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1. Introduction

In 1992, S. Berman and R. Moody [7] introduced the notion of a Lie algebra graded
by an irreducible reduced finite root system. Their definition was motivated by a
construction appearing in the classification of finite dimensional simple Lie algebras
containing nonzero toral subalgebras [12]. The classification of root graded Lie
algebras in the sense of S. Berman and R. Moody was given, in part, by S. Bermen
and R. Moody themselves and was completed by G. Benkart and E. Zelmanov
[5] in 1996. They classified Lie algebras graded by an irreducible reduced finite
root system using a type-by-type approach; for each type X, the authors give a
recognition theorem for centerless Lie algebras graded by a root system of type
X. In 1996, E. Neher [11] generalized the notion of root graded Lie algebras by
switching from fields of characteristic zero to rings containing 1/6 and working
with locally finite root systems instead of finite root systems. Roughly speaking,
according to him, a Lie algebra £ over a ring containing 1/6 is graded by a reduced
locally finite root system R if L is a spangR-graded Lie algebra generated by
homogenous submodules of nonzero degrees and that for any nonzero root a € R,
there are homogenous elements e and f of degrees @ and —a respectively such
that [e, f] acts diagonally on L. He realized root graded Lie algebras for reduced
types other than F), G5 and Eg as central extensions of Tits-Kantor-Koecher
algebras of certain Jordan pairs. Finally in 2002, B. Allison, G. Benkart and Y.
Gao [3] defined a Lie algebra graded by an irreducible finite root system of type
BC' and studied root graded Lie algebras of type BC, for n > 2. In 2003, G.
Benkart and O. Smirnov [6] studied Lie algebras graded by a finite root system of
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type BC; and finalized the classification of Lie algebras graded by an irreducible
finite root system.

A Lie algebra £ graded by an irreducible finite root system R has a weight
space decomposition with respect to a splitting Cartan subalgebra of a finite
dimensional split simple Lie subalgebra g of £, whose set of weights is contained
in R. This feature allows us to decompose L as £ = M; & My in which M is
a direct sum of finite dimensional irreducible nontrivial g-submodules and M, is
a trivial g-submodule of £. One can derive a specific vector space b from the g-
module structure of M. This vector space is equipped with an algebraic structure
which is induced by the Lie algebraic structure of £. Moreover, the Lie algebra £
can be reconstructed from the algebra b in a prescribed way; see [2] and [3]. This
construction led to finding a finite presentation for the universal central extension
of a Lie torus [13] of some finite types; see [14] and [4]. This motivates us to
generalize this construction for Lie algebras graded by infinite root systems.

We give a complete description of the structure of root graded Lie algebras.
We fix an infinite irreducible locally finite root system R and show that a Lie
algebra £ graded by R can be completely described in terms of the structure of
some known algebraic features derived from the structure of £. More precisely,
depending on the type of R, we consider a quadruple ¢ so called a coordinate
quadruple. We next correspond to ¢, a specific algebra b, and a specific Lie algebra
{b, b.}. Then for each subspace K of the center of {b, b.} satisfying a certain
property called the uniform property, we define a Lie algebra L£(b., ) and show
that it is a Lie algebra graded by R. Conversely, given a Lie algebra £ graded by
R, we prove that £ can be decomposed as M; @& My where M is a direct sum
of certain irreducible nontrivial G-submodules for a locally finite spilt simple Lie
subalgebra G of £ and M, is a specific subalgebra of £. We derive a quadruple ¢
from the G-module structure of M; and show that it is a coordinate quadruple.
We also prove that there is a subspace K of the center of {b,,b.} satisfying the
uniform property such that My is isomorphic to the quotient algebra {b., b.}/K
and moreover L is isomorphic to L(b, K).

In the case that the root system R is reduced, our method also suggests
another approach to characterize Lie algebras graded by R compared with what
offered by E. Neher [11].

The outline of this work is as follows: In the first section, we gather some
preliminaries which fill in the background for the readers. In the second section,
we compare the structure of a Lie algebra graded by a finite root system with
the structure of its root graded subalgebras. Regarding the results of the second
section, we devote the third section to the main result of the work, namely, we
study the structure of Lie algebras graded by infinite locally finite root systems.

The author wishes to thank the hospitality of Mathematics and Statistics
Department, University of Ottawa, where some parts of this work were carried
out. The author also would like to express her sincere gratitude to Professor Saeid
Azam and Professor Erhard Neher for some fruitful discussions.
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2. Preliminaries

Throughout this work, N denotes the set of nonnegative integers and F is a field of
characteristic zero. Unless otherwise mentioned, all vector spaces are considered
over F. We denote the dual space of a vector space V by V*. We also denote
by End(V), the vector space of all linear endomorphisms on V. For a linear
transformation 7" € End(V), if the trace of T' is defined, we denote it by tr(7T).
Also for a nonempty set S, by id, (or id if there is no confusion), we mean the
identity map on S and by |S|, we mean the cardinality of S. Finally for an index
set I, by a conventional notation, we take I := {i | i € I'} to be a disjoint copy of
I and for each subset J of I, by J, we mean the subset of I corresponding to .J.

2.1. Locally Finite Split Simple Lie Algebras. In this subsection, we recall
the structure of infinite dimensional locally finite split simple Lie algebras from
[10] and state some facts which play key roles in this work. Let us start with the
following definition.

Definition 2.1.  Let H be a Lie algebra. We say an H-module M has a weight
space decomposition with respect to H, if

M = Boens M, where M, :={x e M| h-z=alh)x; VheH}

for all & € H*. The set R := {a € H* | M, # {0}} is called the set of weights
of M (with respect to H). For a € R, M, is called a weight space, and any
element of M, is called a weight vector of weight «. If a Lie algebra £ has a
weight space decomposition with respect to a nontrivial subalgebra H of £ via
the adjoint representation, H is called a split toral subalgebra. The set of weights of
L is called the root system of £ with respect to H, and the corresponding weight
spaces are called root spaces of L. A Lie algebra L is called split if it contains a
splitting Cartan subalgebra, that is a split toral subalgebra H of £ with Ly = H.

The root system of a locally finite split simple Lie algebra with respect to
a splitting Cartan subalgebra is a reduced irreducible locally finite root system in
the following sense (see [8] and [10]):

Definition 2.2. [9] Let U be a nontrivial vector space and R be a subset of
U. The subset R is said to be a locally finite root system in U of rank dim(U) if
the followings are satisfied:

(i) R is locally finite, contains zero and spans U.

(ii) For every aw € R* := R\ {0}, there exists & € U* such that d(a) = 2
and s,(8) € R for o, € R where s, : Ud — U maps u € U to u — &(u)a. We
set by convention 0 to be zero.

(iii) a(p) € Z, for a, 5 € R.

Set Rsaiw := (R\ {a € R | 2a € R}) U {0} and call it the semi-divisible
subsystem of R. The root system R is called reduced if R = Rg;,-

Suppose that R is a locally finite root system. A nonempty subset S of R
is said to be a subsystem of R if S contains zero and s,(3) € S for «, 5 € S\ {0}.



400 YOUSOFZADEH

A subsystem S of R is called full if spangS N R = S. Following [9, §2.6], we
say two nonzero roots «, of a subset S of R are connected in S if there
exist finitely many roots oy = «a,ag,...,a, =  in S such that &;1(e;) # 0,
1 <i <n—1. Connectedness in R* defines an equivalence relation on R* and so
R* is the disjoint union of its equivalence classes called connected components of
R. A nonempty subset X of R is called irreducible, if each two nonzero elements
x,y € X are connected in X and it is called closed if (X +X)NR C X. It is easy
to see that if X is a connected component of a locally finite root system R, then
X U {0} is a closed subsystem of R.

For the locally finite root system R, take {Ry | A € I'} to be the class of all
finite subsystems of R, and say A < 1 (A, € I') if Ry is a subsystem of R,,, then
(I, x) is a directed set and R is the direct union of {Ry | A € I'}. Furthermore, if
R is irreducible, it is the direct union of its irreducible finite subsystems; see [9].

Two locally finite root systems (R,U) and (S,V) are said to be isomorphic
if there is a linear transformation f :U — V such that f(R) = S.

Suppose that [ is a nonempty index set and U := @, ;Fe; is the free F-
module over the set I. Define the form

(,):UxU—TF
(Q,Ej) - 5@’,3’7 for Za.] €l
and set .
Ap={e& —¢|i,jel},
Dy = A[U{ﬂ:(Ei‘l‘Ej) | 1,] € I, 27&]}7

Br:=D;U{*e¢ | i€ I}, (1)
C] = D[U {:I:2€z | 1€ [},
BC[ = BI U CI‘

One can see that these are irreducible locally finite root systems in their F—span’s
which we refer to as type A, D, B,C" and BC' respectively. Moreover every irre-
ducible locally finite root system of infinite rank is isomorphic to one of these root
systems (see [9, §4.14, §8]). Now we suppose R is an irreducible locally finite root
system as above and note that (o, «) € N for all o € R. This allows us to define

Ry, :={a € R* | (a,a) < (B,p); forall € R},
R, := RN 2Ry,
Riy := R*\ (Rsp U Rey).

The elements of Ry, (resp. Ry, Re,) are called short roots (resp. long roots,
extra-long roots) of R.

A locally finite split simple Lie algebra is said to be of type A, B, C' or D if its
corresponding root system with respect to a splitting Cartan subalgebra is of type
A, B,C or D respectively. In what follows, we recall from [10] the classification
of infinite dimensional locally finite split simple Lie algebras. Suppose that J is

an index set and V := V), is a vector space with a fixed basis {v; | j € J}. One
knows that gl(V) := End(V) together with

] gl(V) x gl(V) — gl(V); (X,Y)— XY —=YX; X|Y €gl(V)
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is a Lie algebra. Now for j, k € J, define
€k’ V—V;, v~ 51971'1}]', (Z € J), (2)

then gl(J) := spang{e; | j,k € J} is a Lie subalgebra of gl(V).

Lemma 2.3 (Classical Lie algebras of type A).  Suppose that I is a nonempty
index set of cardinality greater than 1, Iy is a fized subset of I with |Iy| > 1 and
V is a vector space with a basis {v; | i € I}. Take A to be an index set containing
0 and {I, | X € A} to be the class of all finite subsets of I containing Io. Set

G :=sl(I) = {¢ € gl(I) | tr(¢) = 0},
and for A € A, take
g, = G* := G N spang{e,s | rs € I}

Then sl(I) is a locally finite split simple Lie subalgebra of gl(I) with splitting
Cartan subalgebra H := span{e;; —e;; | i,j € I} and corresponding root system
isomorphic to Ar. Moreover, for i,7 € I with i # j, we have

géi—e]' = ]Fel,j N

Also for each X € A, G* is a finite dimensional split simple Lie subalgebra of
G with splitting Cartan subalgebra H» := H N G* and G is the direct union of
{G* | X € A}

In the following lemma, we see that locally finite split simple Lie algebras of
type B can be described in terms of derivations of Clifford Jordan algebras which
are defined as following:

Definition 2.4 ([13]). Suppose that A is a unital commutative associative
algebra over F and W is a unitary A-module. Suppose that g : W x W — A is
a symmetric A-bilinear form and set J := J (g, W) := A @ W. The vector space
J together with the following multiplication

(a1 + wy)(ag + we) = ajas + g(wy, wa) + ayws + aswy

for ay,a, € A and wy,wy € W is a Jordan algebra called a Clifford Jordan
algebra. For a,b € J, define D, := —[L,, L] := LyL, — L,Ly where L,, L, are
left multiplications by a and b respectively. For a subspace V' of J, set Dy to
be the subspace of End(J) spanned by D,; for a,b € V. One can see that for
wy, wy € W, Dy, w, can be identified with D, u,|,,, the restriction of D, , to
W. This allows us to consider Dyy )y as a subalgebra of gl(WV).

Lemma 2.5 (Classical Lie algebras of type B).  Suppose that I is a nonempty
indez set. Take J := {0} WIWI and consider the vector space V :=V; as before.
Define the bilinear form (-,-) on V by

(vj,vg) = (v, v5) = 20k, (vo,v9) =2,
(vj,v) == (vj,v0) := (vo,vj) = (vo,v5) := (vj,v0) := (vj,v5) :=0

(3)
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for 3,k €I and set
G:=og(l):={pcgl(J)] (¢(v),w) =—(v,d(w)), for all v,w € V}.

Then we have the followings:

(i) G is a locally finite split simple Lie subalgebra of gl(J) with splitting
Cartan subalgebra H := spang{h; := e;; — e;; | © € I} and corresponding root
system isomorphic to Br. Moreover, for 1,5 € J with i # j, we have

ggi—gj — ]F(el,] _ 65,;)7 g6i+6j — ]F(@ZJ — ejﬁ)? g—€i—€j = ]F(eij - 63,2‘)7
Ge, = F(eio —€0i), G-, = Fleig — €0,)-

(i1) For the Clifford Jordan algebra J((-,-),V), we have G = Dy .

(111) For a fized subset Iy of I, take A to be an index set containing 0 such
that {Ix | A € A} is the class of all finite subsets of I containing Iy. For each
A€ A, set B

G, =G :=GnNspang{e,s | r,s € {0} UL UL} (4)
Then G* (X € A) is a finite dimensional split simple Lie subalgebra of G of type
B, with splitting Cartan subalgebra H* := H NG and G is the direct union of
{G* | A e AL

Lemma 2.6 (Classical Lie algebras of type D).  Suppose that I is a nonempty
index set and Iy is a fived subset of I. Set J := IWI and take {I, | A € A}, where
A is an index set containing 0, to be the class of all finite subsets of I containing
Iy. Define the bilinear form (-,-) on V:=V; by

(vj,v8) == (Vg, v5) := 2058, (vj,v) = (vj,v5) :=0; (j, k€ I), (5)

and set

G :=op(l):={o col(J) | (¢(v), w) = =(v, p(w)), for all v,w € V},
H = spang{h; == e;; —e;; |i €I}

Also for A € A, take
g,A =G0":=3gn spang{e,s | r,s € Iy U L}

Then G is a locally finite split simple Lie subalgebra of gl(J) with splitting Cartan
subalgebra H and corresponding root system isomorphic to D;. Moreover for i,j €
J with 1 # j, we have

gei—e]' - F(el,] - ej,%)? gei—&-e]- - F(el,j - ej,z)7 g—ei—ej = ]F(eg,j - 65,2)

Also for each X € A, G* is a finite dimensional split simple Lie subalgebra of G, of
type D, with splitting Cartan subalgebra H» := HNG*, and G is the direct union
of {G* | X € A}

Lemma 2.7 (Classical Lie algebras of type C).  Suppose that I is a nonempty
index set and J := I W 1. Consider the bilinear form (-,-) on V :=YV; defined by

(v,v5) == — (v, v5) := 2858, (vj,v) =0, (v;,v5) :=0; (4,k€l), (6)



Y OUSOFZADEH 403

and set

G :=sp(I) == {6 € gl(J) | (§(v),w) = — (v, §(w)), for all v,w € V}.

Also for a fized subset Iy of I, take {I, | A € A} to be the class of all finite subsets
of I containing Iy, in which A is an index set containing 0, and for each A € A,
set

G, = G :=GNspan{e,, | r,s € [y UI,}. (7)

Then G is a locally finite split simple Lie subalgebra of gl(J) with splitting Cartan
subalgebra M := spang{h; = €;; —e;; | i € I}. Moreover, for i,j € I with i # j,
we have

gﬁi*Gj = F(ei,j - 63,7)7 g€i+€j = F(ezﬁ + eji)> g*ﬁ'*fj = F(ef,j + ej,i)a
g26¢ = Fei,?a g—2ei = Fez,z--

Also for X\ € A, G* is a finite dimensional split simple Lie subalgebra of type
C, with splitting Cartan subalgebra H» := H N G, and G is the direct union of
{GM | N e A}

Proposition 2.8.  (i)[10, Theorem VI.7] Suppose that I is an infinite index
set, then og(I) is isomorphic to op(I). Moreover, if G is an infinite dimensional
locally finite split simple Lie algebra, then G is isomorphic to exactly one of the
Lie algebras s\(I), op(I) or sp(I) for some infinite index set I.

(11)[10, Corollary VI.8] Suppose that I is an infinite index set, then the Lie
algebras sl(I) and sp(I) have one and op(I) has two conjugacy classes of splitting
Cartan subalgebras under the group of automorphisms of the Lie algebra.

Lemma 2.9.  Suppose G is a locally finite split simple Lie algebra with a splitting
Cartan subalgebra H. Assume R C H* is an irreducible locally finite root system
and G = Zaedew G, 1s the root space decomposition of G with respect to H.
Suppose that S is an irreducible closed subsystem of R and set g := Zaesjm Go®

Zaesxd. (Ga, G-0a] as well as b :=H N g, then the restriction of
T H — b fe fly, fEHT

to S is injective. Identify o € S with w(«a) via 7, then g is a locally finite split
simple Lie subalgebra of G with splitting Cartan subalgebra b and corresponding
root system Ssgiyp.

Proof. We first claim that

if o, €S and o — [ € R, then there is g
h € by such that a(h) >0 and B(h) <0. (8)

To prove this, we note that since a« — 8 € R, we have a £ 0 and § # 0. Moreover,
it follows from the theory of locally finite root systems that § — 2a ¢ R and
a—20¢ R, alsoif 2a € R or 20 € R, then 2a — 25 € R. Therefore setting

, (o if20¢R , (B if28¢R
O“_{m itoac 6'_{25 if 28 € R,
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we have o,/ € S, and o — ' ¢ R. Next we fix e € G, and f € G_, such
that (e, h :=[e, f], f) is an sly-triple. Since o/ — 5" € Rsaiv, one knows from sls-
module theory that (k) < 0 while o/(h) =2 > 0. Therefore h € [G,,G_o] C b,
a(h) > 0 and S(h) < 0. This completes the proof of the claim. Now suppose
a,f € S with m(a) = w(8). We must show o = . We prove this through the
following three cases:

Case 1. a,8€ Sggi: If v := a — [ € R*, then since S is a closed
subsystem of R and Sgu, is a closed subsystem of S, we get v € S, . Thus
there is t € [G,,G_,] C b with y(t) =2, so (o — )(t) = 2 which contradicts the
fact that a |p= 0 |5 . Therefore o« — 3 ¢ R*. Now if a — 8 # 0, then a — f ¢ R
and so using (8), one finds h € h with a(h) > 0 and S(h) < 0. This is again a
contradiction. Therefore o = 3.

Case 2. a, 8 & Ssqiv : In this case 2a, 23 € S,q:, and so by Case 1, 2a = 203
which in turn implies that o = f3.

Case 3. « € Sy, 5 & Ssain : If a—p € R, then by (8), there is h € b such
that a(h) > 0 and B(h) < 0 which contradicts the fact that w(a) = 7(5). Also
if @ = 20, then since a € S, there is h € [G,,G_,] C b with a(h) = 2. Thus
a(h) # B(h) which is again a contradiction. Therefore & — f € R and « # 20.
Now if o — 3 # 0, we get that a« — B € Ry, o« € Ry, B € Rgp, vi=a—28 € Ry,
a+v,a—7v € Ry and a+ 2y, — 2y € R. Now since v € S, , there is
h €(G,,G_,] C b with y(h) = 2. Also since o + 27, — 2y ¢ R, one concludes
form sly-module theory that a(h) = 0. So we have 5(h) = a(h) = 0. But this
gives that 2 = vy(h) = (o — 28)(h) = 0, a contradiction. Thus we have a = f.

This completes the proof of the first assertion.

For the last assertion, we note that S is a closed subsystem of R and S,
is a closed subsystem of S, so it is easily seen that g is a subalgebra of G. This
together with the fact that 7|g is injective completes the proof. |

Definition 2.10. Take G, A, G* and H* (A € A) to be as in one of Lemmas
2.3, 2.5, 2.6 and 2.7. For \,u € A, we say A < p if G* is a subalgebra of G*.

Let x be a representation of G in a vector space M. We say M is a direct limit
G -module with directed system {M* | A € A} if

e for A € A, M” is a finite dimensional subspace of M and for all z € G*,
M?* is invariant under y(x),

e for A € A, x |g defines a nontrivial finite dimensional irreducible G*-module
in M? having a weight space decomposition with respect to H* whose weight
spaces corresponding to nonzero weights are one dimensional,

o for \,u € A with A < p, M C M* C M and as a vector space, M is the
direct union of {M* | X € A},

o for A\, € A with X\ < pu, the set of weights of G*-module M?* is contained
in the set of weights of G#-module M* restricted to H* and (M’\)MHA -

(M*),, for each weight p of M* for which p| , is a nonzero weight of M.
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Using standard techniques, one can verify the following propositions:

Proposition 2.11.  Consider G, A, G* and H* (X € A) as in Definition 2.10.
Suppose that M is a direct limit G-module with directed system {M>* | X € A}.
Then we have the followings:

(i) M is an irreducible G-module.

(ii) If W is another direct limit G-module with directed system
{WA | X € A}, and for each X € A, G*-modules M> and W* are isomorphic,

then as two G-modules, M and W are isomorphic.

Proposition 2.12.  Suppose that I is a nonempty index set.
(a) Take G := op(I) and use the same notations as in Lemma 2.5. Define

7:G — End(V); n(¢)(v) = p(v); ¢ €G, veEV,
then

(i) 7 is an irreducible representation of G in V equipped with a weight
space decomposition with respect to H whose set of weights is {0, +e¢; | i € I} with
Vo = Fuvg, Ve, =Fv; and V_, = Fv; for i1 eI,

(ii) for each \ € A, set

V, =V = spang{v, | r € {0} UL UL}, 9)

Iy

then V is a direct limit G-module with directed system {V* | X € A}.
(b) Use the same notations as in Lemma 2.7 and take G := sp(I).

(i) Define
m G — End(V); (¢)(v) :=o(v); ¢ €G, veV.

Then m is an irreducible representation of G in V equipped with a weight space
decomposition with respect to H whose set of weights is {*e; | 1 € I} with
V., =Fv; and V_., =Fv; for i € I. Also for J:=1UI and

S:={oeglJ)|tr(¢) =0, (o(v),w) = (v,p(w)), for all vyw €V}, (10)
we have that
o : G — End(S); m(X)(Y) =[X,Y]; Xe€g, Yes

is an irreducible representation of G in S equipped with a weight space decomposi-
tion with respect to H whose set of weights is {0, £(e; £ €;) | i, € 1, i # j} with
So = spang{e,, + €7 — ﬁ Dien(eiitez) | A€ AT €LY, Sqve, =Fleij—e53),
S_cime; = F(ei; —e5,) and Se—e, = Fles; +e5;) (1,5 €1,i# j).
(i1) For X\ € A, set
V, =V = spang{v, | r € [, U L)},

Iz

S, =8 =8N spang{e,s | r,s € [LUIL}. (11)

Iy

Then V and S are direct limit G -modules with directed systems {V* | X € A} and
{8* | X € A} respectively.



406 YOUSOFZADEH

2.2. Finite Dimensional Case. In this subsection, we state a proposition on
representation theory of finite dimensional split simple Lie algebras. This propo-
sition is an essential tool for the proof of our results in the next section. We start
with an elementary but important fact about finite dimensional representations of
a finite dimensional split semisimple Lie algebra.

Lemma 2.13.  Suppose that G is a finite dimensional split semisimple Lie
algebra with a splitting Cartan subalgebra H and the root system R. Let V be
a finite dimensional G-module equipped with a weight space decomposition with
respect to H. Take 11 to be the set of weights of V. If a« € R* and X € 11 are such
that a4+ X\ € 11, then G, -Vy # {0}. In particular if Vyio is one dimensional, then
ga : V)\ = V>\+Oé‘

Proof. Take e € G, and f € G_, to be such that (e,h := [e, f], f) is an sly-
triple and define s := spang{e, h, f}. Set W =372 Viika, then W is a finite
dimensional s-submodule and so by Weyl theorem, it is decomposed into finite
dimensional irreducible s-submodules, say W = @' ;W; where n is a positive
integer and W;, 1 <i < n, is a finite dimensional irreducible s-module. We note
that the set of weights of W with respect to Fh is
I'={Ah)+2k|keZ and \+kacll}

and that for k € Z with A + ka € II, Wimn)42r = Vatha Now as A, A + a € 11,
we have A(h), A(h) + 2 € II" and so by sly-module theory, there is 1 < i < n such
that A(h),A(h) + 2 are weights for W;. Now again using sly-module theory, we
get that

0Fe-Wiam) Se-Win) =e-VrC Gy Wy
showing that G, -V, # {0}. This completes the proof. ]

Lemma 2.14.  Suppose that {e;, fi,h; | 1 < i < n} is a set of Chevalley
generators for a finite dimensional split simple Lie algebra G and V is a G-module
equipped with a weight space decomposition with respect to the Cartan subalgebra
H = span{h; | 1 <i <n}. Let v be a weight vector, m be a positive integer and
1 <i,j1,.. ., Jjm < n. Let the set {k € {1,...,m} | jx = i} be a nonempty set
and ky < --- <k, be such that {k € {1,...,m} | jx =i} = {k1,....k,}. Then if
fi-v =0, we have

p

fl..ejm.....ejl.fveg Fejm””ejkp ..... ejkt.....ejkl.....ejl.rv’
t=1

2

in which 777 means omission.

Proof. Using induction on p, we are done. [ |

Proposition 2.15.  Let Gy be a finite dimensional split simple Lie algebra with a
splitting Cartan subalgebra H,. Assume R C Hj is an irreducible finite root system
and G, = ZQG(RI)M(QI)Q is the root space decomposition of Gy with respect to H,.
Suppose that Ry is an irreducible full subsystem of Ry of rank greater that 1 and
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set Gy = ZGE(RZ):diU<g1)a o Zae(Rz):m[(gl)a, (G1)—a) as well as Hy := Hi N Go.
For1=1,2, assume V; is a G;-module equipped with a weight space decomposition
with respect to H; and take A; (i =1,2) to be the set of wights of V; with respect
to H;. Suppose that

(i) Ry and Ry are of the same type X # G, Fy, Fgr s,

(i) Ay C Ry and Ay C{al,, | a € Ry},

(ZZZ) Vo €V with (VQ)Q|H2 - (Vl)a; fOT‘ o € {5 € Ry | 6|’H2 S AQ} \ {0}

Let W be a nontrivial finite dimensional irreducible Gy -submodule of Vs
and take U to be the Gy-submodule of V, generated by VW, then U 1is a finite
dimensional irreducible Gi-module equipped with a weight space decomposition
with respect to Hy whose set of nonzero weights is (Ry)sn, (resp. (R1)lg,s OT
((R1)sdiv)sh ) if the set of nonzero weights of W is the set of elements of (Rs)sn
(resp. (R2)yp:s or ((Ra)sdiv)sn ) restricted to Ho.
Proof. Take n := n; and ¢ := n, to be the rank of R; and R, respectively.
Using Lemma 2.9, we identify 5 € Ry with [|z,. Also without loss of generality,
we assume R;, Ry and bases A1, Ay for (Rq)san and (Ry)sqin respectively, are as
in the following tables:

Type Ri(k=1,2)

A | (Ee-e) 1<i<j<m+1JU0}L s =2
B {:i:é‘i,:l:(Q:l:&j)|1§Z'<j§nk}U{0},nkZ2
C {i25iai(51‘i5]’) |1 <i<j<ngptU{0}, ng >3
D {j:(sijzsj)|1§i<j§nk}u{0},nk24

BC {:l:Ei,:lz(Ei :|:€j) | 1 < i,j < nk}, ng > 2
Type Ak(k=1,2)
A {a; i =¢€11 — € |1 <i<ng}
B {og =€, :=€¢;, — €1 | 2< i <ny}
C {051 = 261,0&2‘ =€ — €1 ]2§z§nk}
D {061:2614-62,06@'::61'—6@'_1|2§i§nk}
BC {041 = 261,04@ =€ —€;—1 ’ 2 < 1 < nk}

Suppose that W is of highest pair (v, «) with respect to A,. Since the set
of weights of W is permuted by the Weyl group of Ry, one gets that o = a2 for
x € {sh,lg,ex} where for i = 1,2, o, (resp. aj,, or a.,) denotes the highest
short (resp. long, or extra long) root of R; with respect to A;. Next suppose that
{ei, fi,hi | 1 < i < n} is a set of Chevalley generators for G; with respect to Ay,
then {e;, fi,hi | 1 < i < /{} is a set of Chevalley generators for G, with respect to
As. Now as U is a G;-submodule of V; generated by v, we have

U= F(fi oo foesmee e, 0) (12)

t,seN

where iy, ..., 4, 71,...,js € {1,...,n}. This implies that U is finite dimensional
as Ay is a subset of the finite root system R;. So there are a positive integer
p and irreducible finite dimensional G;-submodules U; (1 < j < p) of U such
that U = @,_,U;. But we know that v generates the G;-submodule U/, and that
veUN (VQ)a cun (Vl)a =U, = @?Zl(uj')a, SO
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for any 1 < j < p, there is a nonzero

element u; € (Uj), such that v = (13)
P

j=1 Uj .
This in particular implies that each U; (1 < j < p) is a nontrivial irreducible
Gi-module. But we know that for 1 < j < p, the set of weights of U/ is a subset
of Ry, and that it is permuted by the Weyl group of R;, so the highest weight
of U; is ai for * = sh,lg, ex. Therefore using the finite dimensional theory, one
knows that

the weight spaces of U; (1 < j <p ) with respect to H; (14)
corresponding to nonzero weights are one dimensional.

Now we are ready to proceed with the proof in the following three steps:

e Step 1. U, (1 <t < p) is a finite dimensional irreducible G;-module of
highest weight ol if a = o? for * = sh, lg, ex.

e Step 2. dim(U,) =1,
e Step 3. p=1.

Step 1: We use a case-by-case argument to prove the desired point. We note that
there is nothing to show if R; is of type A or D, and continue as following:

Type B : One can see that in this case, al, = €,, a2, = €, o, = €n+ 6,1
and o, = e;+e;1. We first assume a = ), and show that the highest weight of U
is the highest short root of R;. For this, it is enough to show that no long root is a
weight for U;. Suppose to the contrary that the set of weights of U; contains a long
root or equivalently contains all long roots. Setting (3 := ¢, 1, we get that a4 is
a long root of Ry and so a + [ is a weight for U;. Now fix = € (G2)s = (G1)s and
note that a + 3 is a weight for ;. Applying Lemma 2.13 together with (13) and
(14), we have x-u; # 0. This gives that 0 # > v-u; = 2-v € (Ga)g- Wa € Warp
which is a contradiction as a + [ is a long root and cannot be a weight for W.
Therefore U; has no long root as a weight and so we are done in the case that
o = aZ,. Next suppose a = aj, and note that by (13), u, is a weight vector for
U, of weight a. Since «a is a long root, the set of weights of i/ contains all long
roots and so the highest long root is the highest weight of ;.

Type C' : In this case, we have al, =€, 1+ €,, @, = €1 + €, Ozllg = 2¢,
and o, = 2¢. Setting 3 := €1 — €, we get a2, + B € (Ri1),. Now using the
same argument as in Type B, we are done.

Type BC : In this case, we have af, = €,, a2, = &, a, = 6,1 + €y,
2 T T 1 _ 2 _ .
Qjy = €—1 + €, Oy = 2¢, and aZ, = 2¢,. One can also easily see that

{Y+B1ve(Ri)sn,B € (R1)igU (Ri)ex} N R1 C (Ry)sp-

This together with (12), (13) and the fact that Ay C (Ry)ey U (R1)y, proves the
claim stated in Step 1 in the case that o = a2,. Now suppose that a = aj,. Setting
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B = €1 — €, we get that a+ [ is an extra long root. Now we are done using the
same argument as in Type B. Next suppose o = o2, then by (13), u; is a weight
vector of weight o which is an extra long root. Therefore any extra long root is a
weight for U; and so the highest weight of U; is «!,. This completes the proof of

Step 1.

Step 2: We first note that depending on the type of Ry, « is one of €, 2¢/, €p+¢€p_1
or €41 —€1. If a=¢€,+ €1, then either Ry is of type B or D and by Step 1, the
set of nonzero weights of U coincides with R*, or R is of type C' or BC and the
set of nonzero weights of U coincides with (R )sn- In both cases, using induction
on r € N\ {0}, one can see that

if 1 <my,...,m, <n and foreach 1 <p <r, a,, +
o 4 am, + a is a weight for U, then {my,...,m,} C

1
{¢,...,n} and o, + -+ + am, + a = €, + €4 for some (15)
(—1<qg#q <n
Also for oo = €,41 — €1, €4, 2€p, one can see that
if r is a positive integer and 1 < mq,...,m, < n
are such that for each 1 < p <7, g, + -+ + (16)

Qm, +  is a weight for U, then {mq,...,m,} C
{¢+1,...,n}.

Now suppose that 0 # u € U, we shall show that u is a scalar multiple of
v. Since u € U, by (12), u is written as a linear combination of weight vectors of
the form f;, -+« fi, €5, - rej v, 65 € Ny 1 <vig, oo i, 01,000, 0 < ne So
without loss of generality, we suppose

u:fit.....fil.ejs.....ejl.rU

where t,s € N, and 1 < 4q,...,%,71,...,Js < n. Since u is of weight o, we get

that o+, + -+ a;, — o, — -+ — oy, = . This implies that
s=t and (J1,...,7s) = (o(i1),...,0(i)) (17)
for a permutation o of {i,...,i;}. We note that « is an element of Rj and so

it is written as a linear combination of {«; | 1 < i < ¢} with nonnegative rational
coefficients not all equal to zero. Now since {a; | 1 <7 < n} is a base of (R1)sdiv,
a—a; ({+1<j<n)isnot aroot of Ry and so it is not an element of A;.
Therefore

firv=0, (+1<j<n. (18)

Now this implies that

fi-ejrv=ej-fj-v—hj-v=0—h; veFu,

(0+1<j<n) (19)

We also note that as v is a highest vector of Gy-module W, e;-v =0 for 1 < j < /.
Therefore one gets that

j1€{l+1,...,n} provided that s # 0. (20)
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Now we are ready to prove that w is a scalar multiple of v. If s =0, there
is nothing to prove. So we suppose s > 1 and use induction on s to prove. If
s = 1, we get the result appealing (17), (20) and (19). Now suppose s > 1. If
a = € + €1, then using (15) together with (17), we get that iy € {(,... ,n}.
This together with (18) and the fact that 2¢,_; is not a weight for U, implies
that f;, -v = 0. Next take 1 < kb < ... < k. < s to be the only indices with

Jk, =+ = Jr. = 11 and use Lemma 2.14 to get
T

fit.....fil.ejs.....ejl.vE E ]Ffl.t.....fi2.ejs....ejkr.....ejkq ..... ejkl ..... ejl.fv.
g=1

Now induction hypothesis completes the proof of this step in the case that a =
€r—1 + €. Next suppose « € {eg, 2¢4, €411 — €1}, then using (16) together with (17),
(18), Lemma 2.14 and the same argument as before, we get the result.

Step 3: It is immediate using Step 2 together with (13). n

3. Lie algebras graded by a finite root system

The structure of Lie algebras graded by an irreducible finite root system has been
studied in [7], [5], [2], [11], [3] and [6]. A Lie algebra £ graded by an irreducible
finite root system R contains a finite dimensional split simple Lie algebra ¢ and
with respect to a splitting Cartan subalgebra, it is equipped with a weight space
decomposition whose set of weights is contained in R. This feature allows us
to decompose L into finite dimensional irreducible G-submodules whose set of
nonzero weights is Ry, R, or (Rsgiv)sn. Collecting the components of the same
highest weight results in the decomposition

L=GA)BSB)ad(VeC)aeD (21)

in which D is a trivial submodule of £ and S (resp. V) is the finite dimensional
irreducible G-module whose set of nonzero weights is (Rsqiv)sn (resp. Rgp). The
Lie algebraic structure on £ induces an algebraic structure on b := A @& B d C
which we refer to as the coordinate algebra of L. The Lie bracket on £ can be
recovered using the ingredients involved in describing the product defined on the
algebra b. In this section, we have a comparison view on the coordinate algebras
of root graded subalgebras of £. We devote this section to two subsections. In
the first subsection, we illustrate the structure of a specific Lie algebra which
we shall frequently use in the sequel of the paper. In the second subsection, we
consider a Lie algebra £ graded by an irreducible finite root system R and for a
full irreducible subsystem S of R which is of the same type as R, we take £’ to
be the Lie subalgebra of £ generated by homogeneous spaces in correspondence
to 5. We show that the coordinate algebra of the Lie subalgebra ES, which is an
algebra graded by S, does not depend on S. In fact, we prove that the coordinate
algebra of £° coincides with the coordinate algebra of £. Moreover, we describe
the Lie bracket on £ in terms of the ingredients involved in describing the Lie
bracket on £° with respect to its coordinate algebra. Our method is based on a
type-by-type approach. Since the proofs for different types are quite similar, we
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go through the proofs in details for type BC' and for other types, we just report
the results and leave the proofs to the readers. In the sequel of the paper, if
h:X — Y is amap and z € X, we sometimes denote by 2", the image of z
under h.

3.1. A Specific Lie Algebra. By a star algebra (2, %), we mean an algebra
2 together with a self-inverting antiautomorphism * which is referred to as an
mwvolution.

We call a quadruple (a,*,C, f), a coordinate quadruple if one of the follow-
ings holds:

e (Type A) a is a unital associative algebra, x = id,, C = {0} and
f:C xC — a is the zero map.

(Type B) a = A® B where A is a unital commutative associative algebra
and B is a unital associative A-module equipped with a symmetric bilin-
ear form and a is the corresponding Clifford Jordan algebra, * is a linear
transformation fixing the elements of A and skew fixing the elements of B,
C={0} and f:C x C —> a is the zero map.

e (Type C') a is a unital associative algebra, * is an involution on a, C = {0}
and f:C x C — a is the zero map.

e (Type D) a is a unital commutative associative algebra * = id,, C = {0}
and f:C x C — a is the zero map.

e (Type BC') a is a unital associative algebra, * is an involution on a, C is a
unital associative a-module and f :C x C — a is a skew-hermitian form.

Suppose that q := (a,*,C, f) is a coordinate quadruple. Denote by A
and B, the fixed and the skew fixed points of a under x, respectively. Set
b:=0b(a,*,C, f) :=a®C and define

:bxb—b (22)
(o + 1,00 + ) = (- ) + fler,c0) +aq - o+ ad - e,
for ay, 9 € a and 1,9 € C. Also for 5,5 € b, set
Bopli=p-+p-8 and [3,8]:=6-~5"8, (23)
and for ¢, € C, define
0:CxC— A, (¢,d)— —f(c’cl)gf(cl’c); ¢, €C,
(24)

0o:CxC—B, (¢,d)— —f(“,);f(c,’c); c,d eC.

Now suppose that ¢ is a positive integer and for a,o’ € a and ¢, € C,
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consider the following endomorphisms
b — b,
( Z_H[[Oé o], Bl q is of type A, B € b,
) q is of type B, 5 € b,
+ [a*,a™], 5] qis of type C or BC, f € a,
([, ]+ [a*,a™]) - B qis of type C or BC, g €C,

L 0 q is of type D, B € b,
b b — b,
( ;—g[wc’, ] q is of type BC, B € a,
Bis d FH(ead) - B=3(f(B,¢) e+ f(B,c)-¢) qis of type BC, B €C,
0 otherwise,
d“’ ::\ d“’ =0,
26 0,6 2,
da+c o'+’ = da [o% dc '

(25)
One can see that for 5,5’ € b, dg’}’ﬁ, € Der(b). Next take K to be a subspace of
b ® b spanned by

a®c, cR®a, a®b,

a®Rd +dRa, cRd—-d®c,
(a-d)@d"+ (@ a)@d + (d ") ® a,
fle,d)@a+(a*-d)®@c—(a-c)@

for a,o/;a”" € a, a € A, b e B, and ¢, € C. Then (b ® b)/K is a Lie algebra
under the following Lie bracket

[(B1®B2)+ K, (B1@85)+ Ko = ((d5’ 5, (81) @B +K)+ (B @dg’ 5, (85)+K) (26)

for p1, Ba, 01, By € b (see [3, Proposition 5.23] and [2]). We denote this Lie algebra
by {b,b}, (or {b,b} if there is no confusion) and for f;,8, € b, we denote
(81 ® B2) + K by {f1,B2}e (or {B1, B2} if there is no confusion). We recall the full
skew-dihedral homology group

= {Z{ﬁz,ﬂ }o€ {b,b}, | ngbﬁ, —

of b (with respect to £) from [3] and [2] and note that it is a subset of the center
of {b,b}g For 51 =a;+b +c¢ €band 52 = ay + by + 9 € b with ay, ay € .A,
bi,by € B and ¢, ¢y € C, set

5;1,52 a [(11, a2] + [bla b2] — C1vCo. (27)

We say a subset K of the full skew-dihedral homology group of b satisfies the
“uniform property on b” if for By, 51, ..., B, B, € b, > {0, Bi}e € K implies
that > 7, B4 5 = 0.
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Remark 3.1. Suppose that ¢, ¢ are two positive integers. If I is a subset of
the full skew-dihedral homology group of b(a,*,C, f) with respect to ¢ satisfying
the uniform property on b(a, *,C, f), then it is a subset of the full skew-dihedral
homology group of b(a,*,C, f) with respect to ¢ satisfying the uniform property
on b(a,*,C, f). In other words, the uniform property on b(a,x,C, f) dose not
depend on /.

3.2. Root Graded Lie Algebras. In this work, we study root graded Lie
algebras in the following sense:

Definition 3.2.  Suppose that R is an irreducible locally finite root system. We
say a Lie algebra L is R-graded or (graded by R) with grading pair (G,H) if the
followings are satisfied:

i) G is a locally finite split simple Lie subalgebra of £ with splitting Cartan
subalgebra H and corresponding root system R g, .

ii) £ has a weight space decomposition £ = @,crL, with respect to H via
the adjoint representation.

iii) Lo =) ,cpxLarL—a]
The following lemma easily follows from Lemma 2.9.
Lemma 3.3.  Suppose that R is an irreducible locally finite root system and L

is a Lie algebra graded by R with grading pair (G, H). Let S be an irreducible full
subsystem of R and set

,CS = Z »Ca S Z [*Cm‘c—a]a

aeS> aeS>
28
"= Ga® Y [6a.Goal. (28)
aes;di'u aessxdiv

Then £° is an S -graded Lie subalgebra of L with grading pair (gs, H = ngs).

Before going through the main body of this subsection, we want to fix a
notation. If X is a subspace of a vector space Vi and Y is a subspace of a vector
space Vs, by a conventional notation, we take X®Y to be the vector subspace of
Vi ® V spanned by x ® y for z € X and y €Y.

3.0.1. Type BC

We first mention that in what follows, we introduce various notations which we
use freely throughout the text without specific mention. Suppose that [ is a
nonempty index set of cardinality m,, := n > 3 and [, is a nonempty subset of
I of cardinality m, := ¢ > 3. Take V := V" to be a vector space with a basis
{v; | i € IUT} equipped with a nondegenerate symmetric bilinear form (-,-) as in
(6). Set G :=G" :=sp(I) and take S := S™ to be as in (10). Consider (11), (7)
and set

V= Vi G' = (e S'=S

Ip~
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We take Id,, to be the identity map on V and define the linear endomor-
phism Id , on V by

Idve:V—H/
v; = v, U vy, v 0, v5 = 0; (1€ Iy, g €I\ ).

Also for A =¢,n and z,y € G* US?, set
zoyy = xy +yx — (1/my)tr(zy)ld ,. (29)
Next for u,v € V, define

((v, w)
((v, w)

w
[u,v] 1 V — Vi w = 5((v, w)u + (w,u)v) +

[u,v] 0V — V5 w u+
u+

N N

v, W
uov:V —V; w— =((v,w eV, (30)
1

One can easily see that up to isomorphism

G =span{uov | u,v € V'},  8° =span{[u,v] | u,v € V*},
G" =span{uov | u,v € V'}, S" = span{[u,v], | u,v € V"}.

Suppose that R is an irreducible finite root system of type BC; and S is
the irreducible full subsystem of R of type BC,. Suppose that £ is an R-graded
Lie algebra with grading pair (G, #) and take £, G° and H’ to be as in Lemma
3.3. To simplicity of the notations, we set

LM = £7 Eé = Es) [U7U]Z = [U,U]; (U,U < V) (31)

and note that G° = G%. One knows that as a G-module, £ can be decomposed
into finite dimensional G*-submodules, each of which is an irreducible G‘-module
with highest weight contained in S. Take

L= =Pue@Ps,aoPvieE (32)

€Ly J€Jo teTo

to be the decomposition of £ into finite dimensional irreducible G-modules in
which Zy, Jo, To are (possibly empty) index sets and for i € Z,, j € Jo, and ¢ € Ty,
g; is isomorphic to G, s; is isomorphic to 8%, V; is isomorphic to V¢ and E is a
trivial G¢-submodule.

Lemma 3.4. Use the notation as in the text and consider L = L™ as a G-
module. Then there exist index sets T, J, T with To CZ,J0 C J,To C T, and
a class {D,,G;,S;, Vi |i€I,j €T, t €T} of finite dimensional G -submodules of
L such that

e D, is a triwial G-module, G; is isomorphic to G, S; is isomorphic to S, and
V, is isomorphic to V, forie€Z,j€ J, te T,
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© 0,CG, 5 CS;,, iCV, (ie€ly, j€To, t€T),

o L"=L= Gaiez g ® @jej S; @ ®teTVt © Dp.
We make a convention that we refer to

(Ia \77 T, {gi}7 {gz}v {ﬁj}v {Sj}v {%}7 {Vt}v Ev Dn) (33)
as an (R, S)— datum for the pair (L™, L°).

Proof. For i € Zy, by Proposition 2.15, the G-submodule G; of L generated
by g; is a finite dimensional G-module isomorphic to G. For a € S, and

0 # 2 € (g))a € L4, we have z € L, Ng C LoN G = (Gi)o- Now as
dim(G;)o = dim(g;)o = 1, we get

(8i)a = (Gi)a; € Sy, (34)

Claim 1. The sum Zz‘ezo G; is a direct sum: Suppose that ig, i1, ..., %, are distinct
elements of Zy and 0 # = € G;;N> ., Gi,. Then as G;, is an irreducible G-module,

we get that
g’io g Z git'
t=1

This together with (34) implies that for o € S

sdiv

C R

sdiv?
(8io)a = (Gig)a C Z(gu>a = Z(giz)a
t=1 t=1
which contradicts the fact that Ziezo g; is direct. This completes the proof of
Claim 1.

Now for j € Jy and t € 7y, take §; and V; to be the finite dimensional
irreducible G-submodules of £ generated by s; and V; respectively. Using the
same argument as above, one can see that the summations » i S; and ZtGTO Vi
are direct. Set

Q(n) = EBieIogiv S(”) = @j€j08j7 V(”) = @te%Vt-

We note that G(n) (resp. S(n) and V(n)) is a G-submodule of £ whose set of
weights is Rggip (resp. R, U {0} and Ryy,).

Claim 2. For o € Ry, v € G(n),, and y € §(n),, we have z +y = 0 if
and only if z =y = 0 : Suppose that x +y = 0. Since © € G(n)a = 3,7, (Gi)a;
we get x = ZieIo x; with finitely many nonzero terms x; € (G;)a, for i € 7.
Similarly y = ., y; with finitely many nonzero terms y; € (S;)a, for j € Jo.
Now we recall that ¢,n > 3 and R,S are root systems of type BC, and BC,
respectively. This allows us to pick i, 82 € Ry such that 8 :=a + 81 + B2 € Sig
and a + 81 € Ryy. Fix a; € G, and as € Gg,. Using Lemma 2.13, we get that

if z; (i € Zy) is nonzero, then as-a;-x; is a nonzero
element of (G;)s = (g;)s and similarly if j € J
and y; # 0, as - a; - y; is a nonzero element of

(Si)s = (s5)s-

(35)
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Now since z +y = 0, we get that >, x; = — > ;. y; which in turn implies
that ZieIo s-Qy-T; = — Zjejo as-aq -y;. But the right hand side is an element of
®je (5;)p and the left hand side is an element of @;ez,(g;)s. Therefore as-ay-2; =
0 and as-ay-y; =0 for ¢ € Zy and j € Jy. This together with (35) implies that
for i € Zy and j € Jy, ; = 0 and y; = 0. This completes the proof of Claim 2.

Claim 3. For z € G(n)y and y € S(n)y, v +y = 0 if and only if
x =y = 0: Suppose that x +y = 0 and = # 0. Since G(n)o = > ;.7 (Gi)o,
we have x =}, ;. x; with finitely many nonzero terms z; € (Gi)o, i € Zo. Fix
t € I, such that z; # 0. Since z; is a nonzero element of the irreducible nontrivial
G-module Gy, there is « € R* and 0 # a € G, such that a-z; # 0. We note that
r € G(n)y and y € S(n)y, therefore we have a-x € G(n), and a-y € S(n),. Now
as 0 =a-z+a-y, Claim 2 together with the fact that the set of weights of S(n)
is Ry U{0} implies that a-x =0 and a-y = 0. So }_,.; a-z; = 0. But by Claim
1, ZieIo G; is a direct sum, so a-x; = 0 which is a contradiction. Therefore x = 0
and so y = 0 as well. This completes the proof of Claim 3.

Claim 4. The sum G(n) + S(n) + V(n) is a direct sum: Suppose that
r € G(n), y € S(n) and z € V(n) are such that = + y + z = 0. We have

T = Z To with z, € G(n)y C L, for a € Ry, y = Z Yo Wwith
a€Rgiv OcEngU{D}
Yo € S(n)o C Lo for a € Ry U{0}, and 2= Y z, with z, € V(n), C L, for
a€ERp

a € Rgy,. Therefore one gets that

To+yo =0, 20 =0, zg+ys =0, 2, =0;
(v € Rgp, B € Rig, ¥ € Rey).

Now using Claims 2,3, we are done

To complete the proof, we note that as a G-module, £ can be decomposed
into finite dimensional irreducible G-submodules with the set of weights contained
in R. Now as @7, Gi ® Djcs, Sj ® Dyery, Vi 1s a submodule of L, one can find
index sets Z, 7,7 with

L,CT, €T ToCT

and a class {D,,,G;, S;, Vi | 1 € T\Zy,j € T\To,t € T\To} of finite dimensional G-
submodules such that D,, is a trivial G-module, G; is isomorphic to G (i € Z\Zy),
S; is isomorphic to S (j € J\ Jo), Vi is isomorphic to V (t € T \ 7p) and

L = PoaoPsePrwe(@P ae P sie @ veb)

i€y J€Jo teTo i€T\To JEI\Jo teT\To
= PoePs ePven.
€T jeT teT
This completes the proof. [ |

From now on, we use the data appearing in the (R,S)—datum (33). We
take A, to be a vector space with a basis {a; | i € Z}, B, to be a vector space
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with a basis {b; | 7 € J} and C, to be a vector space with a basis {c; |t € T}.
Then as a (G =)G"-module, L™ = L can be identified with

(G"®A,)®(S"2B,)®(V'®C(C,) ®D,. (36)

Take

o: L—(G"A,)D(S"®B,) d(V'®C(C,) ®D, (37)
to be the canonical identification. Next define A, to be the vector subspace of
A, spanned by {a; | ¢ € Zy}, B, to be the vector subspace of B, spanned by
{b; | 7 € Jo} and C; to be the vector subspace of C,, spanned by {c¢; |t € To}.
Then it follows from (32) that as a G‘-module, £¢ = £° can be identified with

(G'RA) @ (S'@B) & (V'&C) & D, (38)

where Dy := ¢(FE). In what follows using [3, Thm. 248], for p = ¢, n, we
give the algebraical structure of £ in terms of the ingredients involved in the
decomposition of L£# into finite dimensional irreducible G*-modules. Set a, :=
A, @ B,,. Then there are a bilinear map -, : a, X a, — a, and a linear map
%, : a, — a, such that (a,,-,) is a unital associative algebra and =, is an
involution on a, with *,-fixed points A, and x,-skew fixed points B,. Also
there is a bilinear map -, : a, x C, — C, such that (C,,-,) is a left unital
associative a,-module equipped with a skew-hermitian form f, : C, x C, — a,,.
Take b, := b(a,, *,,C,, f.) to be defined as in Subsection 3 and set -, o,, [, |,
o, and o, to be the corresponding features as -, o, [-,:], ¢ and o defined in

Subsection 3. Also for 5,3 € b, set dﬁ g = dg Z‘,‘ By [3, Theorems 2.48, 5.34],
D, is a subalgebra of £* and there is a subspace K, of the full skew-dihedral

homology group
{Z{ﬁz»ﬂ }u | Zd,g B8

of b, with respect to p such that D, is 1som0rphlc to the quotient algebra
{b,,b,},/IC,. For By, /2, take (51, B2), to be the element of D, corresponding
to {1, B2}, + K\, then one has (A,,B,), = (A, C.) = (B,,C.) = {0} and
D, = (A, A+ (Bu.B,), + (C. C,),. Moreover, the Lie bracket on £* is given
by
®a,y®d]=[z,yl @ i(a
®a,s®@b = (ro,s)®
s@bteb] =5t ®5(b
Qauc=ruRa-,c=—-|u®c X al,

E wa)+ (20, y) ® gla,d], +tr(zy){a,d')y,
E
[
E
s@bu®c=s5u®b-,c=—-[u®c,s® b,
[u
[
[
[
[

[a,b], + [z, 5] @ (a0, b) = —[s®b,x®a],
V) + (so,t) ® 3[b, V], + tr(st)(b,V),,

1
2
o,

©e,0@¢] = (Wov) ® (cop )+ [u, ], ® (conc) + (u, 0){c, ), (39)

B, 5>u>$® ] = x®dﬂﬁ’( ) = —[$®a, <575/>u]7

BB s @b = s @ djg 5 (b) = —[s @b, (8, 5) ],

s, 5>uau®c]—u®dﬁﬁ/( ) —[u®c, (@ﬁ’)u],
51762>u7<517ﬁ2> ] < B1, 52(51) 52> <ﬁi,dg1,52(5é)>u,

for x,y € G*, s,t € S*, u,v € V*, a,a’ € A,, b,b' € B,, ¢, €C, and 3,5 € b,,.

(
{
(
{
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Lemma 3.5. Wehave T=1y, J =Ty and T =T,.

Proof. It follows from (39), (36) and (38) that

Vg@cn if @ € Rgp,
(ﬁn)a =Ly = (gg®An) S5 (Sg@[)’n) if v € ng
groA, if « € R,
and
(VZ>Q®CZ if a €9y,
(L0 = (L) = { (GL0A) @ (SL&B,) if a € S
Qﬁ@Ag if a € S,

Now fix a € S,,, then
(GHa®Ar = (L)e = Lo = G*RA,.

This together with the fact that G¢ = G" is a one dimensional vector space, implies
that the vector space A, equals the vector space A,,. In particular, we get Z = Z,.
Next fix a € Sy, then we have

VI&C, = L, = Lo = VIQC,.
This as above, implies that 7 = 7. Finally fix a € Sj4, then
(GERAL) ® (SL@BY) = L. = Lo = (G"®A,) & (S"B,,).

Now as SY = 8" is a one dimensional vector space, G = G", B, C B,, and A, =
A, we get that the two vector spaces B, and B, are equal and so J = J. ]

As we have already seen, on the vector space level, we have
Ac=A,, Bi=B,, C=¢C,

which in turn implies that the vector space b, equals the vector space b,,. In the
following lemma, we show, in addition, that the algebras b, and b,, have the same
algebraic structure.

Lemma 3.6.  The algebraic structure of b, coincides with the algebraic structure

of by.
Proof. Using Lemma 3.5, we set
A=A =A,, B:=8B=B8, C:=C=C,. (40)
Suppose that 4, j, k are distinct elements of Iy. Take x :=¢;; —e;; € G’

Y :i=ejr—€p; € G’ and assume a,a’ € A, then by (39), one has

1 1
[«T,y] ® i(a On a/) + (.’L’ On y) ® §[a7a/]n = [:c®a,y®a']

1 1
= [z,y]® 5(61 opd) 4+ (zopy) ® 5[% a'le.
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This in turn implies that
1 / 1 !/ 1 !/ 1 /
2] @ (3(a0na') ~ H(acra)) = (xouy) ® (3laale — 5fa,al),

but the left hand side is an element of G ® A and the right hand side is an element
of S ® B. Therefore as [z,y] # 0 and z o, y # 0, we get that

1 1 1 1
5[@,@’]( — 5[@,0,/]” =0 and i(a Op, CL/) — 5(@ Oy a,) =0.

This now implies that
ayd =a-,d; ad €A (41)

Next take i and j to be two distinct elements of . Set s :=¢;;+¢;; € S
and r:=¢;; € G, then using the same argument as above, we have

1 1 1 1
§[a7b}g—§[0,7b}n:0 and é(a On b)—§<a Op b) =0

for a € A and b € B. This in particular gives that
avb=a-,b and bya=0b-,a; (ae A, be B). (42)

Finally, for distinct fixed elements 1,7,k of Iy, set s := ¢e;; —¢e;;,t =

€k — € € S*. Then using an analogous argument as before, we have b+, = b-, b/
for b,b" € B. This together with (41) and (42) implies that

a; = a, (as two algebras). (43)

Now take z € G°, s € 8 and u,v € V* to be such that xu # 0 and sv # 0.
Then for a € A, b€ B and ¢ € C, we get using (39) that

mRayc = [TQauRc]=ru®a-,c,
sv@byc = [sRbvRc=svRb-,c.

This implies that
ayc=a-,c and byc=0b-,c

for a € A, b € B and ¢ € C. Therefore we have
C, =C, (as two a,-modules). (44)
Now we are done thanks to (43) and (44). [
To continue, regarding Lemma 3.6, we set
a:=a,=a, and b:=b,=0,.
Also for §,5" € b, we take
B-B=BwbB =80,

18,6 :=8-p"=p"-5, (45)
Bofl:=p-+p5-p
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Lemma 3.7. For a,a’ € A and b,b/ € B, we have

<G,a’>n — (%[dvf + %Idv) ® %[a, a’]) 4 <a,a/>e’
(b,0)n = (FHd , +11d,) @ 3[b,0]) + (b,0).

Also for ¢, € C, filc,d) = fule,d), copd = co,d and coyd = co,c.
Moreover, we have

1 1

(e = ((GId, = ~1d,) ® 5 (con) + (e,
- ((%]dvz — %Idv) ® %(cwc’)) + (¢, ).

Proof. Fix z,y € G* such that tr(zy) # 0. For a,a’ € A, consider (45) and use
(39) to get

(le.] @ (a0 a)) + (00 v) @ 5la,a]) + tr(ay){a, ),

= koayed
= (] ® glaoa)) +((rory) @ gla,a]) + tr(ay)(a,d'
This gives that

tr(zy)
¢

(tr(:z:y) Idvé ® 1[a, a']) — tr(zy){a,a’)y.

Id, ® %[a, a']) —tr(zy)(a,a’), = ( 5

Therefore we have

—1 1 1
{a,d’), = (TIdv‘f + Eldv) ® E[a, d))+{a,a)y;  (a,d" € A). (46)

Similarly, one can get the second equality in the statement. Now suppose
that 7 and j are two distinct elements of Iy. Take u := v; and v := vj, then
(u,v) =0 and so [u,v], = [u,v]. Therefore for all ¢, ¢ € C, by (39), we have

(uov)® (cop ) + [u,0] ® (copd) = [u®c,v (]
= (uov)® (copd) + [u,v] @ copd.

But one knows that uowv € G, [u,v] is a nonzero element of S, co,,co,d € A
and co,d, co,d € B, so we get that

cod i =copd =co,d and cod :=coyd =co,d; (¢, €0). (47)
This implies that
fle,d) = file,d) = fule,d); (e, d €C). (48)

Now using the same argument as before, we get the last equality.
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Corollary 3.8.  Let { < n and suppose that t is a positive integer, a;,a, € A,
bi, b, € B and c;, ¢, € C for 1 <i <t. Then S_i_ ((ai,a})e+ (bi, b)e + (i, ch)e) = 0
if and only if

t

t
Z([au z] [bla b;] Ci@cg) =0 and Z(<ai7 CL; <b2’ b;> <Ci’ C;>n) =0.
i=1 i=1

Proof. By Lemma 3.7, we have

t

Z«ai’ a;>€ + (bs, b;>f + (i, C;>Z) =

Z((au ai)n + (bir bi)n + {cir i) —
(Td 4+ 1d,) @ 5 S (o al] + b, B] — o).

i=1
Now as S°t_ ((ai, a})p + (bi, b)) + (ciy €)n) € Dy, and
(= 1[dv +11d,) @ 2370 (Jas, a)] + [b;, b)) — cioc)) € S® B,

we are done. ]

Remark 3.9.  Consider the decomposition (32) for £° = £* into finite dimen-
sional irreducible G‘-submodules and the decomposition of £ = L™ into finite
dimensional irreducible G-submodules as in Lemma 3.4, then contemplating the
identification (37), we have, using Lemma 3.7, that

= (Poo@PsaPv)+E

1€ jeTJ teT

Moreover, setting (8, 3)" := ¢~ ({8, #')n) and (B, 5')" := o~ ({8, 8'),) for 8,8’ €
b, we get that {(B,)" | 3,3 € b} spans D,, and that {(3, 3)* \ B, 5" € b} spans
E. Furthermore, thanks to Corollary 3.8, for t € N\ {0}, a;,a, € A, b,b; € B

and ¢;, ¢, € C (1 <i<t), S ({ag, al)t + (b, b)) + (c;,&)!) = 0 if and only if
22:1([%: ;] + [bi, 0] — ¢;oc) = 0 and Zz 1 ((ais @)™ + (0, b)) + (i, )") = 0.

Recalling (27) and (47), we now ready to state the main result of this part.

Proposition 3.10. Fore, f € GUS, set
tr(ef)
l

AlSOfO?” 51 = a1+b1+01 €b and /82 = a2+b2+02 € b with ay,ay € A, bl,bg eB
and cy,co € C, set

e o

Id,.

(B1,B2) == (b1, Ba)e, By =c1, B3 =02
and take

D := span{{a,d’), (b,V'),{c,c) | a,a’ € A, bV € B,¢,c € C},
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then we have

L = GeA)ad(SaB)ae(VC)d(bb),
= (A SeB)a(Vr()+D

with the Lie bracket given by

r®a,y®d]=[r,y] @ i(acad)+ (zoy)® ila,d] + tr(zy){a,a’),
[tT®a,s®b = (ros)® 2[a,b] [x,s]@%(aob):—[s@b,x@a],
[s@b,t@V]=[s,t]®3(bob)+ (sot)® 5[b, V] + tr(st)(b,b'),
[TRa,u®@c]=ru®a-c=—[u®c,ral,
[s@bu®c=su®b-c=—-[u®c,sR|,

[u@c,v®d]=(uov)® (cod)+ [u,v] ® (eod) + (u,v){c, ),

[
[
[
[

(B1,B2),x ®a] = Fp(zold, ®a, B 1+ [z,1d,]®acb; ),

(B1, B2) 5 @ bl=Fk([s, 1d, Jo(bo B )+(sold )b, B J+2tr(sIdye) (b, 7 ),
(Br, B2), v @ ] = 5,1d | (B L, 0~ 50 @ (f(c,B3) - Bt + f(c, BY) - B3)

(B1, B2), (B1, Ba)] = <df§1 5,(B1)s 62> (B1,d§, 5,(B5))

(49)
forxyye g, s,teS, u,veV, a,d €A bt e€B, ¢,d €C, py,0, 0,0 €b.

Proof. Suppose that xz,y € G, s,t € S, u,v € V, a,d € A, b,/ € B and
¢, €C, then (39) (for = n) together with Lemma 3.7 implies that

r®a,y@d] = (5] @ ylaod)) + (woy) ® 5la,a]) + tr(zy)a,a).
Similarly we have
s@btob] = (s @ %(bo M)+ ((s0t) @ %[b, V]) + tr(st) (b, V')
and
u@c,vd]=(uov)® (cod))+ ([u,v] ® (cod)) + (u,v){c, ).

Now for ai,as € A, bi,by € B and c¢1,¢0 € C, set 1 = ay + by + ¢4,
Ba = az + by + ¢z and take s, := (1/€)Id , — (1/n)ld,. Then recalling 8; g, from
(27), one can see that for x € G, s€ S, veV, a€ A be B and c € C,

1 * * 1 *
@old , ®la,Bp g,)+ [z, Id ,] @ (a0 Bs 5,)) — or ® [a, B3, s, ),

[l‘@& Sn®551ﬂ2] 20

1 *
= g5 14,,]® (b0 55, )

* 1 * *
+ (8 © Idv’~’> ® [b’ Bﬁl,ﬂzp B ﬁs ® [b7ﬁ61,ﬁ2] + tr(ss")<b7551,ﬁz>

[S ® b, 55 @ /82;1762]

and

, 1 . 1
[sn ®Bﬁ1,52’v ®c] = ZIdev@ (ﬂﬁlﬂz -c) — Ev ® (531,,32 -c).
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We next note that

[<a’17 a’2>n + <b17 b2>n + <Cl, 62>n7 T ® a’] = T® (dZLaQ + dgl,bg + dgl,(:g)(a)
1 %
= %x ® [551’52,61]
[<a11 a2>n + <b17 62>n + <Clv 62>n7 s b] = s5® (dgl,az + dgl,bg + dg1,cg)(b)
1 *
= 5,5® 85,500
[(a1,a2)n + (b1, b2)n + (c1,c2)n, v @] = v @ (dg, 4, + dpy p, T de; ,)(C)
1 %
= 5-v®(Bs ¢
1
- v §(f(C, c2)-c1+ fleer) - c2).

Therefore using Lemma 3.7, an easy verification gives that

[<CL1,CL2> + <b17 b2> + <01,CQ>,1‘ ® a] - H((m OIdvz) ® [a7521,52] + [x7[dvz] ® (a 0621,52))7

[(a1,a2) + (b1,b2) + (c1,c2), s ® b] = ;1([57 Id ,1®(boBs, ,)+(s old ,)R[b, B3 3,])

o
1 *
- ;gtr(sfdwxb,ﬁgl,gﬁ,
and
1 1
[(a1, az2) 4 (b1, b2) + (c1, c2), v® ] = @Id\,ﬂ@(ﬂgl,gz c)— §U®(f(ca c2)-c1tf(e, c1)-c2).
These together with (39) complete the proof. ]

3.0.2. Types A and D

Suppose that I is an index set of cardinality n 4+ 1 > 5 and I is a subset of I of
cardinality ¢+ 1 > 5. Suppose that R is an irreducible finite root system of type
X = A; or D;. Suppose that V is a vector space with a basis {v; | i € I'}. Take G
to be either sl(I) or op(I). Set G*:= G, and suppose that V* is the subspace of
V spanned by {v; | i € In}. We take Id,, to be the identity map on V and define
Id , as follows:
Id, :V —V
v = v, v 05 (G€dy, jel\ ).

Using [2] together with the same argument as in §3.0.1, we have the following
theorem:

Theorem 3.11.  Suppose that L is a Lie algebra graded by the irreducible finite
root system R of type X = A; or D; with grading pair (G,H) and let S be the
wrreducible full subsystem of R of type AIO or Dy, respectively.

(i) Consider L' := L° as a G'-module and take

L'=PauokE (50)

1€l
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to be the decomposition of L into finite dimensional irreducible G*-submodules in
which T is an index set, for i € I, g, is isomorphic to G*, and E is a trivial G-
submodule. Then regarding L as a G-module, there exists a class {D,,G; | i € I}
of finite dimensional G-submodules of L such that

e D, is a trivial G-module and for 1 € L, G; s isomorphic to G,

¢ 9,CG (1€1),

o L= @iezgi ® Dn,.

(11) Take A to be a vector space with basis {a; | i € Z} and identify L with
(G® A) @ D,, say via the natural identification

o: L—(GRA) DD,.

Transfer the Lie algebraic structure of L to (G ® A) @ D,,. Then Dy := ¢(E) is
a subalgebra of ¢(LY) = (G'®A) & Dy and D, is a subalgebras of (G ® A) & D,.
Moreover, the vector space A is equipped with an associative algebraic structure if
X = A; and with a commutative associative algebraic structure if X = Dy.

(111) There is a subspace K1 of the full skew-dihedral homology group of A
with respect to m and a subspace Ko of the full skew-dihedral homology group of
A with respect to ¢ such that D, and D, are isomorphic to the quotient algebras
{A, A}, /Ky and { A, A}/ Ky respectively, say via

77[)1 : {.A, A}n/lCl — Dn and 77[)2 : {A, A}[/’CQ — Dg.
(iv) For a,a’ € A, take
(a,a')n, = 1({a,ad'} + K1) and (a,a’) :=e({a,a'}r + K2).

Then for a,a’ € A, we have

(a,a’>n:<a,a’)g+((%ld —H%]d ) @ (ad’ — d'a).

(v) Set
(a,d\" = o ((a,d),) and (a,d)" = p ' ((a,d)); (a,d € A).

If ¢ < n, then for a positive mteger t and al,al,.. cag,ay € A, we have
S ag, Z) =0 if and only if Si_ {a;,a)" =0 and Y i_,[a;,a}] = 0.

(vi) For x,y € G, set xoy = xy + yxr — Qt”““ @) 1400 and for a,d € A, set
{a,a’) := {a,a’)y. Then the Lie bracket on (G ® .A) @ D, = (G ®A)+ D, is given
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by

ca xo Lo a r(z)a. a _ A
[m@a,y@a’]:{ [, y]® (aod)+ (xoy)® 3zla,d] +tr(zy)(a,d), X =Ar,

[z, y] ® aa’ + tr(zy){a, d’), X =Dy,
sy (@ o Id, ® [a, [a1, az]] '
(a1,a2),z®a] =< +[x, Id ,J®ao a1, az] + 2tr(Id ,z)(a, [a1,a2])), X = Ay,
0, X =Dy,
l,A / / LA / i
(a1, a2), {a}, ab)] = { éd el @) o diae(@)h 2 éﬁ’,
(51)

for x,y € G, a,d,ay,a9,a},a, € A.

3.0.3. Types B and C

Suppose that I is an index set of cardinality n > 4 and I, is a subset of I of
cardinality ¢ > 4. Take G to be either op(I) or sp(I). Consider (4), (7) and
set G¢ = G,,- Suppose that V' is a vector space with a basis {vo,vi,v5 | © € I}
equipped with a nondegenerate symmetric bilinear form (-,-) asin (3) if G = 05(1)
and a vector space with a basis {v;,v; | i € I} equipped with a nondegenerate
skew-symmetric bilinear form (-,-) as in (6) if G := sp(I). Consider (9), (11) and
set V= V,, - Set
T — { I()UI:()U{O} lfgzﬂB(I)

and define Id , : V — V to be the linear transformation given by

N U; ifieT
Vi 0 ifielUT\T.

Finally set S := V and S := V' if G := op(I) and take S and S := §S,, to be
as in (10) and (11) respectively if G = sp(I).

One can use [2]| together with the same argument as in §3.0.1 to get the
following theorem:

Theorem 3.12.  Suppose that L is a Lie algebra graded by a root system R
of type X = By or C; with grading pair (G, H) and let S be the irreducible full
subsystem of R of type By, or C}, respectively.

(i) Consider L' := L as a G'-module and let

=@Poe@Ps;eE (52)

i€l jeT

be the decomposition of L' into finite dimensional irreducible G*-submodules in
which E is a trivial G*-submodule, T,J are index sets, g; (i € I ) is isomorphic
to G and s; (j € J ) is isomorphic to S*. Then there exists a class
{D,,Gi,S;|i€ZL,je€ T} of finite dimensional G-submodules of L such that
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e D, is a trivial G-module, G; is isomorphic to G and S; is isomorphic to S,
foriel jeJ,

© 3,CG, 5 CS; (ieZ, jeJ),

* L= G:i® @jej S;j © Dn.

(ii) Take A and B to be vector spaces with bases {a; |i € I} and
{bj | j € T} respectively and identify L with (G ® A) & (S ® B) & D,,, say via the
natural identification

0: L— (G A & (S®B)®dD,.

Transfer the Lie algebraic structure of L to (G ® A) & (S ® B) & D,,. Then
Dy := p(F) and D,, are subalgebras of (G ® A) ® (S ® B) ® D,,.

(111) Set a :== A®B. If G = o0p(I), A is equipped with a unital commutative
associative algebraic structure and the vector space B is equipped with a unital A -
module structure. Also there is a symmetric A-bilinear form f: BxB — A such
that a = J(f,B). Also if G = sp(I), a is equipped with a star algebraic structure
such that A (resp. B) is the set of fized (resp. skew fized) points of a under the
involution on a.

(iv) There is a subspace Ky of the full skew-dihedral homology group of
a with respect to n and a subspace Ko of the full skew-dihedral homology group
of a with respect to ¢ such that D, and D, are isomorphic to the quotient al-
gebras {a,a}, /Ky and {a,a},/Ky respectively, with corresponding isomorphisms
¢12 {Cl, a}n/ICl — Dn and wgl {Cl, Cl}g/’Cg — Dg.

(v) For a,a/ € a, take

(a, ) =1, '}y + K1) and (o, a’)e = o({a, '} + Ky).
Then if a,o’ € A or a, o € B, we have
1

(.00 = fe Yo+ (1, — 5

Id ,) ® (1/2)(ad’ — o'a)).

(vi) For a,a/ € a, set
(o, a)" =7 (o, 0)n)  and (o, 0') = o7 (o, 0')).
If ¢ <mn, then for t € N\ {0}, a1,d},...,as,a, € A and by, by, ... b, b, € B, we
have Y i_ (a;, ai) + 30 (b, b)) = 0 if and only if

t

t t t
D lana)"+ > (b t)" =0 and Y laiaf]+ Y [bi 0] =0.
i=1 i=1 i=1

i=1
(vii) For e, f € GUS, set

eof::ef—o—fe—@fd

vt
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and for a, ' € a, set
{a, ') == (a, )y,

then the Lie bracket on (GRA) @ (S@B)® D, =((GRA) & (S®B))+ Dy is
given by

®a,y®ad] =[x,y ®ad + tr(zy)(a,d),

®a,s® b = xs® ab,
sRb,t@V] = Ds; @ f(b V) + (s,t)(b, ),
(a,a),z®a) = z®dyf,(a),
(a,d),s b]=$®dza (0),
(o, az), (0, an)] = (dgf o, (), ad) + (0, dGf o, (),

(see Definition 2.4) for x,y € G, s,t € S, a,d’ € A, bV € B, and a,d/,ay, as,
oy, o €aif G=og(l) and it is given by

[z
[z
[
[ (53)
[
[

®a,y®d] =[z,y]® 3(acd)+ (zoy) ® ia,d] + tr(zy){a,d’),

®a,s b =(ros)® 2[a,b] [z, ]®%(aob),
s@b,tRV]=[s,t]@%(bob)+ (sot)® 3[b, ] + tr(st)(b,'),

() z@al = 7 ((xold ) @la, B )+ [2,1d ] @ (a0 S ),

(o, ) s@bl="7([s, Id J@(bo B ,)+(s o Id ,)@[b, B /] + 2tr(sId , ) (b, B o)),
(

[z
[z
[
[
[
a1, @), (0, )] = (daf s (), 0b) + (0], daif s (0h)),

(54)
(see (27)) for x,y € G, s,t € S, a,d € A, bl € B, o,/ ,a1,a9,0),0) € a if

G =sp(1).

4. Root graded Lie algebras - general case

In this section, we give certain recognition theorems which characterize Lie algebras
graded by an infinite irreducible locally finite root system. The main target of the
present section is to generalize the decomposition (21) for Lie algebras graded by
infinite root systems. For a Lie algebra £ graded by an infinite irreducible locally
finite root system with grading pair (g,h), we first decompose £ as a direct sum
of a certain subalgebra of £ and a certain locally finite completely reducible g-
submodule. This in particular results in a generalized decomposition for £ as in
(21). We next reconstruct the structure of £ in terms of the ingredients involved
in this decomposition. Moreover, we prove that any Lie algebra graded by an
irreducible infinite locally finite root system arises in this way. As in the previous
section, we concentrate our attention on type BC' and for other types, we just
report the results.

4.1. Recognition Theorem for Type BC'. Suppose that [ is an infinite index
set and ¢ is a positive integer greater than 3. We assume R is an irreducible locally
finite root system of type BC; and take G, S and V to be as in Lemmas 2.7 and
2.12. We show that an R-graded Lie algebra £ can be decomposed into

GoA)dSeB)d(VaC)eD (55)
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in which A, B and C are vector spaces and D is a subalgebra of £. We equip
b:= A® B & C with a unital associative star algebraic structure and show that
D can be expressed as a quotient of the algebra {b,b}, by a subspace of the
full skew-dihedral homology group of b, with respect to ¢, satisfying the uniform
property on b. Conversely, for vector spaces A, B, C' and D with specific natures,
we form the decomposition (55), equip it with a Lie bracket and show that it is
an R-graded Lie algebra.

Theorem 4.1.  Suppose that I is an infinite index set and ¢ is an integer greater
than 3. Assume R is an irreducible locally finite root system of type BC; and V
is a vector space with a basis {v; | i € I UI}. Suppose that (-,-) is a bilinear
form as in (6), set G :=sp(I) and consider S as in (10). Fix a subset Iy of I of
cardinality ¢ and take Ry to be the full irreducible subsystem of R of type BCY,.
Suppose that {Ry | A € A} is the class of all finite irreducible full subsystems of
R containing Ry, where A is an index set containing zero. For N\ € A, take G
as in Lemma 7 and V*,8* as in (11). Neat define

j)\ Y — Y B
v; 1€ yUI,
vi { 0 otherwise

and for e, f € GUS, define

eof:=ef+ fe— tr(le )30.

(i) Suppose that (a,*,C, f) is a coordinate quadruple of type BC and A,
B are x-fived and *-skew fixed points of a respectively. Set b := b(a,*,C, f) and
take [-,-],0, 0,0 to be as in Subsection 3. For [i,52 € b, consider dg 5, GS N
(25) and take 85,5, 81 and B3 as in Proposition 3.10 and (27). For a subset K
of HF(b) satisfying the uniform property on b, set

LBL)=GA)6SeB)a&(VaCl) e ({b,b},/K).
Then setting (3,5") :={B,0'y + K, 8,8 € b, L(b,K) together with

®a,y®d]=[1,y]® 3(a0d) + (zoy) ® 3[a,d] + tr(zy){a, a’),
®a,s®b] = (z035)® 5[a,b] + [z,5] ® $(aob) = —[s®@b,x ®al,
s@b,t@V] =[s,t]®3(bob)+ (sot)® 5[b,b] + tr(st)(bb'),
Ra,u@cl=zuRa-c=—-[u®czal,

[z

[z

[

[z
s@bu®c=su®b-c=—-[u®c,sR Db,
[®cv®c] (uov)@(coc/)—i-[u,v]®(c<oc’)+(u,v)<c,c/>,
[
[
[
[

(B, By @ a) = (o T0) @ [a, 87, |+ [e, 3] @ (a0 B ),

(B, B, s © =72 (1s,9d@ (bo 85, J+(s020)®[b, A% J+2tr(sDo) (b, 87 ),
(Broo)s0 @l = 3008 (5, ) = b (F(e,55) -5 + £ 5 5)

(B, B, (81 B)] = (5, 5, (B1). Ba) + (B, b 5, (88))

forx,ye G, s,teS, u,veV, a,d € A b € B, ¢, €C, py,P2, 01,05 €b, is
an R-graded Lie algebra with grading pair (G, H) where H is the splitting Cartan
subalgebra of G defined in Lemma 2.7.
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(13) If L is an R-graded Lie algebra with grading pair (g,h), then there is a
coordinate quadruple (a,*,C, f) of type BC' and a subspace K of b := b(a,*,C, f)
satisfying the uniform property on b such that L is isomorphic to L(b, ).

Remark 4.2.  One can check that up to isomorphism the Lie algebra L£(b, K)
does not depend on the choice of ¢ and Ij.

Proof. (i) We prove that L(b,K) together with (56) is a Lie algebra. For
A € A set ny = || and £ == (G*'®A) ® (S*@B) & VWV @C) & (b, b). Also for
a,a € A, b,V € B, and ¢,d € C, set

Take (b, b)) := span{{a,a’),, (b,0)x,(c,)x | a,d’ € A bV € B,c,d € C} and
note that as I satisfies the uniform property on b, we have

Y= (GP®A) @ (S*®B) & (V'&C) & (b, b))

For f=a+4+b+c¢,f =d +V+ €b, set (8,50 :=(a,a)r+ (b,b)+ {(c, ).

Now consider the linear transformation ¢ : b ® b — (b, b), mapping
B ® [ to (6,8 It is not difficult to see that for the subspace K of b ® b
defined in Subsection 3, ¥(K) = {0}. So @ induces a linear transformation
¢ 2 {b,b},, — (b,b)x mapping {B,5'}., to (8,80 B,8 € b. Take Ky
to be the kernel of . If t € N\ {0}, a;,a} € A, b,b, € B and ¢;, ¢, € C
(1 < i < t) are such that S0 ({a;, @i}y + {bi, 030, + {ci, ¢ }ny) € Ky, then
S (i, ai)y + (bi, B)x + (ci, &)2) = 0. This implies that

t t

((730+f3A)®%Z([au ai)+[bi, bl —(cioc))+ ) ((ai, af)+(bi, Vi) +(ci ¢f)) = 0. (57)

i=1 i=1

This in turn implies that >>'_ ({as, a) + (b, b)) + (ci, ¢))) = 0. Therefore we get
that ICy is a subset of the full skew-dihedral homology group of b with respect
to £. But if A\ # 0, (57) implies that S¢_ ([a;, a] + [b;,¥]] — (cioc)) = 0. Now
it follows using this together with the fact that Ky is a subset of the full skew-
dihedral homology group of b with respect to ¢, that K, is a subset of the full
skew-dihedral homology group of b with respect to ny,. Now it follows from [3,
Chapter V] that £* together with the product introduced in (56) restricted to
LA x L£* defines a Lie algebra. Therefore £ together with [-,-] is a Lie algebra as
L = UxeaL?. Now one can easily see that £ has a weight space decomposition

L = ®oecrLl, with respect to H in which

VQ®C if € Ry,
L = (ga®¢4) ©® (Sa®8) ifae ng
“ ga@A lf S Rex

(Go®A) ® (So®B) @ (b,b) ifa=0
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and that £ is an R-graded Lie algebra with grading pair (G, H).
(17) For A € A, set

LY =Y eps Lo ® Ygeps [Lor Loal,

g)\ = ZQE(RA);;Z.U ga @ ZO‘E(RA):dw [gaa g*a]

and note that g* is isomorphic to G*. We know by Lemma 3.3 that £* is an
Ry-graded Lie algebra with grading pair (g*, b* := g* N'p). Consider L% as a g°-
module and suppose that {G?, SY V2. Dy |i € Z,7 € J,t € T} is a class of finite

1195
dimensional g’-submodules of £° such that

b ‘CO = ZzeIgo@ZJEJ J @ZzETV GBDO’

e D, is a trivial g’-submodule of L£°,

eforieZ,jeJ and t €T, G? is isomorphic to G°, SJQ is isomorphic to S,
and V? is isomorphic to VY.

Now for XA € A, consider £* as a g*-module via the adjoint representation.
Using Lemmas 3.4 and 3.5, one finds finite dimensional irreducible g*-submodules
G SV (ieZ,je T, teT)of L2 and a trivial g*-submodule Dy such that

(I,j,T, {gzo}a {gf\}, {8]0}7 {Sj\}ﬂ {Vl?}, {V3}7D07D>\)

is an (R}, R%)—datum for the pair (£*, L) (see (33)). We know from Subsection
3 that there is a coordinate quadruple (a,x*,C, f) of type BC and a subspace
ICy of the full skew-dihedral homology group of b := b(a, x,C, f) with respect to
ny = |I,| such that D, is a subalgebra of L£* isomorphic to the quotient algebra

{b,b},,, /Ky, say via ¢, : {b,b},, /ICx — D,. Now for 5,3 € b, set
(8,80 == ({8, B'3r + ). (58)

Take A and B to be the x—fixed and *—skew fixed points of a respectively and
note that

Dy, = span{(a, a')*, (b,)*, (c,)* | a,a' € A, b,V € B,c,d € C}.

We now proceed with the proof in the following steps:

Step 1: For i € Z, j € J, t € T and A\,u € A with A 5 p, G is the g~-
submodule of £* generated by G?, Sf is the g*-submodule of £* generated by
SJ’-\ and V}' is the gt-submodule of £# generated by V2. In other words,

(Z, T, TAGHAGI Y AS T ASI AV VI DA D)

is an (R*, R*)—datum for the pair (£#, £*) : It is immediate using the fact that
g” is a subalgebra of gt.

Step 2: For A € A, £* = ), ;G @ zjej 2D ZlGTV @ Dy : By Step 1
and Remark 3.9, £* = (30,761 © 32,0, 83 © Y,c7 Vi) + Dy Suppose d € Dy,
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T e Y G @ Z]ej 2D Y e V) and x +d = 0. Since d € Dy, there are
t € N\ {0}, a;,a, € A, bl,b; € B and ¢,¢; € C (1 < i < t) such that
d = S0 a,a)® + (i, 0)° + (e, Z) It follows from Step 1 and Lemma 3.7
that there is y € >, ., G} @Y7 S} ® Y ;e Vi such that d = y+ 30 {ag, d)) +
{bi, )N + {ci, ). Now as 0 = x + d =x+y+d. 1(al, aly + (b, U + (e, )™,
we get that @ +y = 0 and >_'_ ((a;, a))* + (b, ) 4 (ci, ¢)*) = 0. Take pu € A
to be such that A\ <y, then using Step 1, one gets that the pairs (£*, £*) and
(£°, £*) play the same role as the pair <557 L") in Subsection 3. Using Remark
3.9 for the pair (£, £#), one gets that >'_, ({as, al)* + (b, b)) + (ci, ¢)*) = 0 and
St (Jai, af] + [bl,bz] c;oc;) = 0. Next using Remark 3.9 for the pair (L% L"),
we get that d = Y20, ({as, a})® + (b;, )0 + (ci, ¢})°) = 0. This completes the proof
of this step.

Step 3: Ky satisfies the uniform property on b : Suppose that

t

> (ai, aiye + {bi, 030 + {ei o) € Ko,

=1

for t € N\ {0}, al,al,.. sag,ar € A by by, .. by b € B and ¢, ), ..., cn,c, €C,
so Yoo ({a;, al)? + (b,,b;) (c;,c)?) = 0. Now take A € A\ {0}, then by Step

1, (£° L) plays the same role as the pair (L% £") in Subsection 3 and so an
argument analogous to the proof of Step 2 shows that

> (ais af] + [bi, b] = ¢jocf) = 0.
This completes the proof.

Using Steps 1,2, we get the following three steps:

Step 4:
Uxa=>UaaUxrs=>Us Urv=>U»
AEA i€T i€T AeA  AeAjeJ JETAEN  NeAteT teT AeA

Step 5: We have

U= e+ sH+ S+ Do

A€A AEA €T AEA jeT AEA teT

Step 6: (3-icr Unea 97+ (2 e Unea S+ ier Unea Vi) +Dy is a direct sum.

Now we are ready to go through the last step.
Step 7: The assertion stated in (i) is true: Take A to be a vector space with a
basis {a; | t € I}, B to be a vector space with a basis {b; | j € J}, and C to be
a vector space with a basis {¢; | t € T}. Using Steps 1-2,4-6, we get that

c=Jcy = O eh+ O sH+ O v+ Do

AEA AEA ieT AEAN jeT AEA teT

= @UdMedUsHedUrhen.

i€L AeA JET AEA teT XeA
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Now consider £ as a g-module via the adjoint representation and for i € Z,
jeJ and t € T, set

¢ =) g sV = Js) v =V
AEA AEA A€A

then by Propositions 2.11 and 2.12, G is a g-submodule of £ isomorphic to g ~
G, SY is a g-submodule isomorphic to S and V® is a g-submodule isomorphic
to V. Therefore as a vector space, we can identify £ with

GRA)DSB)®(V®C) D Dy.
such that for each A € A, £* is identified with

(G*A) @ (S*@B) & (V'&C) @ D.
Now for A € A, (£*, £°) plays the same role as (£", £%) in §3.0.1 and so we are
done using Step 3 together with Proposition 3.10. ]
4.2. Recognition Theorem for Types A and D.

Theorem 4.3.  Suppose that I is an infinite index set and Iy is a subset of I of
cardinality £ > 5. Let R be an irreducible locally finite root system of type X = Dj
or X = A;. Suppose that V is a vector space with a basis {v; | i € I} and take G
to be the infinite dimensional split simple Lie algebra of type X as in Lemmas 2.3

or 2.6 respectively. Define
V; 1€ [0
0 otherwise.

Jo:V—V viH{

Also for xz,y € G, define
2tr(zy) -
[+1°

Suppose that (A,idy,{0},0) is a coordinate quadrable of type X and K
1s a subset of the full skew-dihedral homology group of A satisfying the uniform
property on A. Set

rToy :=xY + yxr — 0-

LIAK) = (G®A) © (A A),
in which (A, A) is the quotient space {A, A}i/K (see Subsection 3) and for a,a’ €
A, take (a,d’) = {a,d'}s + K, then L(A,K) together with

[z ®a,y®d] :{ [2,y] @ §(aod) + (zoy) ® jla,d] + tr(zy)(e,a’), X = Ay,

yl®
[z, ]®aa + tr(zy)(a,d'), X = Dy,
2(Z )((a;oId ) [7[a17a2]] '
[(a1,a2),x ® a] = +[m,]d | ® (aolar,asz]) +2tr([dv,zx)<a, [a1,a2])), X = Ay,
0 X =Dy,
0, A / / l,A / 4
[<a17a2>’<a/17a/2>] _{ (<)da1 az( 1)7a2> <a17da1 a2( 2)>7 i;‘gﬁ:
(59)

for z,y € G, a,d,ay,a9,a},a, € A, is a Lie algebra graded by R with grading
pair (G, H) where H is defined as in Lemma 2.3 or Lemma 2.6. Moreover, up to
isomorphism any R-graded Lie algebra gives rise in this manner.
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4.3. Recognition Theorem for Types B and C'.

Theorem 4.4.  Suppose that I is an infinite index set and Iy is a subset of I of
cardinality £ > 4. Take G to be either og(I) or sp(I). Suppose that V is a vector
space with a basis {vg,vi,v; | i € I} equipped with a nondegenerate symmetric
bilinear form (-,-) as in (3) if G = op(I) and it is a vector space with a basis
{vi,v; | 1 € 1} equipped with a nondegenerate skew-symmetric bilinear form (-,-)

as in (6) if G :=sp(I). Set

T'_{ LUl u{0} ifG=op(I)

and define Jy : V — V to be the linear transformation defined by

N V; @szT
vi 0 ifieIUI\T.
Next set S :=V if G := op(I) and take S to be as in (10) if G = sp(I). For
e,f €GUS, set
157“(6]‘3)j

eof:=ef+ fe— 7 o

Suppose that R is an trreducible locally finite root system of type X = B; or
X =Cr and (a,%,C, f) is a coordinate quadrable of type X. Take A and B to be
the set of *x— fized and x— skew fized points of a respectively. For a subset K of
the full skew-dihedral homology group of a satisfying the uniform property on a,
set

L(a,K)=GRA) & (S®B)a (a,a),

in which (a,a) is the quotient space {a,a}y/IC (see Subsection 3), and for a, o’ € a,
take (o, o) :={a,a'} + K. Then L(a,K) together with

[z ®a,y®d]=[z,y] ®ad + tr(zy){a,d),

[t ®a,s®b =xs® ab,
[s@b,t @] = Doy ® f(bV) + (5,1)(, 1)

(o 00), 2 @ a) = 2 @ die o, (a), (60)
[(on, a2), s @ b] = s @ di2 (D),

| 1), ah) + fn, dh8 L, (02))

(see Definition 2.4) for z,y € G, s,t € S, a,d/,a1,a9,0),a4 € a, a,a’ € A and
bt € B, if G =o0p(I) and

(o, a0), {0, ah)] = (d5f 4, (@

[z ®a,y @ a] = [z,9] @ §(acd) + (zoy) ® 3la,d] + tr(zy)(a,d),
[x®a,s®b] = (v0s)® i[a,b] + [z,s] ® (aob),
[s@b,t@b]=[s,t] @ 3bol + (sot)® L[b,b] + tr(st)(b,b'),

[

[

[

(0}, 2 ® a] = 5H(2 0 90) ® [0, B ] + [2.30] @ (o B2, (61)
(0,0}, 5 @) = TH([5 ToJ@ (b0 By )+ (5 0 F0)E[, By o, |42 (s70) (b, B2,

0, 0,
(a1, az), <a1,a2)] = <d04?70¢2(0/1)7 2) + <a’1,daia2(a’2)>
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(see (27)) for x,y € G, s,t € S, a,a € A, bV € B, a,d/,a1,a0,0],04 € a,
if G = sp(I), is a Lie algebra graded by R with grading pair (G, H) where H
1s defined as in Lemma 2.5 or Lemma 2.7. Moreover, up to isomorphism any
R-graded Lie algebra gives rise in this manner.
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