
2

)
, n− 1, n− 1]-code if n ≥ 4, which

is also the ternary weight code on the adjoint module sl(n,C) when n 6= 0 (mod 3).
If n = 3m for some integer m > 1, then the ternary weight code K on sl(3m,C)
is an orthogonal [

(
3m
2

)
, 3m− 2, 3(m− 1)]-code.

3. Codes Related to Representations of o(2m,C)

In this section, we only study ternary codes related to certain representations
of so(2m,C), some of which will be used to investigate the codes related to
exceptional simple Lie algebras.

Let n = 2m be a positive even integer. Take the settings in (2.1)-(2.3)
(with n→ m). The orthogonal Lie algebra

o(2m,C) =
∑

1≤i<j≤m

[C(Ei,j − Em+j,m+i) + C(Ej,i − Em+i,m+j)

+C(Ei,m+j − Ej,m+i) + C(Em+i,j − Em+j,i)] +
m∑
r=1

Chr, (3.1)
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where

hs = Es,s−Es+1,s+1−Em+s,m+s−Em+s+1,m+s+1 for s ∈ {1, . . . ,m− 1} (3.2)

and
hm = Em−1,m−1 + Em,m − E2m−1,2m−1 − E2m,2m. (3.3)

Indeed, we take the Cartan subalgebra

HDm =
m∑
i=1

Chi (3.4)

of o(2m,C). The root system

ΦDm = {±εi ± εj | i, j ∈ {1, . . . ,m}, i 6= j} (3.5)

and simple positive roots are:

αi = εi − εi+1, αm = εm−1 + εm, i ∈ {1, . . . ,m− 1}. (3.6)

The corresponding Dynkin diagram is

Dm e
1

e
2

. . . e
m-3

e
m-2

��
��

e
m-1PPPP e
m

The Weyl group is Sm n Zm−1
2 , which acts HDm and Rm by permuting

sub-indices of εi and Ei,i − Em+i,m+i , and changing sign on even number of their
coefficients.

Take the settings in (2.7)-(2.12) and (2.17). Moreover, the representation
of o(2m,C) on A determined by (2.8). For any ~ι = (ι1, . . . , ιm) with ιi ∈ {0, 1}
and τ ∈ Sm , we have an associative algebra automorphism στ,~ι of A determined
by

στ,~ι(θi) = θmδιi,1+τ(i), στ,~ι(θm+i) = θmδιi,0+τ(i) for i ∈ {1, . . . ,m}. (3.7)

Moreover, we define a linear map στ,~ι on H by

στ,~ι(Ei,i−Em+i,m+i) = (−1)ιi(Eτ(i),τ(i)−Em+τ(i),m+τ(i)) for i ∈ {1, . . . ,m}. (3.8)

Then
στ,~ι(h(w)) = στ,~ι(h)[στ,~ι(w)] for h ∈ H, w ∈ A. (3.9)

Note that all Ar ∼= VDm(λr) are self-dual o(2m,C)-submodules for r ∈
{1, . . . ,m−2} , where λr is the rth fundamental weight. In particular, the ternary
weight code C2 of o(2m,C) on A2 is given by the weight matrix on its subspace

A2,1 =
∑

1≤i<j≤m

(Cθiθj + Cθiθm+j). (3.10)
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We take any order

{x1, x2, · · · , xm(m−1)} = {θiθj, θiθm+j | 1 ≤ i < j ≤ m} (3.11)

and write

(Ei,i − Em+i,m+i)(xj) = ci,j(2)xj, C2 = (ci,j(2))m×m(m−1). (3.12)

Moreover,
the weight matrix on A2 is equivalent to (C2,−C2). (3.13)

Since
m∑
i=1

F3hi =
m∑
i=1

F3(Ei,i − Em+i,m+i), (3.14)

C2 is a generator matrix of the ternary code C2 . Denote by ζi the ith row of
C2 . By (3.8) and (3.12), any nonzero codeword in C2 has the same weight as the
codeword

u(t) =
t∑
i=1

ζt for some t ∈ {1, . . . ,m}. (3.15)

Moreover, we calculate directly by (2.8), (3.10) and (3.11) that

f(t) = wt u(t) =

(
t

2

)
+ 2t(m− t) =

(4m− 1)t− 3t2

2
(3.16)

So f(t) has only local maximum and it attains the absolute minimum at the
boundary points. Note that

f(1) = 2(m− 1), f(m) =
m(m− 1)

2
. (3.17)

Hence
the minimal distance of C2 is 2(m− 1) if m ≥ 4. (3.18)

Theorem 3.1. When m = 3m1 + 1 for some positive integer m1 , the ternary
weight code C2 of o(2m,C) on A2 is an orthogonal [m(m− 1),m, 2(m− 1)]-code.

Proof. Note that for i, j ∈ {1, . . . ,m} with i 6= j , ζi · ζi = f(1) = 6m1,

(ζi + ζj) · (ζi + ζj) = f(2) = 1 + 4(m− 2) = 4m− 7 = 12(m1 − 1). (3.19)

Thus

ζi · ζj =
f(2)− 2f(1)

2
= −6. (3.20)

Hence C2 is an orthogonal ternary code. The dimension of the code C2 comes from
the fact that o(2m,F3) is simple.

In particular, C2 is an orthogonal ternary [12, 4, 6]-code when m1 = 1,
[42, 7, 12]-code when m1 = 2 and [90, 10, 18]-code when m1 = 3. It can be proved
that C2 is also the weight code on the adjoint module of o(2m,C).
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The ternary weight code C3 of o(2m,C) on A3 is given by the weight matrix
on its subspace

A3,1 =
∑

1≤i<j<l≤m

Cθiθjθl +
∑

1≤i<j≤m

m∑
l=1

Cθiθjθm+l. (3.21)

We take any order

{y1, y2, · · · , y(m3 )+m(m2 )} = {θiθjθl, θrθsθm+q

| 1 ≤ i < j < l ≤ m; 1 ≤ r < s ≤ m; q ∈ {1, . . . ,m}} (3.22)

and write

(Ei,i − Em+i,m+i)(yj) = ci,j(3)yj, C3 = (ci,j(3))m×((m3 )+m(m2 )). (3.23)

Moreover,
the weight matrix on A3 is equivalent to (C3,−C3). (3.24)

Denote by ηi the ith row of C3 . By (3.8) and (3.23), any nonzero codeword
in C3 has the same weight as the codeword

u(t) =
t∑
i=1

ηt for some t ∈ {1, . . . ,m}. (3.25)

Moreover, we calculate directly by (2.8), (3.21) and (3.22) that

g(t) = wt u(t) = (2m− t)
(
t

2

)
+ 2t

(
m− t

2

)
+ t(m− t)2

=
t(t− 1)(2m− t) + 2t(m− t)(2m− 2t− 1)

2

=
t

2
[3t2 + 3(1− 2m)t+ 4(m2 −m)]. (3.26)

Observe that

g′(t) =
1

2
[9t2 + 6(1− 2m)t+ 4(m2 −m)] =

1

2
[(3t+ 1− 2m)2 − 1]. (3.27)

Thus

g′(t0) = 0 =⇒ t0 =
2(m− 1)

3
,

2m

3
. (3.28)

Since g′(0) = (m2 −m)/2 ≥ 0, t = 2(m − 1)/3 is a point of local maximum and
t = 2m/3 is a point of local minimum. We calculate

g(1) = (m− 1)(2m− 3), g(m) =
m2(m− 1)

2
, g(2m/3) =

2

9
m2(2m− 3). (3.29)

Note that g(m) ≥ g(1) and g(2m/3) ≥ g(1) if m ≥ 3. p

Theorem 3.2. Let m ≥ 3. The ternary weight code C3 of o(2m,C) on A3 is
of type [m(m − 1)(2m − 1)/3,m, (m − 1)(2m − 3)]. Moreover, it is orthogonal if
m 6≡ −1 (mod 3).
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Proof. Note

ηi · ηi = g(1) = (m− 1)(2m− 3) (3.30)

and

(ηi + ηj) · (ηi + ηj) = g(2) = 2(2(m− 2)2 + 1) (3.31)

for i, j ∈ {1, . . . ,m} such that i 6= j . Thus

ηi · ηj =
g(2)− 2g(1)

2
= 3(2−m). (3.32)

So C3 is orthogonal if m 6≡ −1 (mod 3). Again the dimension of the code C3

comes from the fact that o(2m,F3) is simple.

Remark that C3 is an orthogonal [10, 3, 6]-code when m = 3, [28, 4, 15]-code
when m = 4, [110, 6, 45]-code when m = 6 and [182, 7, 66]-code when m = 7.

Let B be the subalgebra of A generated by {1A, θi | i ∈ {1, . . . ,m}} and

Br = Ar
⋂
B for r ∈ {0, 1, . . . ,m}. (3.33)

The spin representation of so(2m,C) is given by

Ei,j − Em+j,m+i = θi∂θj −
δi,j
2

for i, j ∈ {1, . . . ,m}, (3.34)

Em+s,r − Em+r,s = ∂θs∂θr , Er,m+s − Es,m+r = θrθs (3.35)

for 1 ≤ r < s ≤ m . Then the subspace

V =

Jm/2K∑
i=1

Bm−i (3.36)

is the irreducible module with highest weight λm (the mthe fundamental weight),
that is, V ∼= VDm(λm).

If m = 2m1 + 1 is odd, then

{θi1 · · · θim−2r | r ∈ {0, . . . ,m1}; 1 ≤ i1 < · · · < im−2r ≤ m} (3.37)

forms a weight-vector basis of V . When m = 2m1 is even,

{1, θi1 · · · θim−2r | r ∈ {0, . . . ,m1 − 1}; 1 ≤ i1 < · · · < im−2r ≤ m} (3.38)

is a weight-vector basis of V . Take any order {z1, z2, . . . , z2m−1} of the above base
vectors. Denote

(Er,r − Em+r,m+r)(zi) = qr,izi, C(V) = (qr,i)m×2m−1 . (3.39)

Note that
1

2
≡ −1 in F3. (3.40)
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Denote by ξr the rth row of the weight matrix C(V). Set

ū =
m−1∑
r=1

ξr − ξm, u(t) =
t∑
i=1

ξi for t ∈ {1, . . . ,m}. (3.41)

Then any nonzero codeword in C3(V) has the same weight as some u(t) or ū by
(3.6) and (3.8). It has the same weight as u(t) or ū . We calculate directly by
(3.33), (3.37) and (3.38) that

wt u(1) = 2m−1, wt u(2) = 2m−2. (3.42)

Moreover, we have the following more general estimates. For any positive integer
k > 2, we always have(

k

l − 1

)
+

(
k

l + 1

)
>

(
k

l

)
for l ∈ {0, k}, (3.43)

where we treat
(
k
−1

)
=
(
k
k+1

)
= 0. If t = 3t1 for some positive integer t1 , we

calculate directly by (3.33), (3.37) and (3.38) that

wt u(t) = 2m−3t1−1

t1∑
i=0

[(
3t1

6i+ 1

)
+

(
3t1

6i+ 2

)
+

(
3t1

6i+ 4

)
+

(
3t1

6i+ 5

)]

> 2m−3t1−1

t1∑
i=0

[(
3t1

6i+ 1

)
+

(
3t1

6i+ 3

)
+

(
3t1

6i+ 5

)]
= 2m−2. (3.44)

When t = 3t1 + 1 for some positive integer t1 , we obtain

wt u(t) = 2m−3t1−2

t1∑
i=0

[(
3t1 + 1

6i

)
+

(
3t1 + 1

6i+ 1

)
+

(
3t1 + 1

6i+ 3

)
+

(
3t1 + 1

6i+ 4

)]

> 2m−3t1−2

t1∑
i=0

[(
3t1 + 1

6i

)
+

(
3t1 + 1

6i+ 2

)
+

(
3t1 + 1

6i+ 4

)]
= 2m−2. (3.45)

If t = 3t1 + 2 for some positive integer t1 , we find directly by (3.33), (3.37) and
(3.38) that

wt u(t) = 2m−3t1−3

t1∑
i=0

[(
3t1 + 2

6i

)
+

(
3t1 + 2

6i+ 2

)
+

(
3t1 + 2

6i+ 3

)
+

(
3t1 + 2

6i+ 5

)]

> 2m−3t1−3

t1∑
i=0

[(
3t1 + 2

6i

)
+

(
3t1 + 2

6i+ 2

)
+

(
3t1 + 2

6i+ 4

)]
= 2m−2. (3.46)

Let k be a positive integer. We have(
2k

i

)
+

(
2k

i+ 4

)
>

(
2k

i+ 1

)
(3.47)

if i ≤ k − 3 or i ≥ k . Moreover,(
2k

k − 2

)
+

(
2k

k + 2

)
−
(

2k

k − 1

)
=
k − 4

k − 1

(
2k

k − 2

)
, (3.48)
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(
2k

k − 1

)
+

(
2k

k + 3

)
−
(

2k

k

)
=
k3 − 4k2 − 3k − 6

k(k − 1)(k − 2)

(
2k

k − 3

)
. (3.49)

Thus (3.46) always holds if k ≥ 5. Furthermore,(
2k + 1

i

)
+

(
2k + 1

i+ 4

)
>

(
2k + 1

i+ 1

)
(3.50)

if i 6= k − 1. Observe that(
2k + 1

k − 1

)
+

(
2k + 1

i+ 3

)
−
(

2k + 1

k

)
=
k2 − 3k − 6

k(k − 1)

(
2k + 1

k − 2

)
. (3.51)

So (3.49) holds whenever k ≥ 5. Therefore,(
k

i

)
+

(
k

i+ 4

)
>

(
k

i+ 1

)
if k ≥ 10. (3.52)

If m = 3m1 for some positive integer m1 ,

wt ū =
m∑
i=0

[(
m

6i

)
+

(
m− 1

6i+ 1

)
+

(
m− 1

6i+ 4

)]
=

m∑
i=0

[(
m− 1

6i

)
+

(
m− 1

6i+ 5

)
+

(
m− 1

6i+ 1

)
+

(
m− 1

6i+ 4

)]
, (3.53)

which is > 2m−2 if m1 ≥ 4 by (3.51). When m = 3m1 +1 for some positive integer
m1 ,

wt ū =
m∑
i=0

[(
m− 1

6i

)
+

(
m

6i+ 2

)
+

(
m− 1

6i+ 3

)]
=

m∑
i=0

[(
m− 1

6i

)
+

(
m− 1

6i+ 1

)
+

(
m− 1

6i+ 2

)
+

(
m− 1

6i+ 3

)]
= 1 +

m∑
i=0

[(
m− 1

6i+ 1

)
+

(
m− 1

6i+ 3

)
+

(
m− 1

6i+ 2

)
+

(
m− 1

6i+ 6

)]
, (3.54)

which is again > 2m−2 if m1 ≥ 4 by (3.51). Assuming m = 3m1 + 2 for some
positive integer m1 , we have

wt ū =
m∑
i=0

[(
m− 1

6i+ 2

)
+

(
m

6i+ 4

)
+

(
m− 1

6i+ 5

)]
=

(
m− 1

3

)
+

m∑
i=0

[(
m− 1

6i+ 2

)
+

(
m− 1

6i+ 4

)
+

(
m− 1

6i+ 5

)
+

(
m− 1

6i+ 9

)]
, (3.55)

which is > 2m−2 if m1 ≥ 3 by (3.51). Moreover, we have the following table: p

Table 3.1

m 4 5 6 7 8 9 10
wt ū 8 11 12 43 112 171 260
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pThe dimension of the code C3(V ) is m due to the simplicity of o(2m,F3). In
summary, we have:

Theorem 3.3. Let m > 3 be an integer. The ternary code C3(V) is of type
[2m−1,m, 2m−2] if m 6= 6 and of type [32, 6, 12] when m = 6.

We remark that the spin module V is self-dual if and only if m is even.

Corollary 3.4. When m = 6m1 + 2 for some positive integer m1 , the ternary
weight code of o(2m,C) on o(2m,C) + V is an orthogonal ternary [m(m − 1) +
2m−2,m, 4m − 7 + 2m−3]-code. If m = 6m1 + 3 for some positive integer m1 ,
the ternary weight code of o(2m,C) on o(2m,C) + V is an orthogonal ternary
[2m(m − 1) + 2m−1,m, 8m − 14 + 2m−2]-code. In the case m = 6m1 + 5 and
m = 6m1 + 12 for some nonnegative integer m1 , the code C2 ⊕ C3(V) is an
orthogonal ternary [m(m − 1) + 2m−1,m, 4m − 7 + 2m−2]-code. When m = 6,
the code C2 ⊕ C3(V) is an orthogonal ternary [62, 6, 27]-code.

Proof. Suppose m = 6m1 + 2 for some positive integer m1 . Then the weight
matrix of o(2m,C) on o(2m,C) + V is equivalent to (A,−A), where A generates
the weight code C of o(2m,C) + V . Moreover, C is orthogonal if and only if the
matrix (A,−A) generates an orthogonal code. But

(A,−A) ∼ (C2, C2, C(V)). (3.56)

Note that

wt (ζi, ζi, ξi) = 2f(1) + 2m−1 = 4(m− 1) + 2m−1 ≡ 1 + (−1)6m1+1 ≡ 0 (mod 3),
(3.57)

wt (ζi + ζj, ζi + ζj, ξi + ξj)

= 2f(2) + 2m−2 = 8m− 14 + 2m−2 ≡ 2 + (−1)6m1 ≡ 0 (mod 3) (3.58)

for i, j ∈ {1, . . . ,m} with i 6= j by (3.16) and (3.41). Thus

(ζi, ζi, ξi) · (ζi, ζi, ξi) ≡ wt (ζi, ζi, ξi) ≡ 0, (3.59)

(ζi, ζi, ξi) · (ζj, ζj, ξj)
≡ −[wt (ζi + ζj, ζi + ζj, ξi + ξj)− wt (ζi, ζi, ξi)− wt (ζj, ζj, ξj)] ≡ 0 (3.60)

by (3.39), (3.57) and (3.58). Thus C is orthogonal. Note

f(2) = 4m− 7 ≤ m(m− 1)

2
= f(m) if m ≥ 7. (3.61)

Thus
f(2) ≤ f(t) for t ∈ {2, . . . ,m}. (3.62)

By (3.8),

wt (
m−1∑
i=1

ζi − ζm) = f(m) ≥ f(2). (3.63)
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Thus the minimum distance of C is

min{f(1) + 2m−2, f(2) + 2m−3} = 4m− 7 + 2m−3 if m ≥ 6. (3.64)

This proves the first conclusion. The other conclusions for m ≥ 7 can be proved
similarly.

In the case m = 5, we have

Table 3.2

t 1 2 3 4 5
f(t) 8 13 15 14 10

and on the V ,

Table 3.3

t 1 2 3 4 5
wt u(t) 16 8 12 10 11

By Tables 3.1-3.3 and the fact wt (
∑4

i=1 ζi − ζ5) = f(5) in C3(A2), the third
conclusion holds for m = 5.

If m = 6,

Table 3.4

t 1 2 3 4 5 6
f(t) 10 17 21 22 20 15

and on the V ,

Table 3.5

t 1 2 3 4 5 6
wt u(t) 32 16 24 20 22 21

By Tables 3.1, 3.4, and 3.5, and the fact wt (
∑5

i=1 ζi − ζ6) = f(6) in C3(A2), the
last conclusion holds.

When m = 8, the ternary weight code of o(16,C) on o(16,C) + V is
a ternary orthogonal [120, 8, 57]-code, which will later be proved also to be the
ternary weight code of E8 on its adjoint module. If m = 9, the ternary weight
code of o(18,C) on o(18,C) + V is a ternary orthogonal [400, 8, 186]-code. When
m = 5, the code C2 ⊕ C3(V) is a ternary orthogonal [36, 5, 21]-code, which will
later be proved also to be the ternary weight code of E6 on its adjoint module. In
the case m = 11, the code C2 ⊕ C3(V) is a ternary orthogonal [1134, 8, 549]-code.



Xu 669

4. Representations of F4 and Ternary Codes

In this section, we study the ternary weight codes of F4 on its minimal irreducible
module and adjoint module.

We go back to the settings in (2.2)-(2.4) with n = 4. The root system of
F4 is

ΦF4 =

{
±εi,±εi ± εj,

1

2
(±ε1 ± ε2 ± ε3 ± ε4) | i 6= j

}
(4.1)

and the positive simple roots are

α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4, α4 =
1

2
(ε1 − ε2 − ε3 − ε4). (4.2)

The corresponding Dynkin diagram is

F4 : e
1

e
2
〉 e

3
e
4

The Weyl group WF4 of F4 contains the permutation group S4 on the
sub-indices of εi and all reflections with respect to the coordinate hyperplanes.
Moreover, there is an identification:

h1 ↔ α1, h2 ↔ α2, h3 ↔ 2α3, h4 ↔ 2α4 (4.3)

(e.g, cf. [7]). Thus

H2 =
4∑
i=1

F2hi =
4∑
i=1

F2εi. (4.4)

Moreover,
H2 = {WF4(h1),WF4(h1 + h3),WF4(h3),WF4(h4)}. (4.5)

The basic (minimal) irreducible module VF4 of the 52-dimensional Lie algebra GF4

has a basis {x1, . . . , x26} and with the representation determined by the following
formulas in terms of differential operators:

Eα1 |V = x4∂x6 + x5∂x8 + x7∂x9 − x18∂x20 − x19∂x22 − x21∂x23 , (4.6)

Eα2 |V = x3∂x4 + x8∂x10 + x9∂x11 − x16∂x18 − x17∂x19 − x23∂x24 , (4.7)

Eα3|V = −x2∂x3 − x4∂x5 − x6∂x8 + x10∂x12 + x11(∂x13 − 2∂x14)

−x14∂x16 − x15∂x17 + x19∂x21 + x22∂x23 + x24∂x25 , (4.8)

Eα4|V = −x1∂x2 − x5∂x7 − x8∂x9 − x10∂x11 + x12(∂x14 − 2∂x13)

−x13∂x15 + x16∂x17 + x18∂x19 + x20∂x22 + x25∂x26 , (4.9)

E−α1|V = −x6∂x4 − x8∂x5 − x9∂x7 + x20∂x18 + x22∂x19 + x23∂x21 ,

E−α2|V = −x4∂x3 − x10∂x8 − x11∂x9 + x18∂x16 + x19∂x17 + x24∂x23 , (4.10)
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E−α3|V = x3∂x2 + x5∂x4 + x8∂x6 − x12∂x10 + x16(2∂x14 − ∂x13)
+x14∂x11 + x17∂x15 − x21∂x19 − x23∂x22 − x25∂x24 , (4.11)

E−α4|V = x2∂x1 + x7∂x5 + x9∂x8 + x11∂x10 + x15(2∂x13 − ∂x14)
+x13∂x12 − x17∂x16 − x19∂x18 − x22∂x20 − x26∂x25 , (4.12)

h1|V = x4∂x4 + x5∂x5 − x6∂x6 + x7∂x7 − x8∂x8 − x9∂x9 + x18∂x18
+x19∂x19 − x20∂x20 + x21∂x21 − x22∂x22 − x23∂x23 , (4.13)

h2|V = x3∂x3 − x4∂x4 + x8∂x8 + x9∂x9 − x10∂x10 − x11∂x11 + x16∂x16
+x17∂x17 − x18∂x18 − x19∂x19 + x23∂x23 − x24∂x24 , (4.14)

h3|V = x2∂x2 − x3∂x3 + x4∂x4 − x5∂x5 + x6∂x6 − x8∂x8 + x10∂x10
+2x11∂x11 − x12∂x12 + x15∂x15 − 2x16∂x16 − x17∂x17 + x19∂x19
−x21∂x21 + x22∂x22 − x23∂x23 + x24∂x24 − x25∂x25 , (4.15)

h4|V = x1∂x1 − x2∂x2 + x5∂x5 − x7∂x7 + x8∂x8 − x9∂x9 + x10∂x10
−x11∂x11 + 2x12∂x12 − 2x15∂x15 + x16∂x16 − x17∂x17 + x18∂x18
−x19∂x19 + x20∂x20 − x22∂x22 + x25∂x25 − x26∂x26 (4.16)

(e.g., cf. [26])

The module VF4 is self-dual. The weight matrix of VF4 is (AF4 ,−AF4) with

AF4 =


0 0 0 1 1 −1 1 −1 −1 0 0 0
0 0 1 −1 0 0 0 1 1 −1 −1 0
0 1 −1 1 −1 1 0 −1 0 1 2 −1
1 −1 0 0 1 0 −1 1 −1 1 −1 2

 . (4.17)

e

Theorem 4.1. The ternary weight code CF4,1 (generated by AF4 ) of F4 on VF4

is an orthogonal [12,4,6]-code.

Proof. Denote by ξi the ith row of the matrix AF4 . Then

wt ξ1 = 6, wt (ξ1 + ξ3) = wt ξ3 = wt ξ4 = 9. (4.18)

According to (4.5), any nonzero codeword in CF4,1 has weight 6 or 9. By an
argument as (3.29)-(3.31), CF4,1 is orthogonal.

Next we consider the adjoint representation of F4 . Its weight code CF4,2

is determined by the set Φ+
F4

of positive roots. The followings are positive roots
of F4 :

α1, α2, α3, α4, α1 + α2, α2 + α3, α3 + α4, α1 + α2 + α3, α2 + α3 + α4, (4.19)
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α1 + α2 + 2α3, α2 + 2α3 + α4, α1 + α2 + α3 + α4, α1 + α2 + 2α3 + 2α4, (4.20)

α1 + 2α2 + 2α3, α1 +α2 + 2α3 +α4, α2 + 2α3 + 2α4, α1 + 2α2 + 2α3 +α4, (4.21)

α2 +2α3, α1 +2α2 +2α3 +2α4, α1 +2α2 +3α3 +α4, α1 +2α2 +3α3 +2α4, (4.22)

α1 + 2α2 + 4α3 + 2α4, α1 + 3α2 + 4α3 + 2α4, 2α1 + 3α2 + 4α3 + 2α4. (4.23)

Let Eα be a root vector associated with the root α . The weight matrix BF4 on∑
α∈Φ+

F4

FEα is given by

[
2 -1 0 0 1 -1 0 1 -1 -1 1 -1 1 0 1 -1 0 1 0 0 0 0 -1 1
-1 2 -1 0 1 1 -1 0 1 0 -1 0 0 1 -1 0 1 -1 1 0 0 -1 1 0
0 -2 2 -1 -2 0 1 0 -1 2 2 1 -1 0 1 0 -1 0 -2 1 0 2 0 0
0 0 -1 2 0 -1 1 -1 1 -2 -2 0 1 -2 0 2 0 2 2 -1 1 0 0 0

]
.

(4.24)

Theorem 4.2. The ternary weight code CF4,2 (generated by BF4 ) of F4 on its
adjoint module is an orthogonal [24, 4, 15]-code.

Proof. Denote by ηi the ith row of the above matrix. Then

wt ηi = 15, wt (η1 + η3) = 18. (4.25)

According to (4.5), any nonzero codeword in CF4,2 has weight 15 or 18. By an
argument as (3.29)-(3.31) , CF4,2 is orthogonal.

5. Representations of E6 and Ternary Codes

In this section, we investigate the ternary weight codes of E6 on its minimal
irreducible module and adjoint module.

First we give a lattice construction of the exceptional simple Lie algebras
of type E . Let {α1, α2, . . . , αm} be the simple positive roots of type Em . Set

QEm =
m∑
i=1

Zαi, (5.1)

the root lattice of type Em . Denote by (·, ·) the symmetric Z-bilinear form on
QEm such that the root system

ΦEm = {α ∈ QEm | (α, α) = 2}. (5.2)

Define F (·, ·) : QEm ×QEm → {±1} by

F (
m∑
i=1

kiαi,

m∑
j=1

ljαj) = (−1)
∑m
i=1 kili+

∑
m≥i>j≥1 kilj(αi,αj), ki, lj ∈ Z. (5.3)

Denote

HEm =
m∑
i=1

Cαi. (5.4)
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The simple Lie algebra of type Em is

GEm = HEm ⊕
⊕

α∈ΦEm

CEα (5.5)

with the Lie bracket [·, ·] determined by:

[HEm , HEm ] = 0, [h,Eα] = (h, α)Eα, [Eα, E−α] = −α, (5.6)

[Eα, Eβ] =

{
0 if α + β 6∈ ΦEm ,
F (α, β)Eα+β if α + β ∈ ΦEm .

(5.7)

for α, β ∈ ΦEm and h ∈ HEm (e.g., cf. [8], [25]). Moreover,

hi = αi for i ∈ {1, . . . ,m}. (5.8)

Recall the settings in (2.2)-(2.4). Taking n = 7, we have the following root
system of E6 :

ΦE6 =
{
εi − εj,

1

2
(

6∑
s=1

ιsεs ±
√

2ε7),±
√

2ε7

| i, j ∈ {1, . . . , 6}, i 6= j; ιs = ±1;
6∑
i=1

ιi = 0
}

(5.9)

and the simple positive roots are

α1 = ε1−ε2, α2 =
1

2
(

3∑
j=1

(ε3+j−εj)+
√

2ε7), αi = εi−1−εi, i = 3, 4, 5, 6. (5.10)

The Dynkin diagram is:

e
α1

e
α3

e
α4

e α2

e
α5

e
α6

Note

HE6,3 =
6∑
i=1

F3hi = {
6∑
i=1

ιiεi + ι7
√

2ε7 | ιr ∈ F3,
6∑
i=1

ιi = 0}. (5.11)

Moreover, the Weyl group WE6 contains the permutation group S6 on the first
six sub-indices of εi and the reflection

6∑
i=1

ιiεi + ι7
√

2ε7 7→
6∑
i=1

ιiεi − ι7
√

2ε7. (5.12)

So

HE6,3 =WE6({
s∑
i=1

εi−
t∑

j=1

εs+j+ι
√

2ε7,
√

2ε7 | ι = 0, 1; s−t ≡ 0 (mod 3)}). (5.13)
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The 27-dimensional basic irreducible module VE6 of weight λ1 for E6 has a basis
{x1, . . . , x27} with the representation formulas determined by

Eα1|V = −x1∂x2 + x11∂x14 + x15∂x17 + x16∂x19 + x18∂x21 + x20∂x23 , (5.14)

Eα2|V = −x4∂x6 − x5∂x7 − x8∂x10 + x18∂x20 + x21∂x23 + x22∂x24 , (5.15)

Eα3|V = −x2∂x3 + x9∂x11 + x12∂x15 + x13∂x16 + x21∂x22 + x23∂x24 , (5.16)

Eα4|V = −x3∂x4 − x7∂x9 − x10∂x12 − x16∂x18 − x19∂x21 + x24∂x25 , (5.17)

Eα5|V = −x4∂x5 − x6∂x7 − x12∂x13 − x15∂x16 − x17∂x19 + x25∂x26 , (5.18)

Eα6|V = −x5∂x8 − x7∂x10 − x9∂x12 − x11∂x15 − x14∂x17 + x26∂x27 , (5.19)

hr|VE6
=

27∑
i=1

ar,ixi∂xi (5.20)

with ar,i given by the following table p

Table 5.1
i a1,i a2,i a3,i a4,i a5,i a6,i i a1,i a2,i a3,i a4,i a5,i a6,i

1 1 0 0 0 0 0 2 −1 0 1 0 0 0
3 0 0 −1 1 0 0 4 0 1 0 −1 1 0
5 0 1 0 0 −1 1 6 0 −1 0 0 1 0
7 0 −1 0 1 −1 1 8 0 1 0 0 0 −1
9 0 0 1 −1 0 1 10 0 −1 0 1 0 −1

11 1 0 −1 0 0 1 12 0 0 1 −1 1 −1
13 0 0 1 0 −1 0 14 −1 0 0 0 0 1
15 1 0 −1 0 1 −1 16 1 0 −1 1 −1 0
17 −1 0 0 0 1 −1 18 1 1 0 −1 0 0
19 −1 0 0 1 −1 0 20 1 −1 0 0 0 0
21 −1 1 1 −1 0 0 22 0 1 −1 0 0 0
23 −1 −1 1 0 0 0 24 0 −1 −1 1 0 0
25 0 0 0 −1 1 0 26 0 0 0 0 −1 1
27 0 0 0 0 0 −1

E−α1|V = x2∂x1 − x14∂x11 − x17∂x15 − x19∂x16 − x21∂x18 − x23∂x20 , (5.21)

E−α2|V = x6∂x4 + x7∂x5 + x10∂x8 − x20∂x18 − x23∂x21 − x24∂x22 , (5.22)

E−α3|V = x3∂x2 − x11∂x9 − x15∂x12 − x16∂x13 − x22∂x21 − x24∂x23 , (5.23)

E−α4 |V = x4∂x3 + x9∂x7 + x12∂x10 + x18∂x16 + x21∂x19 − x25∂x24 , (5.24)

E−α5|V = x5∂x4 + x7∂x6 + x13∂x12 + x16∂x15 + x19∂x17 − x26∂x25 , (5.25)

E−α6 |V = x8∂x5 + x10∂x7 + x12∂x9 + x15∂x11 + x17∂x14 − x27∂x26 , (5.26)

(e.g., cf. [27]). Moreover,

Eαr(xi) 6= 0⇔ ar,i < 0, E−αr(xi) 6= 0⇔ ar,i > 0. (5.27)

Theorem 5.1. The ternary weight code CE6,1 of E6 on VE6 is an orthogonal
[27, 6, 12]-code.
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Proof. Write
AE6 = (ar,i)6×27. (5.28)

Denote by ξr the rth row of the matrix AE6 . Then

wt ξr = 12 for r ∈ {1, . . . , 6}. (5.29)

Moreover,
wt (ξ1 + ξ3) = wt (ξ2 + ξ4) = 12, wt (ξ1 + ξ4) = 18, (5.30)

wt (ξ1 + ξ2) = wt (ξ2 + ξ3) = wt (ξ2 + ξ5) = wt (ξ2 + ξ6) = 18. (5.31)

By an argument as (3.29)-(3.31) and symmetry, we have

ξi · ξj ≡ 0 (mod 3) for i, j ∈ {1, . . . , 6}, (5.32)

that is CE6,1 is orthogonal.

Note that the Lie subalgebra GE6
A,1 generated by {E±αi | 2 6= i ∈ {1, . . . , 6}}

is isomorphic to sl(6,C). Recall that a singular vector in a module of simple Lie
algebra is a weight vector annihilated by its positive root vectors. By Table 5.1
and (5.27), the GE6

A,1 -singular vectors are x1 of weight λ1 , x6 of weight λ4 and x20

of weight λ1 . So the (GE6 ,GE6
A,1)-branch rule on VE6 is

VE6
∼= VA5(λ1)⊕ VA5(λ4)⊕ VA5(λ1). (5.33)

Denote by GE6
A,2 the Lie subalgebra of GE6 generated by

{E±αr , E±(α2+α4) | r = 1, 3, 5, 6}.

The algebra GE6
A,2 is also isomorphic to sl(6,C). According to Table 5.1 and (5.27),

the GE6
A,2 -singular vectors are x1 of weight λ1 , x4 of weight λ4 and x18 of weight

λ1 . Hence (5.33) is also the (GE6 ,GE6
A,2)-branch rule. Since the module VA5(λ2) is

contragredient to VA5(λ4), they have the same ternary weight code. By (2.39) and
(2.43) with n = 6, the minimal distances of the subcodes

∑
i∈{1,3,4,5,6} F3ξi and

F3(ξ2 + ξ4) +
∑

i∈{1,3,5,6} F3ξi are wt ξ1 = 12.

Recall 1
2

= −1 in F3 . Moreover,

−(α2 + α4) = −ε1 − ε2 + ε3 − ε4 + ε5 + ε6 +
√

2ε7 in HE6,3. (5.34)

Thus in HE6,3 ,

α1 − (α2 + α4) = ε2 + ε3 − ε4 + ε5 + ε6 +
√

2ε7, (5.35)

α1 − α2 − (α2 + α4) = −ε3 − ε4 + ε5 + ε6 +
√

2ε7, (5.36)

α1 − α2 − (α2 + α4) + α6 = −ε3 − ε4 − ε5 +
√

2ε7, (5.37)

α1 − α2 − (α2 + α4)− α5 + α6 = −ε3 + ε4 +
√

2ε7. (5.38)

Note that
wt (ξ1 − (ξ2 + ξ4)), wt (ξ1 − ξ2 − (ξ2 + ξ4)) ≥ 12, (5.39)

wt (ξ1 − ξ2 − (ξ2 + ξ4) + ξ6), wt (ξ1 − ξ2 − (ξ2 + ξ4)− ξ5 + ξ6) ≥ 12 (5.40)
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because the minimal distance of F3(ξ2 + ξ4) +
∑

i∈{1,3,5,6} F3ξi is 12. Furthermore,

−
6∑
i=1

εi +
√

2ε7 = α1 − α2 − α3 in HE6,3. (5.41)

We calculate
wt (ξ1 − ξ2 − ξ3) = 21. (5.42)

By (5.13), the minimal distance of the ternary code CE6,1 is 12.

Next we consider the ternary weight code CE6,2 of E6 on its adjoint module.
Take any order

{y1, . . . , y36} = {Eα | α ∈ Φ+
E6
}. (5.43)

Write
[αi, yj] = bi,j, BE6 = (bi,j)6×36. (5.44)

Theorem 5.2. The ternary weight code CE6,2 (generated BE6 ) of E6 on its
adjoint module is an orthogonal [36, 5, 21]-code.

Proof. Denote by ζi the ith row of BE6 . Note that

ζ1 − ζ3 + ζ5 − ζ6 ≡ 0 in F3. (5.45)

Thus

CE6,2 =
6∑
i=2

F3ζi. (5.46)

Denote by GE6
D the Lie subalgebra of GE6 generated by {E±αr | r ∈ {2, . . . , 6}} .

According to the Dynkin diagram of E6 ,

GE6
D
∼= o(10,C). (5.47)

Let GE6
+ =

∑36
i=1 Cyi and denote by GE6

D,+ the subspace spanned by the root vectors

Eα ∈ GE6
D with α ∈ Φ+

E6
. Then [GE6

D,+,G
E6
+ ] ⊂ GE6

+ . Moreover, the space GE6
+

contains GE6
D -singular vectors Eα4+α5+

∑6
i=2 αi

of weight λ2 (the highest root) and

Eα2+α4+
∑5
r=3 αr+

∑6
i=1 αi

of weight λ5 . Hence, we have the partial (GE6 ,GE6
D )-branch

rule on GE6 :
G+
E6

∼= GE6
D+ ⊕ VD5(λ5). (5.48)

Thus the ternary weight code CE6,2 of E6 on its adjoint module is exactly the code
C2 ⊕ C3(V) with n = 5 in Corollary 3.4, which is a ternary orthogonal [36, 5, 21]-
code.

6. Representations of E7, E8 and Ternary Codes

In this section, we study the ternary weight codes of E7 on its minimal irreducible
module and adjoint module, and the ternary weight code of E8 on its minimal
irreducible module (adjoint module).
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Recall the settings in (2.2)-(2.4) and (5.1)-(5.8). Taking n = 8, we have
the root system of E7 :

ΦE7 =

{
εi − εj,

1

2

8∑
s=1

ιsεs | i, j ∈ {1, . . . , 8}, i 6= j; ιs = ±1,
8∑
s=1

ιs = 0

}
(6.1)

and the simple positive roots are:

α1 = ε2 − ε3, α2 =
1

2

4∑
j=1

(ε4+j − εj), αi = εi − εi+1, i = 3, 4, 5, 6, 7. (6.2)

The Dynkin diagram of E7 is as follows:

E7 : e
1

e
3

e
4

e 2

e
5

e
6

e
7

The minimal module VE7 of E7 is of 56-dimensional and has a basis
{x1, . . . , x56} with the representation formulas determined by

Eα1 |V = −x6∂x8 − x9∂x11 − x10∂x13 − x12∂x16 − x14∂x19 − x17∂x22
+x35∂x40 + x38∂x43 + x41∂x45 + x44∂x47 + x46∂x48 + x49∂x51 , (6.3)

Eα2|V = x5∂x7 + x6∂x9 + x8∂x11 − x20∂x23 − x24∂x26 − x27∂x29
−x28∂x30 − x31∂x33 − x34∂x37 + x46∂x49 + x48∂x51 + x50∂x52 , (6.4)

Eα3|V = −x5∂x6 − x7∂x9 − x13∂x15 − x16∂x18 − x19∂x21 − x22∂x25
+x32∂x35 + x36∂x38 + x39∂x41 + x42∂x44 + x48∂x50 + x51∂x52 , (6.5)

Eα4|V = x4∂x5 − x9∂x10 − x11∂x13 − x18∂x20 − x21∂x24 − x25∂x28
−x29∂x32 − x33∂x36 − x37∂x39 − x44∂x46 − x47∂x48 + x52∂x53 , (6.6)

Eα5|V = x3∂x4 − x10∂x12 − x13∂x16 − x15∂x18 − x24∂x27 − x26∂x29
−x28∂x31 − x30∂x33 − x39∂x42 − x41∂x44 − x45∂x47 + x53∂x54 , (6.7)

Eα6|V = x2∂x3 − x12∂x14 − x16∂x19 − x18∂x21 − x20∂x24 − x23∂x26
−x31∂x34 − x33∂x37 − x36∂x39 − x38∂x41 − x43∂x45 + x54∂x55 , (6.8)

Eα7|V = x1∂x2 − x14∂x17 − x19∂x22 − x21∂x25 − x24∂x28 − x26∂x30
−x27∂x31 − x29∂x33 − x32∂x36 − x35∂x38 − x40∂x43 + x55∂x56 , (6.9)
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E−α1|V = x8∂x6 + x11∂x9 + x13∂x10 + x16∂x12 + x19∂x14 + x22∂x17 (6.10)

−x40∂x35 − x43∂x38 − x45∂x41 − x47∂x44 − x48∂x46 − x51∂x49 ,(6.11)

E−α2|V = −x7∂x5 − x9∂x6 − x11∂x8 + x23∂x20 + x26∂x24 + x29∂x27
+x30∂x28 + x33∂x31 + x37∂x34 − x49∂x46 − x51∂x48 − x52∂x50 ,(6.12)

E−α3|V = x6∂x5 + x9∂x7 + x15∂x13 + x18∂x16 + x21∂x19 + x25∂x22
−x35∂x32 − x38∂x36 − x41∂x39 − x44∂x42 − x50∂x48 − x52∂x51 ,(6.13)

E−α4|V = −x5∂x4 + x10∂x9 + x13∂x11 + x20∂x18 + x24∂x21 + x28∂x25
+x32∂x29 + x36∂x33 + x39∂x37 + x46∂x44 + x48∂x47 − x53∂x52 ,(6.14)

E−α5|V = −x4∂x3 + x12∂x10 + x16∂x13 + x18∂x15 + x27∂x24 + x29∂x26
+x31∂x28 + x33∂x30 + x42∂x39 + x44∂x41 + x47∂x45 − x54∂x53 ,(6.15)

E−α6|V = −x3∂x2 + x14∂x12 + x19∂x16 + x21∂x18 + x24∂x20 + x26∂x23
+x34∂x31 + x37∂x33 + x39∂x36 + x41∂x38 + x45∂x43 − x55∂x54 ,(6.16)

E−α7|V = −x2∂x1 + x17∂x14 + x22∂x19 + x25∂x21 + x28∂x24 + x30∂x26
+x31∂x27 + x33∂x29 + x36∂x32 + x38∂x35 + x43∂x40 − x56∂x55 ,(6.17)

hr|V =
28∑
i=1

ar,i(xi∂xi − x57−i∂x57−i) for r ∈ {1, . . . , 7}, (6.18)

where ar,i are constants given by the following table: p

Table 6.1

i a1,i a2,i a3,i a4,i a5,i a6,i a7,i i a1,i a2,i a3,i a4,i a5,i a6,i a7,i

1 0 0 0 0 0 0 1 2 0 0 0 0 0 1 −1

3 0 0 0 0 1 −1 0 4 0 0 0 1 −1 0 0

5 0 1 1 −1 0 0 0 6 1 1 −1 0 0 0 0

7 0 −1 1 0 0 0 0 8 −1 1 0 0 0 0 0

9 1 −1 −1 1 0 0 0 10 1 0 0 −1 1 0 0

11 −1 −1 0 1 0 0 0 12 1 0 0 0 −1 1 0

13 −1 0 1 −1 1 0 0 14 1 0 0 0 0 −1 1

15 0 0 −1 0 1 0 0 16 −1 0 1 0 −1 1 0

17 1 0 0 0 0 0 −1 18 0 0 −1 1 −1 1 0

19 −1 0 1 0 0 −1 1 20 0 1 0 −1 0 1 0

21 0 0 −1 1 0 −1 1 22 −1 0 1 0 0 0 −1

23 0 −1 0 0 0 1 0 24 0 1 0 −1 1 −1 1

25 0 0 −1 1 0 0 −1 26 0 −1 0 0 1 −1 1

27 0 1 0 0 −1 0 1 28 0 1 0 −1 1 0 −1
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(e.g., cf. [28]). Again we have

Eαr(xi) 6= 0⇔ ar,i < 0, E−αr(xi) 6= 0⇔ ar,i > 0. (6.19)

Denote
AE7 = (ar,i)7×28. (6.20)

Theorem 6.1. The ternary weight code CE7,1 of E7 on VE7 is an orthogonal
[28, 7, 12]-code.

Proof. Note that the root system of A7 :

ΦA7 = {εi − εj | i, j ∈ {1, . . . , 8}, i 6= j} ⊂ ΦE7 . (6.21)

Thus we have the Lie subalgebra of GE7 (cf. (5.1)-(5.7) with m = 7):

GE7
A =

7∑
i=1

Cαi +
∑
α∈ΦA7

CEα ∼= sl(8,C). (6.22)

Moreover,

α′1 = ε1 − ε2 = −2α2 − 2α1 − 3α3 − 4α4 − 3α5 − 2α6 − α7. (6.23)

Note that x23 is a GE7
A -singular vector of weight λ6 and x49 is a GE7

A -singular
vector of weight λ2 by (6.17), (6.18) and Table 6.1. Thus the (GE7 ,GE7

A )-branch
rule on VE7 is

VE7
∼= VA7(λ2)⊕ VA7(λ6). (6.24)

Since VA7(λ6) is contragredient to VA7(λ2), they have the same ternary weight
code of GE7

A , which is the C3(A2) with m = 2 in Theorem 2.3. Hence the weight
matrix of GE7

A on VE7 generates a ternary orthogonal [56, 7, 24]-code.

On the other hand,

7∑
i=1

F3αi = F3α
′
1 +

∑
26=i∈{1,...,7}

F3αi (6.25)

by (6.1) and the fact 1/2 ≡ −1 in F3 . Thus the weight matrix (AE7 ,−AE7) of
E7 on VE7 generates the same ternary code as the weight matrix of GE7

A on VE7 .
So (AE7 ,−AE7) generates a ternary orthogonal [56, 7, 24]-code. Hence the ternary
code CE7,1 generated by AE7 is an orthogonal [28, 7, 12]-code.

Next we consider the ternary weight code of E7 on its adjoint module.
Recall the construction of GE7 in (5.1)-(5.7) with m = 7. The (GE7 ,GE7

A )-branch
rule on GE7 is

GE7 ∼= GE7
A ⊕ VA7(λ4). (6.26)

The module VA7(λ4) of sl(8,C) (∼= GE7
A ) is exactly A4 in (2.10) with n = 8, which

is self-dual. For convenience, we study the ternary code generated by the weight
matrix of sl(8,C) on A4 . Taking any order of its basis

{z1, . . . , z70} = {θi1θi2θi3θi4 | 1 ≤ i1 < i2 < i3 < i4 ≤ 8}, (6.27)
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we write
[Er,r, zi] = br,izi, BE7 = (br,i)7×70. (6.28)

Denote by ηr the rth row of BE7 and by C ′ the ternary code generated by BE7 .
Set

v(s, t) =
s∑
i=1

ηi −
t∑

j=1

ηs+j ∈ C ′. (6.29)

Moreover, we only calculate the related weights:

Table 6.2
(s,t) (1,1) (2,2) (3,3) (4,4) (3,0) (6,0) (4,1) (5,2)

wt v(s,t) 40 44 48 34 60 30 46 50

Recall (2.65)-(2.70). We have

Table 6.3
(s,t) (1,1) (2,2) (3,3) (4,4) (3,0) (6,0) (4,1) (5,2)

2wt u(s,t) 26 40 42 32 30 24 38 34

According to (6.1), the Weyl group WE7 contains the permutation group S8 on
the sub-indices of εi . By (1.9), (1.11) and the values of wtv(s, t)+2wtu(s, t) from
the above tables, 54, 66, 84 and 90 are the only weights of the nonzero codewords
in C3(GE7), the ternary code generated by the weight matrix of GE7

A on GE7 . By
(6.24) and an argument as (3.29)-(3.31), we have:

Theorem 6.2. The ternary weight code of E7 on its adjoint module is an
orthogonal [63, 7, 27]-code.

The minimal representation of E8 is its adjoint module. Recall the settings
in (2.2)-(2.4) and construction of the simple Lie algebra GE8 given in (5.1)-(5.8)
with m = 8. we have the E8 root system

ΦE8 =

{
±εi ± εj,

1

2

8∑
i=1

ιiεi | i, j ∈ {1, . . . , 8}, i 6= j; ιi = ±1,
8∑
i=1

ιi ∈ 2Z

}
(6.30)

and positive simple roots:

α1 =
1

2
(

7∑
j=2

εj − ε1 − ε8), α2 = −ε1 − ε2, αr = εr−2 − εr−1, r ∈ {3, . . . , 8}.

(6.31)
The Dynkin diagram of E8 is as follows:

E8 : e
1

e
3

e
4

e 2

e
5

e
6

e
7

e
8

Observe that the root system of o(16,C):

ΦD8 = {±εi ± εj | i, j ∈ {1, . . . , 8}, i 6= j} ⊂ ΦE8 . (6.32)
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So the Lie subalgebra

GE8
D = HE8 +

∑
α∈ΦD8

CEα (6.33)

of GE8 is exactly isomorphic to o(16,C). Moreover, the (GE8 ,GE8
D )-branch rule on

GE8 is

GE8 ∼= GE8
D ⊕ VD8(λ8). (6.34)

In fact, VD8(λ8) is exactly the spin module V in (3.35). Since

8∑
i=1

F3αi =
∑
α∈ΦD8

F3α, (6.35)

the ternary weight code of E8 on GE8 is the same as that of GE8
D on GE8 . By

Corollary 3.4 with m = 8, we have:

Theorem 6.3. The ternary weight code of E8 on its adjoint module is an
orthogonal [120, 8, 57]-code.
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