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Abstract. In this paper, we present a connection between binary and ternary
orthogonal codes and finite-dimensional modules of simple Lie algebras. The
Weyl groups of the Lie algebras are symmetries of the related codes. It turns
out that certain weight matrices of sl(n,C) and o(2n,C) generate doubly-
even binary orthogonal codes and ternary orthogonal codes with large minimal
distances. Moreover, we prove that the weight matrices of Fy, Eg, F7; and Ejy
on their minimal irreducible modules and adjoint modules all generate ternary
orthogonal codes with large minimal distances. In determining the minimal
distances, we have used the Weyl groups and branch rules of the irreducible
representations of the related simple Lie algebras.
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1. Introduction

Let m be a positive integer and denote Z,, = Z/mZ. A code C of length n is
a subset of (Z,,)" for some m, where the ring structure of Z,, may not be used.
The elements of C are called codewords. The (Hamming) distance between two
codewords is the number of different coordinates. The minimal distance of a code
is the minimal number among the distances of all its pairs of codewords in the
code. A code with minimal distance d can be used to correct [(d —1)/2] errors
in signal transmissions. We refer to [6], [15], [23] for more details. Examples of
the well-known infinite families of codes are cyclic codes, quadratic residue codes,
Goppa codes, algebraic geometry codes, arithmetic codes, Hadamard codes and
Pless double-circulant codes, etc. The names of these families also indicate the
methods of constructing codes. In this paper, we introduce a new infinite family
of codes arising from finite-dimensional representations of simple Lie algebras,
which we may call Lie theoretic codes. One of the important features of these
codes is that the corresponding Weyl group acts on them isometrically (although
it may not be faithful).

A linear code C over the ring Z,, is a Z,,-submodule of (Z,,)". The
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(Hamming) weight of a codeword in a linear code C is the number of its nonzero
coordinates. In this case, the minimal distance of C is exactly the minimal weight
of the nonzero codewords in C. The inner product in (Z,,)" is defined by

n

(a1,- -y an) - (b1 b)) = aiby. (1.1)

=1

Moreover, C is called orthogonal it
cc{ae(Zy"|a-b=0forbecC}. (1.2)

When the equality holds, we call C a self-dual code. Orthogonal linear codes
(especially, self-dual codes) have important applications to the other mathematical
fields such as sphere packings, integral linear lattices, finite group theory, etc. We
refer to References [2]-[6], [9]-[14], [17]-[21] and [24] for more details. A code is
called binary if m = 2 and ternary when m = 3. A binary linear code is called
even (doubly-even) if the weights of all its codewords are divisible by 2 (by 4).

Let G be a finite-dimensional simple Lie algebras over C, the field of
complex numbers. Take a Cartan subalgebra H and simple positive roots
{a1,as,...,a,}. Moreover, we denote by {hy, ha, ..., h,} the elements of H such
that the matrix

(i(hj))nxn is the Cartan matrix of G (1.3)

(e.g., cf. [7]). For a finite-dimensional G-module V', it is well known that V' has
a weight-subspace decomposition:

V=PV, Vi={veV]|h()=nph)forhecH} (1.4)
pneH*
Take a maximal linearly independent set {uj,us,...,ur} of weight vectors with

nonzero weights in V' such that the order is compatible with the partial order of
weights (e.g., cf. [H]). Write

hl(uj) = Ci,;Uj, C(V) = (Cz’,j)nxk- (15)

By the representation theory of simple Lie algebras, all ¢;; are integers. We
call C(V) the weight matriz of G on V. Identify integers with their images
in Z,, when the context is clear. Denote by C,,(V) the linear code over Z,,
generated by C'(V). Two codes that differ by a permutation on coordinate indices
are viewed as equivalent codes in coding theory. So our C,,(V) is independent of
the choice of basis {u,us,...,u;x} and only depends on the weight set of V' and
weight multiplicities. This fact is equivalent to that the eigenvalues of a linear
transformation is independent of the bases of the underlying space.

In this paper, we prove that Co(V) and Cs(V') for certain finite-dimensional
irreducible modules of special linear Lie algebras are doubly-even binary orthog-
onal codes with large minimal distances and ternary orthogonal codes with large
minimal distances, respectively. Moreover, C3(V') for certain finite-dimensional
modules of orthogonal Lie algebras are also ternary orthogonal codes with large
minimal distances. Furthermore, we prove that the codes C3(V') of the exceptional
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simple Lie algebras Fy, Fg, F7 and Eg on their minimal irreducible modules and
adjoint modules are all ternary orthogonal codes with large minimal distances.
This coding theoretic phenomenon was observed when we investigated the poly-
nomial representations of these algebras in [26])-[28]. It is also well known that
determining the minimal distance of a linear code is in general very difficult. We
have used the Weyl groups and branch rules of irreducible representations of the
related simple Lie algebras in determining the minimal distances of the codes in
question. Note also that our code C,,(V') carries the important information of the
simple root vectors acting on the weight vectors u; via the weight matrix C(V)
(e.g., c.f. [7]). Below we give more technical details.
Suppose that the weight of u; is p;. Set

Hon =D Lhi. (1.6)
i=1
We define a map S : H,, — (Z)* by

%(lehz) = (Z liul(hi)a ZliMQ(hi)u I Zliﬂk(hz‘)) (1'7)

Then
Con(V) = S(Hyn) (1.8)

Denote by W(G) the Weyl group of the simple Lie algebra G. For any o € W(G),
there exists a linear automorphism & of V' such that

6(V) = Vo, o(m)(o(h) =p(h)  for he H (L.9)

(e.g., cf. [7]). Moreover, we define an action of W(G) on H,, by
oY ki)=Y Lo(hi)  for o € W(G) (1.10)
i=1 i=1

According to (1.9),
wt S(o(h)) = wt S(h) for 0 € W(G), h € Hn, (1.11)

So the number of the distinct weights of codewords in C,,,(V') is less than or equal
to the number of W(G)-orbits in H,,. Expression (1.11) will be used later in
determining minimal distances.

Let A(V) be the set of nonzero weights of V. The module V' is called
self-dual if A(V') = —A(V). In this paper, we are only interested in the binary and
ternary codes. We call Co(V') the binary weight code of G on V. If V' is self-dual,
then the weight matrix C(V) = (—A, A) and C3(V) is orthogonal if and only if
A generates a ternary orthogonal code (e.g., cf. [15]). For this reason, we call the
ternary code generated by A the ternary weight code of G on V if V is self-dual.
When V' is not self-dual, then C3(V') is the ternary weight code of G on V.

Denote by Vx(A) the finite-dimensional irreducible module of a simple Lie
algebra of type X with the highest weight A. Let p be a prime number. Then 7Z,
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is a finite field, which is traditionally denoted by F,. A linear code C of length n
over I, is a linear subspace of F} over F,. If dimC = k, we say that C is of type
[n, k]. When d is the minimal distance of C, we call C an [n, k, d]-code. Take the
labels of simple roots from [7]. Denote by \; the ith fundamental weight of the
related simple Lie algebra. We summarize the main results in this paper as the
following three theorems.

The special linear Lie algebra sl(n,C) consists of all n x n matrices with

zero trace, which is a simple Lie algebra of type A, ;.
Theorem 1.

1.

The binary weight code Co(Va,, (A2)) of sl(2m,C) is a doubly-even orthog-
onal [m(2m —1),2(m — 1),4(m — 1)]-code if m > 2.

The binary weight code Co(Va, ,(A3)) of sl(n,C) is a doubly-even orthogonal

[(’;),n— 1,(n —2)(n —3)]-code if n > 9 and n = 2,3 (mod 4).

The ternary weight code of sl(3m +2,C) on Va,,, ., (X2) is an orthogonal

[(*"5F2), 3m + 1,6m] -code if m > 0.

The ternary weight code of sl(3m,C) on Va,, ,(A3) is an orthogonal
(%), 3m —2,3(m — 1)(3m — 2)] -code. Moreover, the ternary weight code of
sl(3m+2,C) on Va,,.,(As) is an orthogonal [(*"4"?),3m+1,3m(3m+1)/2]-
code.

The ternary weight code of sl(3m,C) on the adjoint module sl(3m,C) is an
orthogonal [(3;n),3m —2,3(m — 1)]-code if m > 1.

The Lie algebra o(2n, C) consists of all 2n x 2n skew-symmetric matrices,

which is a simple Lie algebra of type D,,.

Theorem 2.

1.

The ternary weight code of o(6m + 2,C) on Vp,, . (X2) is an orthogonal
[2m(3m + 1),3m + 1,6m]-code if m > 0.

The ternary weight code of o(2m,C) on Vp, (A3) is an orthogonal
[m(m — 1)(2m — 1)/3,m, (m — 1)(2m — 3)|-code if m # —1 (mod 3) and
m > 3.

The ternary code C3(Vp,,(Am)) of o(2m,C) is of type [2™ ', m,2m7?] if
6 # m > 3 and of type [32,6,12] when m = 6, where the representation
of 0o(2m,C) on C3(Vp,,(Am)) is the spin representation.

The ternary weight code of 0o(12m+4,C) on o(12m+4,C) + Vp,,. .. (Aem+2)
is an orthogonal [(6m + 2)(6m + 1) + 2™ 6m + 2, 24m + 1+ 2"~ -code for
m > 0.

There are five exceptional finite-dimensional simple Lie algebras, labeled as

Gy, Fy, Eg, E; and Eg. They have broad applications. We find the following
common coding theoretic feature of the simple Lie algebras of types Fy, FEg, E7
and Eg.
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Theorem 3.

1. The ternary weight code of F, on its minimal module is an orthogonal

[12,4,6]-code.

2. The ternary weight code of Fy on its adjoint module is an orthogonal [24,4,15]-
code.

3. The ternary weight code of Eg on its minimal module is an orthogonal

[27,6,12]-code.

4. The ternary weight code of Eg on its adjoint module is an orthogonal [36,5,21]-
code.

5. The ternary weight code of E; on its minimal module is an orthogonal
[28,7,12]-code.

6. The ternary weight code of FE7 on its adjoint module is an orthogonal [63,7,27]-
code.

7. The ternary weight code of Eg on its minimal (adjoint) module is an orthog-
onal [120,8,57]-code.

Section 2 is devoted to the study of the binary and ternary weight codes
of sl(n,C). In Section 3, we prove Theorem 2. Section 4 is about the ternary
weight codes of F; on its minimal module and adjoint module. In Section 5, we
investigate the ternary weight codes of Eg on its minimal module and adjoint
module. We deal with the ternary weight codes of E7; and FEg on their minimal
module and adjoint module in Section 6.

This work is supported by Chinese National Science Foundation
NSF 11171324.

2. Codes Related to Representations of sl(n, C)

In this section, we study the binary and ternary codes related to representations
of sl(n,C), where n > 1 is an integer.
We denote

ei=(0,...,1,0,...,0) e R"™. (2.1)
So
R" =) Re; (2.2)
=1

7 is Euclidian, that is,

i=1 j=1 i=1

the inner product “(-,-)
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Denote by E;; the square matrix with 1 as its (¢, j)-entry and 0 as the
others. The special linear Lie algebra

n—1
siin,C)= Y  (CE;+CE;;))+Y Chy,  hy=E,—E 1,11 (24)
n<i<j<n r=1

The subspace Hya, , = >~ Ch; forms a Cartan subalgebra of sl(n, C). The root
system

C1)14",1 = {51' _gj | Z?J € {1,...,7?,}, Z#]} (25)

Take the simple positive roots
O =& — &1 for i € {1,,71—1} (26)

The corresponding Dynkin diagram is p

An—1: oO—O e O——0O
1 2 n-2 n-1

The Weyl group Wy, , of sl(n,C) is exactly the full permutation group S,, on
{1,...,n}, which acts on H,, , and R" by permuting sub-indices of E;; and ¢;,
respectively.

Let A be the associative algebra generated by {6,60s,...,0,} with the
defining relations:

n—1

9i9j = —9]91 for 1,J € {1, c. ,Tl}. (27)
The generators 6; are called spin variables. The representation of the Lie algebra
sl(n,C) on A is given by

Ei,j - 918.9

J

for 4,5 € {1,...,n}. (2.8)

Set
A, = > CO;,0;,---0;  for re{l,....n}. (2.9)
1<i1 <ig<--<ip<n
Then A, forms an irreducible si(n,C)-submodule of highest weight A, (the rth
fundamental weight) for » € {1,...,n — 1}, that is, A, = V4, (). The Weyl
group Wy, _, acts on A by permuting sub-indices of 6;.

Two ki X ko matrices A; and A, with entries in 7Z,, are called equivalent
in the sense of coding theory if there exist an invertible k; x k; matrix K; and
an invertible ky X ko monomial matrix K5 such that A; = K; A3 K,. Equivalent
matrices generate isomorphic codes. Take any order of the basis

{xm,xng, e ,In(’@)} = {011912 SR Gir ’ 1<ihi<tg< <1, < n} (210)
Then we have
hi(xr,j) = aiyj(r):vryj, am(r) c 7. (211)

Modulo equivalence, the weight matrix

CA) = a5 1y ) (2.12)

T
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Theorem 2.1. When n = 2m > 4 is even, Co(Az) is a doubly-even binary
orthogonal [m(2m — 1),2(m — 1),4(m — 1)] -code.

Proof. Denote by &; the ith row Cy(Ay). Since all the h; are in same orbit
under the Weyl group, their corresponding code vector &; have the same weight (the
number of nonzero coordinates). Calculating the number of nonzero eigenvalues
of hy associated with the eigenvectors {6:16,,00,,050,,0,.0, | 3 <r < s <n}, we
get

wt & =2(n —2) for i e {1,...,n—1}. (2.13)
Moreover,
m—1
Z §2i+1 =0 in CQ(AQ) (214)
i=0
Furthermore,
& =4=0 ifi+1<y (2.15)
and
§i- i1 =2(m—1)=0. (2.16)
Write
Eii(rg) = bij(r)erg,  Br = [bi(r)], - (2.17)

Denote by (; the ith row of By. Note that the Weyl group si(n,C) is the
permutation group S, and o((;) = (o) for o € S,,. Since the elements of sl(n, C)
have trace 0, any nonzero codeword in Cy(Az) is a sum of even number of (; and
so is conjugated to the codeword

2
U:ZCS EFZ("_I)/Q for some t € {1,...,m—1}. (2.18)
s=1

By (1.11), the elements in an S,-orbit have the same weight. Calculating the
number of nonzero eigenvalues of Ziil E, s associated with the eigenvectors
{0,0; |1 <r <s<n}, weget

wtu = 4t(m — t) = —4t* + 4mt. (2.19)

Since the function —4t*+¢(4m — 1) attains maximal at ¢ = m/2, wtu is minimal
at t =1 or m —1. Note

wtu =4(m —1) if t=1orm—1. (2.20)

Thus the code Cs(A2) has the minimal distance 4(m — 1). Replacing C in (2.9),
we get a representation of sli(2m,Fs). Note that sl(2m,Fy)/(Fals,,) is a simple
Lie algebra and (2.14) shows that the representation of si(2m,Fy) induces a
representation of sl(2m,Fs)/(Fals,,), which must be faithful due to the simplicity.
Note that the dimension of Cy(Az) is the dimension of the subspace of diagonal
elements in sl(2m,Fy)/(Foly,), which is 2(m — 1). ]
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When m = 2, Cy(Ay) is a doubly-even binary orthogonal [6,2, 4]-code. If
m = 3, C2(Ay) becomes a doubly-even binary orthogonal [15,4,8]-code. These
two code are optimal linear codes (e.g., cf. [1]). In the case of m =4, C3(A) is a
doubly-even binary orthogonal [28,6,12]-code.

Theorem 2.2.  The code C5(As) is a doubly-even binary orthogonal [(3),n —
1,(n—2)(n—3)]-code if n >9 and n=2,3 (mod 4).

Proof.  Denote by & the ith row the weight matrix C(A3). Then directly
calculate by (2.8), (2.10) and (2.11) that

wt & = (n—2)(n—3) for ie{1,...,n—1}. (2.21)
Moreover,
&-& =4(n—4) ifi+1<y (2.22)
and
fi'§i+1:n—3+(n;3):(n_z)Q(n_3)- (2.23)

So C3(A3) is a doubly-even binary orthogonal code under the assumption.

Denote by ¢; the ith row of Bs (cf. (2.17)). By the same arguments in the
paragraph above (2.18), any nonzero codeword in Cs(A3) has the same weight as
the codeword

u(t) =Y ¢ €Fy  forsome t €{1,... [n/2]}. (2.24)

We calculate

2t

— 2t
f(t) =3wtu(t) = 3(3) + 6t (n 5 ) = t[16t* — 12nt +3n(n — 1) +2] (2.25)
directly by (2.8), (2.10) and (2.17). Moreover,

2
F1(t) = 4862 — 2nt + 3n(n — 1) + 2 = 48 (t - %) — 3n+2. (2.26)

, n 1| 2
f = =—*x- - - 2.2
(to) =0=1p 157 n 3 (2.27)

Since f'(0) =3n(n—1)+2 >0, f(t) attains local maximum at

Thus

(2.28)

and local minimum at

2
- —. 2.29
n- 2 (229
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According to (2.21) and (2.25), f(1) = 3(n — 2)(n — 3). Furthermore,

_ (g—ki\/n—g) [16<%+i n—%) (2:30)
_12n(g+i,/n—§)+3n(n—1)+2}

n+ n—%) (n—i—«/n—g) 3n<n+\/n§>+3n(n1)+2]

2 [ 2 4

n + n—§> _n<n—\/n—§>—2n+§

[ 4 2
n3—3n2+2n+<§—2n) n—§]

| =

=~ =

N N
T

(n* — 5n% + 2n). (2.31)
Thus

n 1 2
f(Z+Z\/n_§> - f(1)

1 1
> Z(n3 —5m%4+2n) —3(n—2)(n—3) = Z(n3 —17n% + 62n — 72)

. meo1n) (2.32)

4
f(%Jri\/n—;) > f(1) (2.33)

f(n/2) = f(1)

If n > 17, we have

and

- g[4n2—6n2—|—3n(n—1)+2]—3(n—2)(n—3)
_ ”("_13(”_2) —3(n—2)(n—3)
_ (=2 22_7”+9) >0 if n>6. (2.34)

Thus the minimal weight is f(1)/3 = (n — 2)(n — 3) when n > 17.
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When n = 10, we calculate

Table 2.1

t 1234 5
wtu(t) | 56 | 64 | 56 | 64 | 120

If n =11, we find

Table 2.2

t 1234 5
wtu(t) | 72 [ 88 [ 80 | 80 | 120

When n = 14, we obtain

Table 2.3

t 123 [4]5]6]7
wtu(t) | 132 | 184 | 188 | 176 | 180 | 232 | 364

If n =15, we get
Table 2.4

13 1 2 3 4 ) 6 7
wtu(t) | 156 | 224 | 216 | 224 | 220 | 256 | 364

The dimension of Cy(A3) is n — 1 because [,|4, # 0 when Az in (2.9) with C
replaced by Fy becomes an sl(n,Fy)-module with respect to (2.8). This prove the
conclusion in the theorem. [

Note that when n = 6, we find p

Table 2.5
t 11213
wtu(t) | 12 | 8| 20

p
So Cy(Aj3) is a doubly-even binary orthogonal [20, 5, 8]-code. Moreover, if n =7,
we find

Table 2.6

t 17273
wtu(t) | 20 | 16 | 20

p Hence Cy(A3) a doubly-even binary orthogonal [35,6, 16]-code. In both cases,
the above theorem fails and both codes are the best even codes among the binary
codes with the same length and dimension (e.g., cf. [1]).

According to the above theorem, Cy(A3) is a doubly-even binary orthogonal
[120,9,56]-code when n = 10, [165,10,72]-code if n = 11, [364,13,132]-code
when n = 14 and [455, 14, 156]-code if n = 15.
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Next let us consider the ternary codes. Again by symmetry, any nonzero
codeword in C3(.A,) has the same weight as the codeword

u(s,t) =56 =3 o € B (2.35)
r=1 i=1

for some nonnegative integers s,t, where (, is the tth row of the matrix B, in
(2.17). Moreover,
wt u(s, t) = wtu(t, s). (2.36)

Furthermore, we calculate

wh (s, £) = (s +£)(n — s — ) + <s> 4 <t> in Ca(Ay) (2.37)

and

n—s—t

wtu(s,t):(s—l—t)( ; )-I—(n—s) (;) +(n—1) (;) in Cy(As) (2.38)

directly by (2.8), (2.10) and (2.17).

For convenience, we denote

f(s,t) = 2wtu(s,t) =2(s+t)(n—s—1t)+s(s—1)+t(t—1)
= (2n—1)(s+1t)—s* —t* —4st (2.39)

in 63(./42) and

g(s,t) = 2wt u(s,t)
= (s+t)(n—s—t)n—s—t—1)+(n—s)s(s—1)+(n—1t)t{t — 1)
= s+t -C2n—1D(+t)?+nn—1)(s+t) — s — 13
+(n+1)(s* +t*) —n(s+1)
= 3st? +35%t+ (2 — n)(s* +t?) — 2(2n — 1)st +n(n — 2)(s + 1) (2.40)

in Cg (./43) .
Note

f3,0)=32n-1)—9=6(n—2), f(n,0)=n2n—1)—n*=n(n—1), (2.41)

F,D)=22n—1)—6=4(n—-2), fln—1)=m—-1(n-2).  (242)

Since geometrically f(s,t) has only local minimum, it attains the absolute mini-
mum at boundary points. Thus

min{f(s,t) | s =t (mod 3)} = 4(n — 2) if n>5. (2.43)
Now
gs(s,t) = 3t> + 65t +2(2 —n)s — 2(2n — 1)t + n(n — 2), (2.44)

gi(s,t) = 35> + 65t +2(2 —n)t — 2(2n — 1)s +n(n — 2). (2.45)
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Suppose that gs(so,to) = g¢(s0,t0) = 0 for sg,ty > 0, that is,
312 + 6sgty + 2(2 — n)sg — 2(2n — 1)ty +n(n —2) =0, (2.46)

352 + 65gtg + 2(2 — n)tg — 2(2n — 1)sg +n(n —2) = 0. (2.47)
By (2.45) — (2.46), we get

(tg — 50)(3t0 + 380 — 2(n + 1)) =0= to = Sg Or 3t0 + 350 = 2(n + 1) (248)
If sy = ty, then we find
955 —2(n —1)sg+n(n—2)=0~8sg + (s —n+1)>*-1=0, (2.49)

which leads to a contradiction because n > 1. Thus 3ty + 3sp = 2(n — 1). Denote
s1 = 3ty and t; = 3ty. Then s; +t; = 2(n + 1) and (2.45) becomes

t24202(n41) —t)t; +2(2—n)(2(n+1) —t;) —2(2n —1)t; +3n(n—2) = 0, (2.50)
equivalently,

t]—2(n+1)t1+(n—2)(n+4) =0 ~ (t,—n—1)>-9 = 0 = t; = n+4, n—2. (2.51)

Therefore,

30:n§4, to:n;Q or to=n§4, Sozn;z (2.52)
We calculate

o(50.10) = 2(n—2)(7;2_n—3)’ (2.53)
g(1,0) = g(n—1,0) = (n—1)(n—2), ¢(3,0) =3(n—2)(n—3), g(n,0) =0. (2.54)
g(1,1) = g(n—2,1) =2(n —2)(n — 3), g(n—2,0) =2(n—2)% (2.55)

Moreover,
g(so,to) > ¢g(1,0), g(1,1) if n > 6. (2.56)

When n =5, we calculate

9(170) = g<17 1) = 9(2? 1) = 9(272) = g<37 1) = g<47 0) = 9(47 1) =12, (257)
9(2,0) = g(3,0) = 9(3,2) = 18&. (2.58)

In summary, we have:

Theorem 2.3.  Let n > 5. The the matriz Bs (cf. (2.17)) generates a ternary
[(3),n =1, (";")] -code, which is equal to C5(A3) if n £ 0 (mod 3). If n = 3m+2

3 2
for some positive integer m, C3(Asz) is a ternary orthogonal [(*";F?), 3m + 1, 6m] -
code and C3(As) is a ternary orthogonal [(*"5*%),3m + 1,3m(3m + 1)/2]-code.
The code C3(As) is a ternary orthogonal [(3),n —2,(n —2)(n— 3)]-code when

n =0 (mod 3).
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Proof. The part of minimal distances has been proved by the above arguments.

Note that I,|4, = 0 when Az in (2.9) with C replaced by F3 becomes
an sl(n,F3)-module with respect to (2.8). Moreover, sl(n,F3) is simple if n #
0 (mod 3). When n =0 (mod 3), I3 € sl(n,F;) and si(n,F3)/(Fsl,) is simple.
The first conclusion and the dimensions of C3(.A3) are obtained by the above facts.
The dimension of Cs5(Ay) comes from the fact I,,|4, # 0. Now we only need to
prove orthogonality:.

Suppose n = 3m + 2. In C3(Ay), & stands for the rth row of the weight
matrix C(Az) and

§-6=2-2=0 for 1<i<j—1<n-—2 (2.59)

57“ : €r+1 = _(n - 2) = _3m7 gs : gs = 2(” - 2) = 6m (260)

for r e {1,...,n—2} and s € {1,...,n — 1}. So C3(Ay) is orthogonal. Now (,
stands for the rth row of Bj (cf. (2.17)). Observe

}:QZOEF§) (2.61)
i=1
by (2.8) and (2.9). Moreover,

n—1>:§ﬂﬁﬂiil i#j. (262)

GG =n—2=3m, Ci'<i2< 9 5 )

Thus B3 generate a ternary orthogonal code.

Assume that n = 3m for some nonnegative integer m. In Cs(.Asz), we also
use &, for the rth row of the weight code C(A3) and

&-&=2n—4)—-2(n—4)=0 for 1<i<j—-1<n-2, (2.63)
£ & =26 & =Mm—2)(n—3)=3Bm—-2)(m—-1)=0 (2.64)
for re{1,...,n—2} and s € {1,...,n— 1}. So C3(.A3) is orthogonal. ]

According to the above theorem, C3(Asz) is a ternary orthogonal [10, 4, 6]-
code when n = 5 (which is optimal (e.g., cf. [1])), [28,7,12]-code when n = 8,
and [55,10, 18]-code when n = 11. Moreover, C3(A3) is a ternary orthogonal
[10,4, 6]-code when n =5, [15,4,12]-code if n = 6, [56,7,21]-code when n = 8,
[84,7,42]-code if n = 9, [165,10,45]-code when n = 11 and [220, 10, 90]-code
when n = 12.

Finally, we consider the adjoint representation of sl(n,C). Note that
{E;; |1 <i<j<n} are positive root vectors. Given an order

{yr, -y ={E; 1 <i<j<nl, (2.65)

we write
[hisyi] = kigus [Erryil = by (2.66)
Denote
K= (kig)pnyx(ry L= gl (2.67)
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Let K be the ternary code generated by K and let £ be the ternary code generated
by L. Moreover, k; stands for the ith row of K and [, stands for the rth row of

L. Set .
u(s,t) = > L=y Ly (2.68)
i=1 j=1

For any nonzero codeword v € L, using negative root vectors, we can prove
wt (v, —v) = wt (u(s,t), —u(s,t)) (2.69)
for some s and ¢ by symmetry (cf. (1.9)-(1.11)). Thus
wtv =wtu(s, t) =(s+1t)(n—s—1t)+ st = ¢(s,1). (2.70)
Note

B(s1) = = (s =) + (1 = n)? 4 (s — 1)) (2.71)

So ¢(s,t) has only local maximum. Thus it attains the absolute minimum at the
boundary points. We calculate

$(1,0) =p(n—1,0)=n—1, ¢(n—3,0)=3(n—3), (2.72)
6(1,1)=2n—3,  d(n—2,1)=2(n—1). (2.73)

Since .
> =0, (2.74)

=1
K=CL if n# 0 (mod 3). (2.75)
ki-kj=2-2=0 1<i<j—1<n, (2.76)
k- kpo1 =6 —n, ky-ky=2n—3. (2.77)

In summary, we have: p

Theorem 2.4.  The code L is a ternary [(g),n —1,n—1]-code if n > 4, which
is also the ternary weight code on the adjoint module sl(n,C) when n # 0 (mod 3).
If n =3m for some integer m > 1, then the ternary weight code IC on sl(3m,C)
is an orthogonal [(*)"),3m — 2,3(m — 1)] -code.

3. Codes Related to Representations of o(2m, C)

In this section, we only study ternary codes related to certain representations
of so(2m,C), some of which will be used to investigate the codes related to
exceptional simple Lie algebras.

Let n = 2m be a positive even integer. Take the settings in (2.1)-(2.3)
(with n — m). The orthogonal Lie algebra

0o(2m,C) = Y [C(Eij = Emijmei) + C(Eji — Emiimis)
1<i<j<m

+C(Eim1j = Bjmii) + C(Bmiij — Emeji)] + > Chy, (3.1)

r=1
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where

hs = Es,s - Es+1,s+1 - Em+s,m+s - Em+s+1,m+s+l for s € {17 cee, M= 1} (32)

and
hm = Em—l,m—l + Em,m - EZm—l,Qm—l - E2m,2m- (33)

Indeed, we take the Cartan subalgebra

Hp = ZChi (3.4)
i=1
of o(2m,C). The root system
(I)Dm:{:tgij:gj|i7j€{17"-7m}7i%j} (35)
and simple positive roots are:
O =€ — €it1, O = Em_1 + Em, ie{l,...,m—1}. (3.6)

The corresponding Dynkin diagram is

O
1 2 m-3 m- 0

m

The Weyl group is S,, x Z7 ', which acts Hp, and R™ by permuting
sub-indices of ¢; and E;; — Ey,44m+i, and changing sign on even number of their
coefficients.

Take the settings in (2.7)-(2.12) and (2.17). Moreover, the representation
of 0o(2m,C) on A determined by (2.8). For any ¢'= (t1,...,t,) with ¢; € {0,1}
and 7 € S,,, we have an associative algebra automorphism o, ; of A determined
by

0'7-7;((91') = 9m5%1+T(Z‘), 0'7-7;((9m+i> = ng%yow(i) fOI“ i - {1, Ce 777”&}. (37)

Moreover, we define a linear map o, on H by

Oril Eii = Emyimti) = (=1)" (Er(),r6) — Emtr@)mir) for i € {1,...,m}. (3.8)
Then
o f(h(w)) = o, #{h)[o;H{w)] for he H, we A. (3.9)

Note that all A, = Vp, (A.) are self-dual o(2m,C)-submodules for r €
{1,...,m—2}, where \, is the rth fundamental weight. In particular, the ternary
weight code Cy of 0(2m,C) on A; is given by the weight matrix on its subspace

Asi= Y (CO:f; + Chibmyj). (3.10)

1<i<j<m
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We take any order

{271,1'2, .- ,$m(m,1)} = {9i9j,9i9m+j | 1 S 7 <j S m} (311)
and write
(Bii = Emyimt) (%) = ¢ij(2)x5,  Co = (¢i(2))mxm(m—1)- (3.12)
Moreover,
the weight matrix on A, is equivalent to (Cy, —C5). (3.13)
Since . .
Z FShz = Z FB(EM - Em+i,m+i)7 (314)
i=1 i=1

(5 is a generator matrix of the ternary code Cy. Denote by (; the i¢th row of
C5. By (3.8) and (3.12), any nonzero codeword in Cy has the same weight as the
codeword

t
u(t)=> ¢ forsome t€{1,...,m}. (3.15)
i=1
Moreover, we calculate directly by (2.8), (3.10) and (3.11) that
t 4m — 1)t — 3t
f(t) =wtu(t) = <2> +2t(m—1t) = (4m 2) (3.16)

So f(t) has only local maximum and it attains the absolute minimum at the
boundary points. Note that

m(m — 1)

fy=2m-1),  fom=""""1 (317)
Hence

the minimal distance of Cy is 2(m —1) if m > 4. (3.18)
Theorem 3.1.  When m = 3my + 1 for some positive integer my, the ternary

weight code Cy of o(2m,C) on Ay is an orthogonal [m(m — 1), m,2(m — 1)] -code.
Proof. Note that for i,j € {1,...,m} with i £ j, ;- {; = f(1) = 6my,
G+G) - (G+G)=f2)=1+4m—=2) =4m =T =12(my —1).  (3.19)

Thus

RCELID

Hence C, is an orthogonal ternary code. The dimension of the code Cy comes from
the fact that o(2m,F3) is simple. [

- —6. (3.20)

In particular, Cy is an orthogonal ternary [12,4,6]-code when m; = 1,
[42,7,12]-code when m; = 2 and [90, 10, 18]-code when m; = 3. It can be proved
that Cy is also the weight code on the adjoint module of o(2m,C).
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The ternary weight code C3 of o(2m, C) on Aj is given by the weight matrix
on its subspace

Asi= D COO6+ D> ) CH6b (3.21)

1<i<j<i<m 1<i<j<m =1

We take any order

{yla Yo, 7y(7;)+m(7;)} = {eiejela 6r089m+q

[1<i<j<li<m;1<r<s<myqge{l,...,m}} (3.22)
and write
(Bij = Emim+i)(05) = €i5B3)y5, s = (€0iG)) e ((m)m (7)) (3.23)
Moreover,
the weight matrix on Aj is equivalent to (Cs, —C}). (3.24)

Denote by n; the ith row of C5. By (3.8) and (3.23), any nonzero codeword
in C3 has the same weight as the codeword

t
u(t) = Zm for some t € {1,...,m}. (3.25)
i=1
Moreover, we calculate directly by (2.8), (3.21) and (3.22) that

gt) = wtu(t) = (2m —1) (2) +2t(m2_t> +t(m —t)?
tt—1)2m—1t)+2t(m—t)(2m —2t — 1)

2
= %[3# + 3(1 — 2m)t + 4(m? — m)). (3.26)
Observe that
g )= %[91&2 +6(1 — 2m)t + 4(m* —m)] = %[(3t +1—2m)*—1]. (3.27)
Thus 5 N 9
g'(t) =0= 1ty = M, = (3.28)

3 3
Since ¢'(0) = (m* —m)/2 >0, t = 2(m — 1)/3 is a point of local maximum and
t =2m/3 is a point of local minimum. We calculate

g(1) = (m—1)(2m —3), g(m)= W

Note that g(m) > ¢g(1) and g(2m/3) > ¢g(1) if m > 3. p

. g(2m/3) = §m2(2m —3). (3.29)

Theorem 3.2.  Let m > 3. The ternary weight code Cs of o(2m,C) on As is
of type [m(m — 1)(2m — 1)/3,m, (m — 1)(2m — 3)]. Moreover, it is orthogonal if
m # —1 (mod 3).
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Proof. Note

mi-nmi = g(1) = (m —1)(2m — 3) (3.30)
and
(i +m) - (s +15) = g(2) = 2(2(m — 2)* + 1) (3.31)
for 7,5 € {1,...,m} such that ¢ # j. Thus
iy — 22 =200 _229(1) —3(2—m). (3.32)

So Cs is orthogonal if m # —1 (mod 3). Again the dimension of the code Cs
comes from the fact that o(2m,Fs) is simple. n

Remark that Cs is an orthogonal [10, 3, 6]-code when m = 3, [28, 4, 15]-code
when m = 4, [110, 6, 45]-code when m = 6 and [182,7,66]-code when m = 7.
Let B be the subalgebra of A generated by {14,0; |7 € {1,...,m}} and

B, =A()B  for re{0,1,....,m}. (3.33)

The spin representation of so(2m, C) is given by

0ij .
Eij— Emijmri = 0:0p, — 71 for 7,7 € {1,...,m}, (3.34)

Em-l—s,r - Em—i—r,s = 89589,., Er,m—i—s - Es,m—i—r = 97«(95 (335)

for 1 <r < s <m. Then the subspace

[m/2]
V=> B.. (3.36)
=1

is the irreducible module with highest weight A, (the mthe fundamental weight),
that is, V= Vp, ().
If m =2m;+ 1 is odd, then

{6 -0 7 e{0,...,mi}; 1 <idy <+ <o <m} (3.37)

Tm—2r

forms a weight-vector basis of V. When m = 2m, is even,

{1,091'1 e -Qimﬁr r e {0, e,y — 1}, 1 S le <0 < Z'mfm- S m} (338)
is a weight-vector basis of V. Take any order {z, 29, ..., zom-1} of the above base
vectors. Denote

(Er,r - Em+r,m+r)(zi) = qri%i, C(V) = (qhi)mXZW*L (339)

Note that

~1  in Fs. (3.40)

N | —
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Denote by &, the rth row of the weight matrix C(V). Set

U= &—bn ult)=) & for tef{l,... ,m}. (3.41)
=1

Then any nonzero codeword in C3()) has the same weight as some u(t) or u by
(3.6) and (3.8). It has the same weight as u(t) or u. We calculate directly by
(3.33), (3.37) and (3.38) that

wtu(l) =2""1 wtu(2)=2""2% (3.42)

Moreover, we have the following more general estimates. For any positive integer
k > 2, we always have

<zf1) * (zf1> - (I;> for 1 € {0, k}, (3.43)

where we treat (fl) = (kil) = 0. If t = 3t; for some positive integer t;, we

calculate directly by (3.33), (3.37) and (3.38) that

t1
. 3, 3, 3, 3,
t t — 2m 3t1—1
wu(t) ;K&Jrl)+(6i+2)+<6i+4>+<6i+5>]
t1
C 3t 3, 3, .
> gmmihi-l =2m"2 (3.44
ZK6@’+1)+(62'+3)+<6@'+5” (3.44)

=0

When ¢ = 3t; + 1 for some positive integer ¢;, we obtain

Bt 1Y | (31 (1), (3041
t t — 2m 3t1—2 1
whu(t) ZK 6i+1)  \6ir3) \6iva
B+ 1) |, (3h+1) | (3041 _
2m 3t1—2 1 :2m 2. 4
~ ZK 6i+2) " \6ita (3:45)

If ¢t = 3t; + 2 for some positive integer t;, we find directly by (3.33), (3.37) and

(3.38) that
3t + 2
6 +5

3t1—|—2 3t + 2 3t; + 2
_ m—3t; —3
whu(t) = 27 ZK ) (6i+2) <6z+3>
3t +2 3t + 2 3t; + 2
gm—3t1—3 1 — gm—2 4
~ Z [( 6i + 2 6i + 4 (3.46)
Let k be a positive integer. We have

() (%)

if 1 <k—3 ori>k. Moreover,

(k2_1€2> + (k;zfz) B (kz_kl) = %(;2) (3.48)
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2k 2k 2k k* —4k? — 3k —6 [ 2k
+ - — . (3.49)
kE—1 k+3 k k(k—1)(k—2) \k—3
Thus (3.46) always holds if £ > 5. Furthermore,
2 1 2 1 2 1
REL) (2R S (2R (3.50)
{ 1+ 4 1+ 1
if i # k — 1. Observe that
2k +1 2k +1 2k +1 k* — 3k —6 2k +1
kE—1 i+ 3 k E(k—1) \(k—2

So (3.49) holds whenever k > 5. Therefore,

(Ij) " (ii4> ~ (iil) if k2 10. (3.52)

If m = 3m; for some positive integer my,

. - m n m—1 n m—1

Uu =

v 2 \6i) "\6i+1) " \6i+4

i m—1 m—1 m—1
_ 3.53

;{( ) (62’+5)+(6i+1>+<6i+4)}’ (3:53)

1 =>4

which is > 2™ 2 if m
my,

™

by (3.51). When m = 3m;+1 for some positive integer

()= (o) (6
(s )+ ()~ (ve) + (i)
S{(in)+ (es) e (ina)+ (i) oo

which is again > 2™72 if m; > 4 by (3.51). Assuming m = 3m; + 2 for some
positive integer my, we have

o= S [ (o)~ G- ()
) ) (o) (Gs)] - o

which is > 2™72 if m; > 3 by (3.51). Moreover, we have the following table: p
Table 3.1

m |45 ]6 |7 8 9 10

wtuw | 8 |11 | 12 | 43 | 112 | 171 | 260

wta = 2:;{ e

=1

+
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pThe dimension of the code C3(V') is m due to the simplicity of o(2m,Fs). In
summary, we have:

Theorem 3.3. Let m > 3 be an integer. The ternary code C3(V) is of type
(2= m, 272 if m # 6 and of type [32,6,12] when m = 6.

We remark that the spin module V is self-dual if and only if m is even.

Corollary 3.4. When m = 6my + 2 for some positive integer my, the ternary
weight code of 0o(2m,C) on o(2m,C) +V is an orthogonal ternary [m(m — 1) +
22 m,dm — 7 + 2™ 3] -code. If m = 6my + 3 for some positive integer my,
the ternary weight code of o(2m,C) on o(2m,C) +V is an orthogonal ternary
2m(m — 1) + 2™ m,8m — 14 + 2™~ 2| -code. In the case m = 6m; + 5 and
m = 6my + 12 for some nonnegative integer my, the code Cy & C3(V) is an
orthogonal ternary [m(m — 1) + 2™~ m 4m — 7 + 2™~ 2| -code. When m = 6,
the code Cy @ Cs(V) is an orthogonal ternary [62,6,27]-code.

Proof. Suppose m = 6m; + 2 for some positive integer m;. Then the weight
matrix of o(2m,C) on o(2m,C) +V is equivalent to (A, —A), where A generates
the weight code C of o(2m,C) 4+ V. Moreover, C is orthogonal if and only if the
matrix (A, —A) generates an orthogonal code. But

(A, —A) ~ (Cy, Cqy, C(V)). (3.56)
Note that

wt (¢, G, &) =2f(1) + 2" P =4(m—1) +2" ' =1+ (1) =0 (mod 3),
(3.57)

wt (G + Gy G + Gy & + )
= 2f(2) +2" 2 =8m —14+2"? =24 (—-1)"" =0 (mod 3) (3.58)

for i,j € {1,...,m} with ¢ # 7 by (3.16) and (3.41). Thus
(Gis Gis &i) - (Giy Gir &i) = Wt (G, Gy &i)

0, (3.59)

(Gis Gir &) - (G55 G, &)
= (Wb (G + GG+ G &+ &) — Wi (G G &) — Wt (65, G5,€5)] = 0(3.60)
by (3.39), (3.57) and (3.58). Thus C is orthogonal. Note

m—1)

F2) = am—7< ™ s =fm) i m=T. (3.61)

Thus
f(2) < f(t) for t € {2,...,m}. (3.62)

By (3.8),
wt (Z G — Gn) = f(m) > f(2). (3.63)
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Thus the minimum distance of C 1is

Xu

min{f(1) + 2™ f(2) + 2™} =4m -7+ 2™ if m > 6. (3.64)

This proves the first conclusion. The other conclusions for m > 7 can be proved

similarly.

In the case m =5, we have

Table 3.2
t |11 231|415
f(t) | 8 |13 | 15| 14| 10
and on the V,
Table 3.3
t 1123|415
wtu(t) | 16 | 8 | 12 | 10 | 11

By Tables 3.1-3.3 and the fact wt (330, G — G) = f(5) in Cs(Ay), the third

conclusion holds for m = 5.

If m=6,
Table 3.4
t 11213456
f(t) [ 10 | 17 [ 21 | 22 |20 | 15
and on the V,
Table 3.5
t 112 13]4]5 |6
wtu(t) | 32 | 16 | 24 | 20 | 22 | 21

By Tables 3.1, 3.4, and 3.5, and the fact wt (30_, §; — ¢s) = f(6) in Cs(Ay), the

last conclusion holds.

When m = 8, the ternary weight code of 0(16,C) on o(16,C) + V is
a ternary orthogonal [120,8,57]-code, which will later be proved also to be the
ternary weight code of Eg on its adjoint module. If m = 9, the ternary weight
code of 0(18,C) on 0(18,C) +V is a ternary orthogonal [400,8, 186]-code. When
m = 5, the code Cy & C3(V) is a ternary orthogonal [36,5,21]-code, which will
later be proved also to be the ternary weight code of Eg on its adjoint module. In
the case m = 11, the code Cy @ C3(V) is a ternary orthogonal [1134,8, 549]-code.
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4. Representations of F,; and Ternary Codes

In this section, we study the ternary weight codes of F; on its minimal irreducible
module and adjoint module.

We go back to the settings in (2.2)-(2.4) with n = 4. The root system of
F4 is

1
b, = {igi,igiifj,i(islj:€2:|:€3j:€4) |Z7é9} (4.1)

and the positive simple roots are
1
Q] = E9 —E3,0p = €3 — &4,03 = &y4,04 = 5(61 — &9 — &3 — 54). (42)
The corresponding Dynkin diagram is

F4I
1 2 3 4

The Weyl group W, of F, contains the permutation group S; on the
sub-indices of ¢; and all reflections with respect to the coordinate hyperplanes.
Moreover, there is an identification:

hl — Qq, hQ < Q, h3 S 20[3, h4 > 20y (43)

(e.g, cf. [7]). Thus
4 4
HQ = ZFQhZ = ZFZEZ‘. (44)
i=1 i=1

Moreover,

HQ = {WF4 (h1)> WF4 (hl + h'3>7 WF4 (h3)7 WF4 (h'4)} (45)
The basic (minimal) irreducible module Vg, of the 52-dimensional Lie algebra G
has a basis {z1,...,2} and with the representation determined by the following

formulas in terms of differential operators:

qu |V == x4ax6 + x5aac3 + x76x9 - xlSaLUQO - xlgaﬂ,‘QQ - $218$237 (46)
Ea2|V - x38m4 + x86x10 + xgaa:n - xlﬁa:ms - x1761‘19 - x238.r247 (47)

EOc3|V = —I'an?) - x4a$5 - x681’8 + xloaa:lg + x11(6x13 - 28%14)
—LE148116 — $156x17 -+ l’lg&pm -+ xggam% + 1’2489325, (48)

EO(4|V - _$16x2 - x58x7 - 9388909 - 'Il[)az‘ll + $12<8x14 - 28%‘15)
_x13a:l‘15 + I168$17 + IISa:lqg + xQOaIQQ + x25a$267 (49)

E,al |V = _1368:104 - x8815 - x98x7 + x?(]a:vlg + xQQleg + x2381217

E_o,lv = —240s; — 10005 — 1102y + £1805,5 + T1904,, + 240,54, (4.10)
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E—a3|v = 373631:2 + 5558:54 + 1786% - xl?aacm + x16(28x14 - 81:13)
+'r14al'11 + x17a££15 - xQIa:Elg - x238:v22 - x258x247 (411)

E*&4‘V = anxl + x78x5 _'_ xgaxg + xllaxlo + x15(28x13 - 83314)
+x130x12 - x178x16 - ajlgazug - $228x20 - $268$257 (412)

hily = %404, + 0504 — T60z + T704, — T80zs — T90zy + L1802,

+x198:1:19 - x208{[’20 _'_ xQIa(JCQl - 1:228:1322 - x238$237 (413)
h2’V - x?)awg - x4ax4 + x88xg + xgaxg - xloaxlo - xllaxu + x1681‘16
+21702,; — 18005 — 190519 + 12302y, — 1240z, (4.14)

hsly = %90y, — x304, + 140y, — X504, + 60z, — T80ng + T100xy,
+2x1181'11 - lea{l‘lQ + x158x15 - 21‘1681‘16 - x17a.’bl7 + 1:198:)319
— 29105y, + 22204, — 23040, + £2405,, — 2504, (4.15)

haly = 210z, — 220p, + 150, — 1704, + 180, — 190z, + 1100z,
_xllax11 + 21‘128.’212 - 2x158$15 + xlﬁa.ru; - x178217 + x18aw18
_x198x19 + 332089320 - x22aI22 + x258125 - x268x26 (416)

(e.g., cf. [26])
The module Vg, is self-dual. The weight matrix of Vg, is (Ag,, —Ag,) with

o o o 1 1-1 1-1 -1 0 0 O
o o 1 -1 0 O O 1 1 -1 -1 0

o 1 -1 1 -1 1 0-1 0 1 2 -1 (4.17)
1

-1 0 o0 1 o0 -1 1 -1 1 -1 2

Theorem 4.1.  The ternary weight code Cp, 1 (generated by Ag, ) of Fy on Vg,
is an orthogonal [12,4,6]-code.

Proof. Denote by &; the ith row of the matrix Ap,. Then

According to (4.5), any nonzero codeword in Cp,; has weight 6 or 9. By an
argument as (3.29)-(3.31), Cg, 1 is orthogonal. ]

Next we consider the adjoint representation of Fjy. Its weight code Cp, o
is determined by the set @;4 of positive roots. The followings are positive roots
of F4Z

aq, o, (3, Oy, (X1 +052, Oéz—f—Oég, Oé3+Oé4, (0751 +Oé2+0&3, a2+a3+a4, (419)
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a1 + ag + 20[3, Q9 + 2043 + g, Q1 + oo + 3 + gy, 1 + oo + 2043 + 2&4, 4.20

Qo+ 203, a1+ 200+ 203+ 20, o + 2000 4+ 3as + ay, a1+ 200+ 3as+ 20y, (4.22

(4.20)

g+ 20 + 203, g+ s+ 203+ ay, as+2a3+ 20y, o+ 200+ 203+ ay, (4.21)
(4.22)

a1 + 2062 + 40[3 + 20[4, oy + 30(2 + 40[3 + 20[4, 20(1 -+ 30[2 + 40[3 + 2064. (423)

Let E, be a root vector associated with the root . The weight matrix Bp, on
ZQE‘I’E FE, is given by

'
corN
oN N~
! |
=N O
!
V= OO
|
R .
! '
=
'
e
!
oo
! '
[
| |
NN O
| |
[C S,
|
OO~
!
O
|
VOO
'
O
'
NO O+
!
OO
|
N O
|
NN O
!
== oo
= =Nl
'
oNF=O
'
[SE=N

Theorem 4.2.  The ternary weight code Cp, o (generated by Bp, ) of Fy on its
adjoint module is an orthogonal [24,4,15]-code.

Proof. Denote by n; the ith row of the above matrix. Then
According to (4.5), any nonzero codeword in Cg, 5 has weight 15 or 18. By an

argument as (3.29)-(3.31) , Cp, 2 is orthogonal. ]

5. Representations of Fg and Ternary Codes

In this section, we investigate the ternary weight codes of Eg on its minimal
irreducible module and adjoint module.

First we give a lattice construction of the exceptional simple Lie algebras
of type E. Let {a1,qq,...,a,} be the simple positive roots of type FE,,. Set

Qp, = ZZ%‘, (5.1)
i=1

the root lattice of type FE,,. Denote by (-,-) the symmetric Z-bilinear form on
g, such that the root system

bp, ={a€Qp, | (a,a) =2} (5.2)

Define F(+,-) : Qg, X Qg,, — {£1} by

F(Z kia/i, Z lj(l/j) = (—1)21:1 kilit2 m>isj21 kilj(ai’aj), ki, lj €. (53)
i=1 j=1

Denote

HE,,L = Z CO(Z‘. (54)

1=1
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The simple Lie algebra of type E,, is

G = Hp, ® € CE. (5.5)

aECI’Em

with the Lie bracket [-,:] determined by:

[Hg,,,Hg,| =0, [h,E\ = (h,a)E,, [Es E_.]=—a, (5.6)
_Jo ifa+ 8¢ dg,,
B, 5 = { F(a, 8)Eass ifa+Be oy (5:7)
for a, p € ®p, and h € Hg,, (e.g., cf. [8], [25]). Moreover,
h; = for i € {1,...,m}. (5.8)

Recall the settings in (2.2)-(2.4). Taking n = 7, we have the following root
system of Fg:

6

1
(I)EG = {51' — €j, 5(2 LsEg + \/587), :|:\/§87

s=1
6
[i,j €{1,...,6},i#jiue=+1; ) 1 =0} (5.9)
i=1
and the simple positive roots are

3
1
] = &1 —E&9, Oy = 5(2(83+j—€j)+\/§€7), Q; = &;,1—E&;, 1= 3,4,5,6. (510)

j=1
T i
O

aq 3 g

The Dynkin diagram is:

o

O O
(67 Qg

Note
6 6 6
HE@,S = ZFShl = {Z Li€; + L7\/§€7 | Ly € Fg, ZLZ' = 0} (5.11)
=1 =1 =1

Moreover, the Weyl group Wg, contains the permutation group Sg on the first
six sub-indices of ¢; and the reflection

6 6
Z Ligi + 1V 267 > Z Lig; — 17V 27 (5.12)
i=1 i=1

So

s t
Hpes = WEfi({Z EZ'—Z Eorj V267,V 267 | 1 =0,1;5—t = 0 (mod 3)}). (5.13)
j=1

i=1
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The 27-dimensional basic irreducible module Vg, of weight \; for Eg has a basis

{z1,..., 297} with the representation formulas determined by
qu |V - —1‘18332 + xllaxm + I15ax17 + le@xlg + $188$21 + I2Oa$23a (514)
Eag‘V = —.T4816 — x58x7 — :z:g&,;m + xlgﬁmo + 132183323 + .T228x24, (515)
Ea3|V - _Iang + x98$11 + x1283315 + x13aa:16 + x218x22 + x23a:v24) (516)
Eo,lv = —x305, — 705y — 2100215 — 160515 — £1905,, + 2404, , (5.17)
Ea5 ’V = _x4a:135 - $6ax7 - x128$13 - x1581'16 - x17a.%19 + '1:25833267 (518)
Ea6|V - _'T5aa:3 - x78$10 - Igﬁxm - xllal‘w - 1'148;517 + I268$27a (519)
27
hT’VE,3 = Z ar,ixia:r:i (520)
i=1
with a,; given by the following table p
Table 5.1
’ i H a1, ‘ a2, ‘ as,i ‘ A4, ‘ as,i ‘ as,i H i H a1, ‘ a2, ‘ as,i ‘ A4, ‘ as,i ‘ as,i ‘

1 1 0 0 0 0 0 21 —1 0 1 0 0 0

3 0 0| —1 1 0 0 4 0 1 0] —1 1 0

5 0 1 0 0] —1 1 6 0| —1 0 0 1 0

7 0] —1 0 1] —1 1 8 0 1 0 0 0] —1

9 0 0 1] -1 0 1] 10 0] —1 0 1 0] —1

11 1 0] —1 0 0 1] 12 0 0 1] -1 1] -1

13 0 0 1 0] —1 0 14| —1 0 0 0 0 1

15 1 0] —1 0 1| —-11 16 1 0] —1 1] -1 0

17 || —1 0 0 0 1| -1 18 1 1 0] —1 0 0

19 | —1 0 0 1] —1 01 20 1] —1 0 0 0 0

21 —1 1 1| -1 0 01 22 0 1] —1 0 0 0

23 =1 | —1 1 0 0 01 24 0] -1 -1 1 0 0

25 0 0 0] —1 1 01 26 0 0 0 0] —1 1

27 0 0 0 0 0] —1

E—oq |V = I28J:1 - 901489511 - 515178;;;15 - 901909016 - x?laxls - Izsazzo,
E_a,lv = 605, + 7055 + 210025 — 2200z,5 — 23025, — £240z,,,
E—a3|v = $3ax2 - 510118:;:9 - $158x12 - leaxlg - $22az21 - $243m23,
E_o,lv = 2404, + 290y, + 1205,, + T1805,5 + 2103, — T2505,,,
E_olv = 2505, + 27055 + 1305,, + ©160z,5 + 1903, — 2260z,5,
E_oglv = 2805, + 100z, + 21205 + £1503,, + 21705, — L2704,

(e.g., cf. [27]). Moreover,

Ear (ZL’I) 7é 0= Ay < 0, E_ar (l‘l) 7é 0= Ay > 0. (527)

Theorem 5.1.  The ternary weight code Cg,1 of Es on Vg, is an orthogonal
(27,6, 12] -code.
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Proof. Write
Aps = (ari)6x27- (5.28)

Denote by &, the rth row of the matrix Ap,. Then

wt & =12 for r € {1,...,6}. (5.29)

Moreover,
wi (§1+ &) = wt (& + &) =12, wt (& + &) =18, (5.30)
wt (51 -+ §2> =wt (52 -+ §3) =wt (52 + 55) =wt (fg + fﬁ) = 18. (531)

By an argument as (3.29)-(3.31) and symmetry, we have
& - & =0 (mod 3) for 4,5 € {1,...,6}, (5.32)

that is Cg,,1 is orthogonal.

Note that the Lie subalgebra gff*l generated by {E4,, |2#i€{l,...,6}}
is isomorphic to si(6,C). Recall that a singular vector in a module of simple Lie
algebra is a weight vector annihilated by its positive root vectors. By Table 5.1
and (5.27), the fol—singular vectors are x; of weight \;, xg of weight \; and wq

of weight \;. So the (G¥6, Q;‘Efl)—branch rule on Vg, is

VE6 = VA5(/\1) S5 VA5<>‘4) S5 VAs (Al) (533)
Denote by gff; the Lie subalgebra of GF6 generated by
{E:I:Ozr7 E:t(a2+a4) | r=1,3,5, 6}

The algebra fo; is also isomorphic to si(6,C). According to Table 5.1 and (5.27),
the gi‘g—singular vectors are x; of weight A\, x4 of weight Ay and x5 of weight

A1. Hence (5.33) is also the (GFs, fg)—branch rule. Since the module Vy, (A2) is
contragredient to Vs (\4), they have the same ternary weight code. By (2.39) and
(2.43) with n = 6, the minimal distances of the subcodes } ;1 5,56, F3& and

Fa(& + &1) + Dic1a56) Faéi are wt & = 12.
Recall £ = —1 in Fy. Moreover,

—(042 + 044) = —€1— €9+ E3—E4+E5+¢Eg+ \/567 in HE673' (534)

Thus in Hg, 3,

oy — (g +ay) =exs+eg—eg+6e5+66+ V2er, (5.35)
a;—ag— (g +ay) = —e3—e4+e5+e6+ V2er, (5.36)
a; —ag — (g +ay) +ag=—e3 —e4 —e5+ Ve, (5.37)
ap —ag — (g +oy) —as+ag = —e3+e4+ V2es. (5.38)
Note that
wt (& — (& + &), wt (G — & — (& +8&) 212, (5.39)

wt (§1 —& — (e +8&) +&), wt(&—&—(L+8&) —&+E&) =12 (5.40)
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because the minimal distance of F3(&; + &4) + Zie{1,37576} Fs¢; is 12. Furthermore,

6
—> e +V2er=a1—ay—a;  in Hps (5.41)
i=1
We calculate
wt (61 — & — &) = 21. (5.42)
By (5.13), the minimal distance of the ternary code Cgg 1 is 12. [

Next we consider the ternary weight code Cg, 2 of Eg on its adjoint module.
Take any order

{y1,-- yse} = {Ea | @ € P} (5.43)

Write
[, 5] = bij, Bgs = (bij)6x36- (5.44)

Theorem 5.2.  The ternary weight code Cgyo (generated Bpg,) of Eg on its
adjoint module is an orthogonal [36,5,21]-code.

Proof. Denote by (; the ¢th row of Bg,. Note that

G—GCG+G—G=0 i Fs (5.45)

Thus )
Crs2 = Z]F?,Ci- (5.46)

i=2

Denote by Gp¢ the Lie subalgebra of G# generated by {Ei,, |7 € {2,...,6}}.
According to the Dynkin diagram of Fj,

G’ = 0(10,C). (5.47)

Let Qf6 = 2?21 Cy; and denote by G gﬁ ' the subspace spanned by the root vectors
E, € G5° with a € ®f . Then [G5°,,G{®] C GY*. Moreover, the space G
contains Gr¢-singular vectors B a5+, a, of weight Ay (the highest root) and
E of weight \;. Hence, we have the partial (Gg,, Go°)-branch

a2+a4+2i:3 aH—Z?:l o
rule on Gpg,:

Gr = G0 @ Vpy(As). (5.48)

Thus the ternary weight code Cgg 2 of Eg on its adjoint module is exactly the code
Cy & C3(V) with n =5 in Corollary 3.4, which is a ternary orthogonal [36,5,21]-
code. |

6. Representations of E;, Es and Ternary Codes

In this section, we study the ternary weight codes of E; on its minimal irreducible
module and adjoint module, and the ternary weight code of Eg on its minimal
irreducible module (adjoint module).
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Recall the settings in (2.2)-(2.4) and (5.1)-(5.8). Taking n = 8, we have
the root system of F-:

8

8
1
by = {ﬁi—€j,§ZLs<€s|i,j e{1,...,8), i#7j; 1, =+1, stzo} (6.1)
s=1

s=1

and the simple positive roots are:

Q] = &2 — €3, Qg =

N | —

4
Z(€4+j - 8j), o =& — &1, 1= 3,4, 5, 6, 7. (62)
j=1

The Dynkin diagram of FE; is as follows:

TZ
E7Z

O N A\ N N O
1 3 4 5 6 7
The minimal module Vg, of E; is of 56-dimensional and has a basis
{z1,..., x5} with the representation formulas determined by
Eal |V - _xﬁaxg - anrn - xloamlg - lea:Elﬁ - ‘r14a$19 - x178x22

+23502,0 + ©38004 + T4100,5 + T4400y7 + X460z, + 49045, (6.3)

EC!2|V = ‘7"531'7 + 'TﬁafCQ + ISal‘u - xQOazgg - x248$26 - 3727(9:529

_x288130 - $318m33 - x348x37 + x468:1:49 + x488151 + $5Oax527 (64)

EaglV - —1'561‘6 - x7a;v9 - x13ax15 - x168x18 - I19a$21 - x2281v25
2320055 + 1360055 + 13900y, + L4200y, + 248045, + T510,5,, (6.5)

Ea4|V - x4aac5 - xgaxlo - xllaxlg - x186x20 - leaZ‘m; - 172583328

_x29ax32 - 1:338:1335 - x378:£39 - x44a:r46 - x47am48 + x52836537 (66)

Ea5|V = 51333x4 - $103x12 - 95138m16 - -’E155x18 - $245x27 - x%@mg

_x288x31 - $3Oax33 - 'T398w42 - x4181'44 - x45a{£47 + x53ax547 (67)

Ea6|v = I23m3 - $128a:14 - 901689519 - 510185@1 - $206x24 - 5132389526

_x3la:t34 - $33aw37 - x368x39 - 'r3881'41 - 1'438145 + x54a:t557 (68)

Ea7|V = 351(9@ - 551439517 - 96198:c22 - x218x25 - 952469023 - xzﬁaxgo

_x27a:t31 - $298$33 - x328&?36 - x358138 - x408143 + x55a:ﬂ567 (69)
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E_alv 280, + 111025 + 21300, + 21602, + L1905, + 12204, (6.10)
_'T408$35 - x438:1:38 - x4581'41 - x47a.’E44 - x48ax46 - x518$49 7(611)
E_a,|v — X705, — 290zs — 11102 + 230050 + L2605, + T290s,,
+x308128 + .1:3383331 + I378:E34 - x498x46 - x5laz4g - x5281507(6'12)
E—a3 |V x68$5 + Igaz7 + x15az13 + x18am16 + leaxlg + x25azgg
— 135025, — 380035 — T410z59 — L4402, — T500z,5 — 91552(9%17(6-13)
E—CM4 |V _x5a.’ﬂ4 + xloaxg + x13aiﬂ11 + x208x18 + I248I21 + x28a:£25
+x32ax29 + x368133 + $398x37 + .’13'4685544 + x486147 - x53ax527(6'14)
E7a5 |V _'T4a.’£3 + x128110 + xlﬁa:vlg + x188x15 + x2781724 + ‘r298$26
+31 005 + 330050 + T420059 + 04400y, + T4704,; — T540,4,,(6.15)
E*Qﬁ ’V _xBa{L‘g + x14a.%12 + 1:198:)316 + leaxlg + x24a.’1720 + 132683323
+34055, + 370055 + 1390055 + 0410055 + 14500, — T550,5,,(6.16)
E*Oﬂ"/ _‘1.28:1‘1 + x178114 + x22ax19 + x258x21 + x288124 + *%3083326
+3105y; + 1330050 + 136005, + T380055 + 14302, — T560255,(6.17)
28
hr|V = Z Clryi(t%ial‘i — 1’577@'81’5771') for r € {1, ce 7}, (618)
i=1

where a,; are constants given by the following table: p

Table 6.1
| i [ ani | azi | asi | asi | asi|asi|ari || il ari] azi | asi| asi| as; | aei | ari
1 0 0 0 0 0 0 1 2 0 0 0 0 0 1| -1
3 0 0 0 0 1] —1 0 4 0 0 0 1] —1 0 0
5 0 1 1] —1 0 0 0 6 1 1] —1 0 0 0 0
7 0] —1 1 0 0 0 0 81 —1 1 0 0 0 0 0
9 1| —-11] —1 1 0 0 01 10 1 0 0] —1 1 0 0
11 -1 | —1 0 1 0 0 0] 12 1 0 0 0| —1 1 0
13 | —1 0 1| -1 1 0 01 14 1 0 0 0 0| —1 1
15 0 0] —1 0 1 0 0 16 || —1 0 1 0| —1 1 0
17 1 0 0 0 0 0] —1| 18 0 0] —1 1| -1 1 0
19 || —1 0 1 0 0] —1 11 20 0 1 0] —1 0 1 0
21 0 0] —1 1 0] —1 1] 22| —1 0 1 0 0 0] —1
23 0] —1 0 0 0 1 01 24 0 1 0] —1 1] —1 1
25 0 0] —1 1 0 0] =11 26 0] —1 0 0 1| -1 1
27 0 1 0 0] —1 0 11 28 0 1 0| —1 1 0| —1
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(e.g., cf. [28]). Again we have

E, (z;)) #0&a,; <0, E_, (z;) #0 & a,; > 0. (6.19)
Denote
Ap, = (ar;)7x2s- (6.20)
Theorem 6.1.  The ternary weight code Cg.1 of E; on Vg, is an orthogonal
28,7, 12] -code.

Proof. Note that the root system of A;:
(I)A7:{€Z—€J|Z,j€{1,,8}, Z%]}C(I)E7 (621)
Thus we have the Lie subalgebra of GE7 (cf. (5.1)-(5.7) with m = 7):

7
Gi"=> Cai+ Y CE,=sl(8,C). (6.22)
i=1 acdy,
Moreover,
) =g — &y = —2a5 — 201 — 33 — 4oy — 3as — 20 — . (6.23)

Note that x93 is a Qfﬁsingular vector of weight \g and x49 is a Q’?—singular
vector of weight Ay by (6.17), (6.18) and Table 6.1. Thus the (GF7, G47)-branch
rule on Vp, is

Vi, 2 Va,(A2) & Va, (Xe). (6.24)
Since Vj,(Xg) is contragredient to Vyu,(A2), they have the same ternary weight
code of G, which is the C3(A;) with m = 2 in Theorem 2.3. Hence the weight

matrix of G§7 on Vj, generates a ternary orthogonal [56,7,24]-code.
On the other hand,

7
ZF:;OQ‘ = FgO/l + Z FgOéi (625)
i=1

by (6.1) and the fact 1/2 = —1 in F3. Thus the weight matrix (Ag., —Ag.) of
Er; on Vg generates the same ternary code as the weight matrix of (]57 on Vg..
So (Ag,, —Ag,) generates a ternary orthogonal [56,7,24]-code. Hence the ternary
code Cg, 1 generated by Ag, is an orthogonal [28,7,12]-code. n

Next we consider the ternary weight code of E; on its adjoint module.
Recall the construction of G¥7 in (5.1)-(5.7) with m = 7. The (G, G}7)-branch
rule on G¥7 is

G = Gl @ Vi, (\y). (6.26)
The module V4, (\y) of sI(8,C) (=2 G7) is exactly Ay in (2.10) with n = 8, which
is self-dual. For convenience, we study the ternary code generated by the weight
matrix of sl(8,C) on A,. Taking any order of its basis

{21, ... ,270} = {02'102'261'361'4 | 1 <1 <9< 7:3 <y < 8}, (627)
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we write
[Em"» Zz} = br,izi7 Bp, = (br,i)7x7o- (6.28)

Denote by 7, the rth row of Bg, and by C’ the ternary code generated by Bp. .
Set

s t
v(s,t) = Zm - Znsﬂ- ecC. (6.29)
i=1 j=1
Moreover, we only calculate the related weights:
Table 6.2

(st) [(11)](22)](33) | (44) | (3,0)](6,0) | (41) | (5.2)
wiv(s,t) | 40 | 44 | 48 | 34 | 60 | 30 | 46 | 50
Recall (2.65)-(2.70). We have

Table 6.3

GO LD 263 ] G0 [ G0 ] 60) |G ] 52)
dwtu(st) | 26 | 40 | 42 | 32 | 30 | 24 | 38 | 34
According to (6.1), the Weyl group Wg. contains the permutation group Sg on
the sub-indices of ¢;. By (1.9), (1.11) and the values of wtuv(s,t)+2wtu(s,t) from
the above tables, 54, 66, 84 and 90 are the only weights of the nonzero codewords
in C3(G”"), the ternary code generated by the weight matrix of G57 on G#7. By
(6.24) and an argument as (3.29)-(3.31), we have:

Theorem 6.2.  The ternary weight code of E; on ils adjoint module is an
orthogonal [63,7,27]-code.

The minimal representation of Ey is its adjoint module. Recall the settings
in (2.2)-(2.4) and construction of the simple Lie algebra G given in (5.1)-(5.8)
with m = 8. we have the g root system

8

8
1
by, = {ieiisj,§ZLi5i|i,j€{1,...,8}, i # = 1, ZLiGQZ}
=1

=1

(6.30)
and positive simple roots:
1 J
o] = 5(2 €j —€1— 88), Qg = —E€1 — €9, Op = Ep_9 — Ep_1, re {3, - ,8}
(6.31)

The Dynkin diagram of Ejg is as follows:

T2
Eg: O O O O O O

1 3 4 5 6 7 8
Observe that the root system of 0(16,C):

Qp, ={xeite;|1,5€{1,...,8}, i #j} C Dpg,. (6.32)
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So the Lie subalgebra
o =Hg+ Y CE, (6.33)

OCE‘:I)DS

of G is exactly isomorphic to o(16,C). Moreover, the (G, GE#)-branch rule on
GEs ig

G > G5¥ @ Vi, (As). (6.34)
In fact, Vp,(Ag) is exactly the spin module V in (3.35). Since

8
> Fsai= Y Fao, (6.35)
i=1

ae@DS

the ternary weight code of Es on G is the same as that of G5® on G. By
Corollary 3.4 with m = 8, we have:

Theorem 6.3. The ternary weight code of Eg on its adjoint module is an
orthogonal [120, 8,57] -code.
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