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Abstract. Pseudo-Riemannian Poisson manifolds and pseudo-Riemannian
Lie algebras were introduced by M. Boucetta. In this paper, we prove that all
pseudo-Riemannian Lie algebras are solvable. Based on our main result and
some properties of pseudo-Riemannian Lie algebras, we classify Riemann–Lie al-
gebras of arbitrary dimension and pseudo-Riemannian Lie algebras of dimension
at most 3.
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1. Introduction

M. Boucetta introduced the notion of Poisson manifold with compatible pseudo-
metric in [1] and a new class of Lie algebras called pseudo-Riemannian Lie algebras
in [2]. He proved that a linear Poisson structure on the dual of a Lie algebra has
a compatible pseudo-metric if and only if the Lie algebra is a pseudo-Riemannian
Lie algebra, and that the Lie algebra obtained by linearizing at a point in a Poisson
manifold with compatible pseudo-metric is a pseudo-Riemannian Lie algebra. See
[2] for more details of pseudo-Riemannian Poisson manifolds and their relationship
with pseudo-Riemannian Lie algebras. Furthermore in [3], Boucetta established
five equivalent conditions for g to be a Riemann–Lie algebra. In this paper we
prove that every pseudo-Riemannian Lie algebra is solvable and give a simple proof
of Boucetta’s result.

The paper is organized as follows. In Section 2, we collect some basic
definitions and properties of pseudo-Riemannian Poisson manifolds and pseudo-
Riemannian Lie algebras, and then translate it into our language, which is easier.
In Section 3, we prove that no semisimple Lie algebra admits a pseudo-Riemannian
Lie algebra structure; via the Levi decomposition, this implies our main result
(Theorem 3.1). Boucetta classified Riemann–Lie algebras in [3], and in [2] claimed
without proof to classify pseudo-Riemannian Lie algebras of dimension 2 or 3.
Theorem 1.6 in [2], which classifies 3-dimensional pseudo-Riemannian Lie algebras
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and Riemann–Lie algebras, is not quite correct. In the last section, using our
method, we give an explicit classification of Riemann–Lie algebras (Theorem 4.7)
and pseudo-Riemannian Lie algebras of dimensions 2 and 3 (Theorem 4.9).

2. Preliminaries

Let P be a Poisson manifold and Π be the Poisson bivector field. The Poisson
bracket on P is given by

{f1, f2} = Π(df1, df2) ∀f1, f2 ∈ C∞(P ).

We also have a bundle map ] : T ∗P → TP defined by

β(](α)) = Π(α, β) ∀α, β ∈ T ∗P.

The Poisson tensor induces a Lie bracket on the space of differential 1-forms Ω1(P ):

[α, β] = L](α)β − L](β)α− d(Π(α, β)).

Assume that there exists a pseudo-metric of signature (p, q) on the cotan-
gent bundle T ∗P , that is, a smooth symmetric contravariant 2-form 〈·, ·〉 on P
such that 〈·, ·〉|x is nondegenerate on T ∗xP with signature (p, q), at each point
x ∈ P . According to [4], there is a contravariant connection D , called the Levi-
Civita contravariant connection associated with the triple (P,Π, 〈·, ·〉), given by

2〈Dαβ, γ〉 = ](α)〈β, γ〉+ ](β)〈α, γ〉 − ](γ)〈α, β〉
+ 〈[α, β], γ〉+ 〈[γ, α], β〉+ 〈[γ, β], α〉,

where α, β, γ ∈ Ω1(P ). Further, D satisfies the following conditions:

Dαβ −Dβα = [α, β];

](α)〈β, α〉 = 〈Dαβ, γ〉+ 〈β,Dαγ〉.

Definition 2.1 ([2], Definition 1.1). The triple (P,Π, 〈·, ·〉) is called a pseudo-
Riemannian Poisson manifold if, for all α, β, γ ∈ Ω1(P ),

DΠ(α, β, γ) = ](α)Π(β, γ)− Π(Dαβ, γ)− Π(β,Dαγ) = 0.

When 〈·, ·〉 is positive definite, the triple is called a Riemann–Poisson manifold.

For all x ∈ P , taking the linear approximation to the Poisson structure [5],
we get a Lie algebra structure on Ker ]x . In order to study the structure of Ker ]x ,
we need the following definition, due to [2].

Let g be a real Lie algebra and (·, ·) be a nondegenerate symmetric bilinear
form on g . Define a bilinear map (u, v) 7→ uv on g by

2(uv, w) = ([u, v], w) + ([w, u], v) + ([w, v], u) ∀u, v, w ∈ g. (2.1)

This map is called the infinitesimal Levi-Civita connection associated with (·, ·).
Indeed, if G is a connected Lie group with Lie algebra g , then (·, ·) defines a
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left invariant pseudo-Riemannian metric on G . The Levi-Civita connection ∇
associated with this metric is given by

∇ulv
l = (uv)l ∀u, v ∈ g,

where ul denotes the left invariant vector field associated with u . One may easily
see that the equality (2.1) is equivalent to the following identities:

uv − vu = [u, v]; (PR1)

(uv, w) + (v, uw) = 0. (PR2)

Definition 2.2. The pair (g, (·, ·)), or g for short, is called a (real) pseudo-
Riemannian Lie algebra if it satisfies (PR1), (PR2) and

[uv, w] + [u,wv] = 0 ∀u, v, w ∈ g. (PR3)

If the bilinear form (·, ·) is positive definite, then g is called a Riemann–Lie algebra.

The following theorems of M. Boucetta describe the relationship between
pseudo-Riemannian Poisson manifolds and pseudo-Riemannian Lie algebras.

Theorem 2.3 ([2], Theorem 1.1). Let (P,Π, 〈·, ·〉) be a pseudo-Riemannian Pois-
son manifold. Then the Lie algebra Ker ]x obtained by linearizing the Poisson
structure at x is a pseudo-Riemannian Lie algebra, for every point x ∈ P such
that the restriction of 〈·, ·〉 to Ker ]x is nondegenerate.

Theorem 2.4 ([2], Theorem 1.2). Let g be a real Lie algebra. The dual g∗ endowed
with its linear Poisson structure Π has a pseudo-metric 〈·, ·〉 for which the triple
(g∗,Π, 〈·, ·〉) is a pseudo-Riemannian Poisson manifold if and only if g is a pseudo-
Riemannian Lie algebra.

By (PR1), we may write condition (PR3) in another form:

(uv)w − w(uv) + u(wv)− (wv)u = 0. (PR3′)

So we may redefine pseudo-Riemannian Lie algebras, as follows.

Definition 2.5. An algebra g with a nondegenerate symmetric bilinear form
(·, ·) is called a pseudo-Riemannian Lie algebra if the conditions (PR2) and (PR3′ )
are satisfied for all u, v, w ∈ g .

With this definition, [u, v] = uv − vu defines a Lie algebra structure on g ,
since (PR3′ ) implies the Jacobi identity, as one may easily see. Thus g is a Lie
algebra. So the two definitions are equivalent. Given u ∈ g , denote by lu and ru
the left and right multiplications by u . Then (PR2) and (PR3) may be written as

(luv, w) + (v, luw) = 0 and [rvu,w] + [u, rvw] = 0.

Remark 2.6. If g is an abelian Lie algebra, then the product is trivial, that is,
xy = 0 for all x , y ∈ g .
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3. Main results

In this section, we will prove the main theorem of this paper.

Theorem 3.1. Every Lie algebra over a field of characteristic 0 with a product
satisfying (PR1) and (PR3) is solvable. Consequently every pseudo-Riemannian
Lie algebra (g, (·, ·)) is solvable.

The following results are immediate consequences of the main theorem.

Corollary 3.2. Let (P,Π, 〈·, ·〉) be a pseudo-Riemannian Poisson manifold. Then
the Lie algebra Ker ]x is solvable, for every point x ∈ P such that the restriction
of 〈·, ·〉 to Ker ]x is nondegenerate.

Corollary 3.3. Let g be a real Lie algebra. If the dual g∗ endowed with its linear
Poisson structure Π has a pseudo-metric 〈·, ·〉 for which the triple (g∗,Π, 〈·, ·〉) is
a pseudo-Riemannian Poisson manifold, then g is solvable.

The following lemma is a decisive step towards our main result.

Lemma 3.4. Let g be a Lie algebra over an algebraically closed field of charac-
teristic 0 with a product satisfying (PR1) and (PR3). Then g is not semi-simple.

Proof. By contradiction, assume that g is semi-simple and h is a Cartan
subalgebra of g . Let ∆(g, h) be the root system of g with respect to h . Choose
a system of positive roots, to obtain the root subspace decomposition of g :

g = h +
∑
α>0

gα +
∑
α<0

gα.

Let g+ =
∑

α>0 gα and g− =
∑

α<0 gα . Since g ⊇ gg ⊇ [g, g] , it follows that
g = gg = [g, g] . Let {Xα ∈ gα | α ∈ ∆(g, h)} be a Chevalley basis for g with
respect to h . We will prove the lemma after seven steps.

Step 1: hh ⊂ h . For arbitrary h1 , h2 ∈ h , suppose that h1h2 = h0 +X+ +X−,
where h0 ∈ h , X+ ∈ g+ and X− ∈ g− . If X+ 6= 0, then there exists Y − ∈ g−

such that the projection of [X+, Y −] to h is nonzero. By (PR3),

[h1h2, Y
−] = −[h1, Y

−h2].

But the projection to h of the left hand side is nonzero while that of the right
hand side is zero since [h, g−] ⊂ g− , [g−, g−] ⊂ g− , [h, g+] ⊂ g+ and [h, h] = {0} .
This is a contradiction, so X+ = 0. Similarly, X− = 0. Thus hh ⊂ h .

Step 2: gαh ⊂ gα and hgα ⊂ gα . For all h1, h2 ∈ h ,

[Xαh1, h2] + [Xα, h2h1] = 0.

Now hh ⊂ h , so [Xα, h2h1] ∈ gα , which implies that Xαh1 ∈ gα +h . Suppose that
Xαh1 = cXα + h0 , where c ∈ C and h0 ∈ h . If h0 6= 0, then there exists a root
β such that β(h0) 6= 0. We may assume that β 6= α since if α(h0) 6= 0, we may
choose β = −α . Then

[Xαh1, Xβ] = [cXα + h0, Xβ] = cNα,βXα+β + β(h0)Xβ,

where Nα,β are the Chevalley coefficients. Similarly,

[Xα, Xβh1] = [Xα, c
′Xβ + h′0] = c′Nα,βXα+β − α(h′0)Xα.
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Then [Xαh1, Xβ] + [Xα, Xβh1] 6= 0, which contradicts the identity (PR3). Thus
h0 = 0, that is, gαh ⊂ gα . By (PR1), we deduce that hgα ⊂ gα .

Step 3: Xαh = f(h)Xα and X−αh = −f(h)X−α for some f ∈ h∗ . From the
above discussion, we may assume that

Xαh = f(h)Xα and X−αh = g(h)X−α,

for some f , g ∈ h∗ , since dim gα = 1. By (PR3),

[Xαh,X−α] + [Xα, X−αh] = 0.

It follows that
[f(h)Xα, X−α] + [Xα, g(h)X−α] = 0.

Then (f(h) + g(h))[Xα, X−α] = 0. Therefore, f(h) + g(h) = 0.

Step 4: gαh = {0} . For every root α , there exists h1 ∈ h such that α(h1) 6= 0.
For all h2 ∈ h ,

[h1h2, Xα] + [h1, Xαh2] = 0 and [h1h2, X−α] + [h1, X−αh2] = 0.

Since hh ⊂ h , Xαh = f(h)Xα and X−αh = −f(h)Xα , we see that

α(h1h2)Xα + f(h2)α(h1)Xα = 0;

(−α)(h1h2)X−α + (−f)(h2)(−α)(h1)X−α = 0.

Thus

α(h1h2) + f(h2)α(h1) = 0 and (−α)(h1h2) + f(h2)α(h1) = 0.

Therefore, f(h2) = α(h1h2) = 0. So Xαh2 = f(h2)Xα = 0. Since h2 is arbitrary,
Xαh = 0, that is, gαh = 0.

Step 5: hh = {0} . Suppose that h1h2 6= 0 for some h1 , h2 ∈ h . Then there is
a root α such that α(h1h2) 6= 0. Thus

[h1h2, Xα] = α(h1h2)Xα 6= 0.

By (PR3) and the fact that gαh = {0} ,

[h1h2, Xα] = −[h1, Xαh2] = 0.

This is a contradiction, so h1h2 = 0, that is, hh = {0} .
Step 6: gαgβ ⊂ gα+β , where g0 = h . For all h ∈ h ,

[h,XαXβ] + [hXβ, Xα] = 0.

But [hXβ, Xα] ∈ gα+β since hXβ ∈ gβ . Thus [h,XαXβ] ∈ gα+β for all h ∈ h .
Therefore

XαXβ ∈ gα+β + h.

Assume that XαXβ = cα,βXα+β + h1 , where cα,β ∈ C and h1 ∈ h . If α + β = 0,
we are done since gα+β = g0 = h . So in the following, we assume that α+ β 6= 0.
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If h1 6= 0, then there exists a root γ such that γ(h1) 6= 0. We may assume that
γ 6= α , since if α(h1) 6= 0, we may choose γ = −α . Then

[Xγ, XαXβ] = [Xγ, cα,βXα+β + h1] = cα,β[Xγ, Xα+β]− γ(h1)Xγ.

Suppose that XγXβ = cγ,βXγ+β + h2 . Then

[XγXβ, Xα] = [cγ,βXγ+β + h2, Xα] = cγ,β[Xγ+β, Xα] + α(h2)Xα.

It follows that [Xγ, XαXβ]+[XγXβ, Xα] 6= 0 since α+β 6= 0, α 6= γ and γ(h1) 6= 0.
This is a contradiction, so h1 = 0. Hence XαXβ ∈ gα+β .

Step 7: hgα = {0} . Suppose that hXα 6= 0, for some h ∈ h . Then hXα =
f(h)Xα and f(h) 6= 0. By (PR3),

[h,X−αXα] + [hXα, X−α] = 0.

Since X−αXα ∈ g0 = h ,

[h,X−αXα] + [hXα, X−α] = [hXα, X−α] = f(h)[Xα, X−α] 6= 0.

This is a contradiction, so hgα = {0} .
Finally, we have reached a contradiction, since [h, gα] = {0} as hgα = gαh =

{0} . Thus g is not a semi-simple Lie algebra.

Now we come to the proof of our main result.

Proof of Theorem 3.1. First, extend the base field of g to its algebraic
closure if necessary. Let g = s + r be a Levi decomposition of g . Then

[s1s2, s3] + [s1, s3s2] = 0

for all s1, s2, s3 ∈ s . Let sisj = si,j + ri,j , where si,j ∈ s and ri,j ∈ r . Then

[s1,2 + r1,2, s3] + [s1, s3,2 + r3,2] = 0,

that is,
([s1,2, s3] + [s1, s3,2]) + ([r1,2, s3] + [s1, r3,2]) = 0.

Thus
[s1,2, s3] + [s1, s3,2] = [r1,2, s3] + [s1, r3,2] = 0,

since s is a subalgebra and r is an ideal of g . Define a product ◦ : s× s→ s by

s1 ◦ s2 = Ps(s1s2),

where Ps denotes the projection from g to s with respect to the Levi decomposi-
tion. Then the product ◦ is bilinear.

Further, for all s1, s2 ∈ s ,

[s1, s2] = s1s2 − s2s1 = s1,2 + r1,2 − s2,1 − r2,1 = (s1,2 − s2,1) + (r1,2 − r2,1) ∈ s.

Hence r1,2 − r2,1 = 0 and

s1 ◦ s2 − s2 ◦ s1 = Ps(s1s2)− Ps(s2s1) = s1,2 − s2,1 = [s1, s2].

Moreover, for all s1, s2, s3 ∈ s ,

[s1 ◦ s2, s3] + [s1, s3 ◦ s2] = [Ps(s1s2), s3] + [s1, Ps(s3s2)] = [s1,2, s3] + [s1, s3,2] = 0.

Thus, (s, ◦) satisfies the conditions of Lemma 3.4, which implies that s is not
semi-simple. Then s must be 0, and g is solvable.
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4. A new proof of Boucetta’s results

In this section, we will use our results to classify Riemann–Lie algebras and low
dimensional linear pseudo-Riemannian Poisson manifolds. Boucetta [2, 3] proved
or claimed similar results. However, our proof is much simpler. For example,
Lemma 3.5 in [3] is a trivial consequence of our main theorem.

First, we collect some basic properties of pseudo-Riemannian Lie algebras
that will be used frequently. In this section, an ideal of a pseudo-Riemannian Lie
algebra g means a subspace of g that is invariant under left and right multiplica-
tions in g ; hence an ideal is automatically a Lie ideal.

To state the next lemmas, let C(g) and C(g)⊥ be the center of g and its
orthogonal complement:

C(g) = {a ∈ g | ax = xa ∀x ∈ g}
C(g)⊥ = {u ∈ g | (u,C(g)) = {0}}.

Lemma 4.1. The subspace C(g) is an ideal of g, and xy = 0 for all x, y ∈ C(g).

Proof. By (PR3), for all x ∈ C(g) and y, z ∈ g ,

[xy, z] + [x, zy] = [xy, z] = 0.

It follows that xy = yx ∈ C(g) for all x ∈ g .

For all x, y ∈ C(g) and z ∈ g ,

(xy, z) = −(y, xz) = −(y, zx) = (zy, x) = (yz, x) = −(z, yx) = −(xy, z).

It follows that (xy, z) = 0 for all z ∈ g , and thus xy = 0.

Remark 4.2. This lemma is nontrivial, since the center is not necessarily an
ideal for general algebras (for instance, associative algebras).

Lemma 4.3. The subspace C(g)⊥ is an ideal of g. If the restriction of the
bilinear form to C(g) is nondegenerate (say, if g is a Riemann–Lie algebra), then
[g, g] ⊂ C(g)⊥ and

g = C(g)⊕ C(g)⊥.

Proof. For all x ∈ C(g), y ∈ C(g)⊥ , and z ∈ g ,

(x, yz) = −(yx, z) = −(xy, z) = (y, xz) = 0,

(x, zy) = −(zx, y) = 0.

So yz, zy ∈ C(g)⊥ since C(g) is an ideal.

Consequently, we have the following result.

Corollary 4.4. If g is a nilpotent Riemann–Lie algebra, then g is abelian.

Proof. By Lemma 4.3, g = C(g) ⊕ C(g)⊥ . Then C(g)⊥ is also a nilpotent
Riemann–Lie algebra. The center of C(g)⊥ is contained in the center of g , so
C(g)⊥ must be trivial.
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Henceforth, span{S} denotes the subspace spanned by S . Further, let

gg = span{xy | x, y ∈ g}

and
Zr(g) = {u ∈ g | ru = 0}.

Lemma 4.5. The subspace gg is an ideal of g and (gg)⊥ = Zr(g).

Proof. The first assertion is trivial. For the second, observe that the following
statements are equivalent: first, x ∈ (gg)⊥ ; second, (x, yz) = 0 for all y, z ∈ g ;
third, (yx, z) = 0 for all y, z ∈ g ; fourth, yx = 0 for all y ∈ g ; and finally,
x ∈ Zr(g).

It is easy to see that [g, g] ⊂ gg , but, in general, [g, g] 6= gg and [g, g] is
not necessarily an ideal of g although it is a Lie ideal. Define the adjoint φt of
φ ∈ End(g) by

(φ(v), w) = (v, φt(w)) ∀v, w ∈ g,

and set
[g, g]⊥ = {x ∈ g | (x, [g, g]) = {0}}.

Then the following lemma is easy.

Lemma 4.6. The following equality holds:

[g, g]⊥ = {u ∈ g | ru = rtu}.

Furthermore, uu = 0 for all u ∈ [g, g]⊥ .

Proof. The following are equivalent: first, u ∈ [g, g]⊥ ; second, (u, [v, w]) = 0
for all v , w ∈ g ; third, (u, vw) = (u,wv) for all v , w ∈ g ; fourth, (vu, w) = (v, wu)
for all v , w ∈ g ; and finally, ru = rtu .

Next, ru is self-adjoint for all u ∈ [g, g]⊥ , so, for all w ∈ g ,

(w, uu) = (w, ru(u)) = (ru(w), u) = (wu, u) = 0.

The last equality follows from (PR2). Thus uu = 0.

Now we give our classification of Riemann–Lie algebras, which agrees with
Theorem 3.1 in [3].

Theorem 4.7. Let (g, (·, ·)) be a Riemann–Lie algebra. Then g = Zr(g) +̇ [g, g],
where Zr(g) is an abelian subalgebra and [g, g] is an abelian ideal.

Conversely, let V be a real finite-dimensional vector space with an inner
product (·, ·) and, as usual, let

so(V ) = {A ∈ EndV | (Au, v) + (u,Av) = 0}.

Choose an arbitrary torus S ⊂ so(V ) and set g = S +̇V . Extend the inner product
on V to an inner product on g such that S ⊥ V . Then g is a Riemann–Lie algebra
and every Riemann–Lie algebra may be obtained in this way.
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Proof. The last assertion is clear, so we prove only the first. By Lemmas 4.5
and 4.6, we need to prove that

[g, g]⊥ = Zr(g).

Now the bilinear form (·, ·) is positive definite and ru is diagonalizable. Let
λ ∈ R be an eigenvalue of ru and v ∈ g be an associated eigenvector. Then

λ2(v, v) = λ(vu, v) = λ([v, u], v) = ([vu, u], v) = −([v, uu], v) = 0.

Therefore λ = 0. Hence ru = 0 since the only eigenvalue of ru is zero.

By the main theorem, g is solvable, hence [g, g] is nilpotent. Then [g, g] is
abelian by Corollary 4.4.

Example 4.8. Let g be a 3-dimensional nonabelian Riemann–Lie algebra.
Then dim[g, g] = 2. There exists an orthonormal basis {s, x, y} of g and a ∈ R
such that s ∈ Zr(g) and x, y ∈ [g, g] , and [s, x] = sx = ay and [s, y] = sy = −ax .

Define 〈u, v〉 = a2(u, v), and s′ = a−1s , x′ = a−1x , y′ = a−1y . Then
{s′, x′, y′} is an orthonormal basis of g ; furthermore, [s′, x′] = s′x′ = y′ and
[s′, y′] = s′y′ = −x′ . In other words, there is a unique inner product on the Lie
algebra g (up to a positive constant) such that g is a Riemann–Lie algebra.

In the rest of this paper, we will classify linear pseudo-Riemannian Poisson
manifolds of dimension at most 3. Actually, it is enough to give the classification of
pseudo-Riemannian Lie algebras of dimension 3 or less. Boucetta claimed the same
classification in [2, Theorem 1.6] without proof. Furthermore, Theorem 1.6 [2] is
not correct and Boucetta did not describe the product and bilinear form for g to
be a pseudo-Riemannian Lie algebra. Using our definition and methods, we will
give the classification explicitly in the following.

Theorem 4.9. The unique 2-dimensional pseudo-Riemannian Lie algebra is the
2-dimensional abelian Lie algebra.

There are three 3-dimensional nonabelian pseudo-Riemannian Lie algebras:

(a) The Heisenberg Lie algebra, given by [x, y] = z and [x, z] = [y, z] = 0. The
bilinear form and the product may be given as follows:

• (x, z) = 1 and (y, y) 6= 0; other undetermined expressions are zero;

• xx = −(y, y)−1y and xy = z ; other undetermined products are zero.

Furthermore, g cannot be a Riemann–Lie algebra.

(b) The Lie algebras g± given by [x, y] = z , [x, z] = ±y and [y, z] = 0. The
bilinear form and the product may be given as follows:

• (x, x) = t, (y, y) = 1 and (z, z) = ∓1, where t 6= 0; other undetermined
expressions are zero;

• xy = [x, y] and xz = [x, z]; other undetermined products are zero.
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Furthermore, g− is a Riemann–Lie algebra when t is chosen.

Remark 4.10. As we may see from the above theorem, there are essentially
three nonabelian pseudo-Riemannian Lie algebras of dimension 3, and g−1 is the
only nonabelian Riemann–Lie algebra. This may be contrasted with the incorrect
statement in Theorem 1.6 of [2].

Proof. Assume that g is the nonabelian Lie algebra of dimension 2. We need
only show that g cannot be a pseudo-Riemannian Lie algebra.

Choose a basis {x, y} for g such that [x, y] = y . If (y, y) = 0, then
(x, y) 6= 0. Replacing x by x− [2(x, y)]−1(x, x)y , we may assume that (x, x) = 0.
Now (xy, y) = 0, so xy ∈ span{y} . Furthermore, (xx, x) = (yx, x) = 0, which
implies that xx, yx ∈ span{x} . Thus [x, y] = y implies that xy = y , yx = 0,
and [xx, y] + [x, yx] = 0 implies that xx = 0. So (xy, x) + (y, xx) = 0 implies
that (y, x) = 0, a contradiction. If (y, y) 6= 0, a similar argument also leads to a
contradiction.

Now we assume that g is a nonabelian 3-dimensional Lie algebra. Then
dimC(g) ≤ 1. There are two cases to consider.

Case 1: dimC(g) = 1. In this case, g is a Heisenberg Lie algebra or a direct
sum of C(g) and the two dimensional nonabelian Lie algebra.

Assume that {z} is a basis of C(g). One may easily see that (z, z) = 0.
Otherwise, g = C(g) +̇ C(g)⊥ and C(g)⊥ is a 2-dimensional pseudo-Riemannian
Lie algebra, hence g is abelian, which is a contradiction. Therefore, C(g) ⊂ C(g)⊥ .
Assume that {y, z} is a basis of C(g)⊥ . Then (y, y) 6= 0. Choose x ∈ g such
that (x, x) = (x, y) = 0 and (x, z) = 1. Then zx = xz = 0 since (zx, x) = 0.
Furthermore, zy = yz = 0 since (zy, x) = −(y, zx) = 0. So

gg ⊂ C(g)⊥ = span{y, z}.

Since (xx, x) = (xx, z) = 0, we have xx ∈ span{y} . Thus [x, yx] =
−[xx, y] = 0. Now (yx, x) = 0, so yx = 0, for otherwise it would follow that
x ∈ C(g). Therefore [x, y] = xy ∈ span{z} since (xy, y) = 0. It means that g is
the Heisenberg Lie algebra. We may assume that [x, y] = z . Similarly, we may
show that yy = 0 and xx = −(y, y)−1y .

Case 2: dimC(g) = 0. Since g is solvable, there exists a basis {x, y, z} of g
such that

[x, y] = ay + bz, [x, z] = cy + dz, [y, z] = 0,

where ad− bc 6= 0.

First we prove that the bilinear form restricted to [g, g] = span{y, z} is
nondegenerate. If not, we may assume that z ∈ span{y, z}⊥ . So (y, y) 6= 0.
Choose x such that (x, y) = 0, (x, x) = 0 and (x, z) = 1. Then we claim that
gg = [g, g] . To see this, one may easily deduce from (PR2) that yz, zy, yy, zz ∈
span{y, z}⊥ = span{z} . Furthermore, xz ∈ span{y, z} and zx ∈ span{y, z} since
(xz, z) = 0, so

0 = [xz, y] = −[x, yz] = −[x, zy] = [xy, z],

which implies that yz = 0 and xy ∈ span{y, z} . Thus (zx, y) = −(x, zy) = 0 and
〈zx, x〉 = 0 imply that zx = 0 since zx ∈ span{y, z} . Finally, [xx, z] = −[x, zx] =
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0, so xx ∈ span{y, z} . Hence we see that gg ⊂ [g, g] , therefore gg = [g, g] . So
Zr(g) = (gg)⊥ = [g, g]⊥ = span{z} . So [x, z] = xz = 0, a contradiction.

Now that the restriction to span{y, z} of the bilinear form is nondegenerate,
we may choose x, y, z orthogonal. Since x ∈ [g, g]⊥ , we have rtx = rx and xx = 0.
For all u ∈ g , (ux, x) = 0, thus ux ∈ span{y, z} . By [ux, x] = −[u, xx] = 0,
we have ux ∈ Ker adx ∩ span{y, z} = {0} , that is, x ∈ Zr(g). Then gg = [g, g] ,
which is abelian as a 2-dimensional pseudo-Riemannian Lie algebra. Furthermore,
since (xy, y) = 0, we have [x, y] = xy ∈ span{z} , thus a = 0. Similarly,
d = 0. Replacing x by b−1x , we see the Lie algebra structure of g is given
by [x, y] = z , [x, z] = cy and [y, z] = 0. Since (xz, y) = −(z, xy), one has
c(y, y) = −(z, z). Replacing the bilinear form by a suitable multiple, we may
assume that (y, y) = 1, then (z, z) = −c . Replacing x by |c|−1/2x and y by
|c|1/2y , we may take c = ±1.
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