On Local Structure of Pseudo-Riemannian Poisson Manifolds and Pseudo-Riemannian Lie Algebras

Zhiqi Chen and Fuhai Zhu

Communicated by M. Cowling

Abstract. Pseudo-Riemannian Poisson manifolds and pseudo-Riemannian Lie algebras were introduced by M. Boucetta. In this paper, we prove that all pseudo-Riemannian Lie algebras are solvable. Based on our main result and some properties of pseudo-Riemannian Lie algebras, we classify Riemann–Lie algebras of arbitrary dimension and pseudo-Riemannian Lie algebras of dimension at most 3.

Mathematics Subject Classification 2000: 53D17, 22E50, 17D25.

Key Words and Phrases: Levi decomposition, pseudo-Riemannian Poisson manifold, pseudo-Riemannian Lie algebra.

1. Introduction

M. Boucetta introduced the notion of Poisson manifold with compatible pseudometric in [1] and a new class of Lie algebras called pseudo-Riemannian Lie algebras in [2]. He proved that a linear Poisson structure on the dual of a Lie algebra has a compatible pseudo-metric if and only if the Lie algebra is a pseudo-Riemannian Lie algebra, and that the Lie algebra obtained by linearizing at a point in a Poisson manifold with compatible pseudo-metric is a pseudo-Riemannian Lie algebra. See [2] for more details of pseudo-Riemannian Poisson manifolds and their relationship with pseudo-Riemannian Lie algebras. Furthermore in [3], Boucetta established five equivalent conditions for \mathfrak{g} to be a Riemann-Lie algebra. In this paper we prove that every pseudo-Riemannian Lie algebra is solvable and give a simple proof of Boucetta's result.

The paper is organized as follows. In Section 2, we collect some basic definitions and properties of pseudo-Riemannian Poisson manifolds and pseudo-Riemannian Lie algebras, and then translate it into our language, which is easier. In Section 3, we prove that no semisimple Lie algebra admits a pseudo-Riemannian Lie algebra structure; via the Levi decomposition, this implies our main result (Theorem 3.1). Boucetta classified Riemann-Lie algebras in [3], and in [2] claimed without proof to classify pseudo-Riemannian Lie algebras of dimension 2 or 3. Theorem 1.6 in [2], which classifies 3-dimensional pseudo-Riemannian Lie algebras

and Riemann-Lie algebras, is not quite correct. In the last section, using our method, we give an explicit classification of Riemann-Lie algebras (Theorem 4.7) and pseudo-Riemannian Lie algebras of dimensions 2 and 3 (Theorem 4.9).

2. Preliminaries

Let P be a Poisson manifold and Π be the Poisson bivector field. The Poisson bracket on P is given by

$$\{f_1, f_2\} = \Pi(df_1, df_2) \quad \forall f_1, f_2 \in C^{\infty}(P).$$

We also have a bundle map $\sharp: T^*P \to TP$ defined by

$$\beta(\sharp(\alpha)) = \Pi(\alpha, \beta) \quad \forall \alpha, \beta \in T^* P.$$

The Poisson tensor induces a Lie bracket on the space of differential 1-forms $\Omega^1(P)$:

$$[\alpha,\beta] = L_{\sharp(\alpha)}\beta - L_{\sharp(\beta)}\alpha - d(\Pi(\alpha,\beta)).$$

Assume that there exists a pseudo-metric of signature (p,q) on the cotangent bundle T^*P , that is, a smooth symmetric contravariant 2-form $\langle \cdot, \cdot \rangle$ on Psuch that $\langle \cdot, \cdot \rangle|_x$ is nondegenerate on $T^*_x P$ with signature (p,q), at each point $x \in P$. According to [4], there is a contravariant connection D, called the Levi-Civita contravariant connection associated with the triple $(P, \Pi, \langle \cdot, \cdot \rangle)$, given by

$$2\langle D_{\alpha}\beta,\gamma\rangle = \sharp(\alpha)\langle\beta,\gamma\rangle + \sharp(\beta)\langle\alpha,\gamma\rangle - \sharp(\gamma)\langle\alpha,\beta\rangle + \langle [\alpha,\beta],\gamma\rangle + \langle [\gamma,\alpha],\beta\rangle + \langle [\gamma,\beta],\alpha\rangle,$$

where $\alpha, \beta, \gamma \in \Omega^1(P)$. Further, D satisfies the following conditions:

$$D_{\alpha}\beta - D_{\beta}\alpha = [\alpha, \beta];$$

$$\sharp(\alpha)\langle\beta, \alpha\rangle = \langle D_{\alpha}\beta, \gamma\rangle + \langle\beta, D_{\alpha}\gamma\rangle.$$

Definition 2.1 ([2], Definition 1.1). The triple $(P, \Pi, \langle \cdot, \cdot \rangle)$ is called a pseudo-Riemannian Poisson manifold if, for all $\alpha, \beta, \gamma \in \Omega^1(P)$,

$$D\Pi(\alpha,\beta,\gamma) = \sharp(\alpha)\Pi(\beta,\gamma) - \Pi(D_{\alpha}\beta,\gamma) - \Pi(\beta,D_{\alpha}\gamma) = 0.$$

When $\langle \cdot, \cdot \rangle$ is positive definite, the triple is called a Riemann–Poisson manifold.

For all $x \in P$, taking the linear approximation to the Poisson structure [5], we get a Lie algebra structure on Ker \sharp_x . In order to study the structure of Ker \sharp_x , we need the following definition, due to [2].

Let \mathfrak{g} be a real Lie algebra and (\cdot, \cdot) be a nondegenerate symmetric bilinear form on \mathfrak{g} . Define a bilinear map $(u, v) \mapsto uv$ on \mathfrak{g} by

$$2(uv, w) = ([u, v], w) + ([w, u], v) + ([w, v], u) \quad \forall u, v, w \in \mathfrak{g}.$$
 (2.1)

This map is called the infinitesimal Levi-Civita connection associated with (\cdot, \cdot) . Indeed, if G is a connected Lie group with Lie algebra \mathfrak{g} , then (\cdot, \cdot) defines a left invariant pseudo-Riemannian metric on G. The Levi-Civita connection ∇ associated with this metric is given by

$$\nabla_{u^l} v^l = (uv)^l \quad \forall u, v \in \mathfrak{g},$$

where u^l denotes the left invariant vector field associated with u. One may easily see that the equality (2.1) is equivalent to the following identities:

$$uv - vu = [u, v]; \tag{PR1}$$

$$(uv, w) + (v, uw) = 0.$$
 (PR2)

Definition 2.2. The pair $(\mathfrak{g}, (\cdot, \cdot))$, or \mathfrak{g} for short, is called a (real) pseudo-Riemannian Lie algebra if it satisfies (PR1), (PR2) and

$$[uv, w] + [u, wv] = 0 \quad \forall u, v, w \in \mathfrak{g}.$$
(PR3)

If the bilinear form (\cdot, \cdot) is positive definite, then \mathfrak{g} is called a Riemann–Lie algebra.

The following theorems of M. Boucetta describe the relationship between pseudo-Riemannian Poisson manifolds and pseudo-Riemannian Lie algebras.

Theorem 2.3 ([2], Theorem 1.1). Let $(P, \Pi, \langle \cdot, \cdot \rangle)$ be a pseudo-Riemannian Poisson manifold. Then the Lie algebra Ker \sharp_x obtained by linearizing the Poisson structure at x is a pseudo-Riemannian Lie algebra, for every point $x \in P$ such that the restriction of $\langle \cdot, \cdot \rangle$ to Ker \sharp_x is nondegenerate.

Theorem 2.4 ([2], Theorem 1.2). Let \mathfrak{g} be a real Lie algebra. The dual \mathfrak{g}^* endowed with its linear Poisson structure Π has a pseudo-metric $\langle \cdot, \cdot \rangle$ for which the triple $(\mathfrak{g}^*, \Pi, \langle \cdot, \cdot \rangle)$ is a pseudo-Riemannian Poisson manifold if and only if \mathfrak{g} is a pseudo-Riemannian Lie algebra.

By (PR1), we may write condition (PR3) in another form:

$$(uv)w - w(uv) + u(wv) - (wv)u = 0.$$
 (PR3')

So we may redefine pseudo-Riemannian Lie algebras, as follows.

Definition 2.5. An algebra \mathfrak{g} with a nondegenerate symmetric bilinear form (\cdot, \cdot) is called a pseudo-Riemannian Lie algebra if the conditions (PR2) and (PR3') are satisfied for all $u, v, w \in \mathfrak{g}$.

With this definition, [u, v] = uv - vu defines a Lie algebra structure on \mathfrak{g} , since (PR3') implies the Jacobi identity, as one may easily see. Thus \mathfrak{g} is a Lie algebra. So the two definitions are equivalent. Given $u \in \mathfrak{g}$, denote by l_u and r_u the left and right multiplications by u. Then (PR2) and (PR3) may be written as

$$(l_u v, w) + (v, l_u w) = 0$$
 and $[r_v u, w] + [u, r_v w] = 0.$

Remark 2.6. If \mathfrak{g} is an abelian Lie algebra, then the product is trivial, that is, xy = 0 for all $x, y \in \mathfrak{g}$.

3. Main results

In this section, we will prove the main theorem of this paper.

Theorem 3.1. Every Lie algebra over a field of characteristic 0 with a product satisfying (PR1) and (PR3) is solvable. Consequently every pseudo-Riemannian Lie algebra $(\mathfrak{g}, (\cdot, \cdot))$ is solvable.

The following results are immediate consequences of the main theorem.

Corollary 3.2. Let $(P, \Pi, \langle \cdot, \cdot \rangle)$ be a pseudo-Riemannian Poisson manifold. Then the Lie algebra Ker \sharp_x is solvable, for every point $x \in P$ such that the restriction of $\langle \cdot, \cdot \rangle$ to Ker \sharp_x is nondegenerate.

Corollary 3.3. Let \mathfrak{g} be a real Lie algebra. If the dual \mathfrak{g}^* endowed with its linear Poisson structure Π has a pseudo-metric $\langle \cdot, \cdot \rangle$ for which the triple $(\mathfrak{g}^*, \Pi, \langle \cdot, \cdot \rangle)$ is a pseudo-Riemannian Poisson manifold, then \mathfrak{g} is solvable.

The following lemma is a decisive step towards our main result.

Lemma 3.4. Let \mathfrak{g} be a Lie algebra over an algebraically closed field of characteristic 0 with a product satisfying (PR1) and (PR3). Then \mathfrak{g} is not semi-simple.

Proof. By contradiction, assume that \mathfrak{g} is semi-simple and \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} . Let $\Delta(\mathfrak{g}, \mathfrak{h})$ be the root system of \mathfrak{g} with respect to \mathfrak{h} . Choose a system of positive roots, to obtain the root subspace decomposition of \mathfrak{g} :

$$\mathfrak{g} = \mathfrak{h} + \sum_{lpha > 0} \mathfrak{g}_{lpha} + \sum_{lpha < 0} \mathfrak{g}_{lpha}.$$

Let $\mathfrak{g}^+ = \sum_{\alpha>0} \mathfrak{g}_{\alpha}$ and $\mathfrak{g}^- = \sum_{\alpha<0} \mathfrak{g}_{\alpha}$. Since $\mathfrak{g} \supseteq \mathfrak{g}\mathfrak{g} \supseteq [\mathfrak{g},\mathfrak{g}]$, it follows that $\mathfrak{g} = \mathfrak{g}\mathfrak{g} = [\mathfrak{g},\mathfrak{g}]$. Let $\{X_{\alpha} \in \mathfrak{g}_{\alpha} \mid \alpha \in \Delta(\mathfrak{g},\mathfrak{h})\}$ be a Chevalley basis for \mathfrak{g} with respect to \mathfrak{h} . We will prove the lemma after seven steps.

Step 1: $\mathfrak{h}\mathfrak{h} \subset \mathfrak{h}$. For arbitrary $h_1, h_2 \in \mathfrak{h}$, suppose that $h_1h_2 = h_0 + X^+ + X^-$, where $h_0 \in \mathfrak{h}, X^+ \in \mathfrak{g}^+$ and $X^- \in \mathfrak{g}^-$. If $X^+ \neq 0$, then there exists $Y^- \in \mathfrak{g}^$ such that the projection of $[X^+, Y^-]$ to \mathfrak{h} is nonzero. By (PR3),

$$[h_1h_2, Y^-] = -[h_1, Y^-h_2].$$

But the projection to \mathfrak{h} of the left hand side is nonzero while that of the right hand side is zero since $[\mathfrak{h}, \mathfrak{g}^-] \subset \mathfrak{g}^-$, $[\mathfrak{g}^-, \mathfrak{g}^-] \subset \mathfrak{g}^-$, $[\mathfrak{h}, \mathfrak{g}^+] \subset \mathfrak{g}^+$ and $[\mathfrak{h}, \mathfrak{h}] = \{0\}$. This is a contradiction, so $X^+ = 0$. Similarly, $X^- = 0$. Thus $\mathfrak{h}\mathfrak{h} \subset \mathfrak{h}$. Step 2: $\mathfrak{g}_{\alpha}\mathfrak{h} \subset \mathfrak{g}_{\alpha}$ and $\mathfrak{h}\mathfrak{g}_{\alpha} \subset \mathfrak{g}_{\alpha}$. For all $h_1, h_2 \in \mathfrak{h}$,

$$[X_{\alpha}h_1, h_2] + [X_{\alpha}, h_2h_1] = 0.$$

Now $\mathfrak{h}\mathfrak{h} \subset \mathfrak{h}$, so $[X_{\alpha}, h_2h_1] \in \mathfrak{g}_{\alpha}$, which implies that $X_{\alpha}h_1 \in \mathfrak{g}_{\alpha} + \mathfrak{h}$. Suppose that $X_{\alpha}h_1 = cX_{\alpha} + h_0$, where $c \in \mathbb{C}$ and $h_0 \in \mathfrak{h}$. If $h_0 \neq 0$, then there exists a root β such that $\beta(h_0) \neq 0$. We may assume that $\beta \neq \alpha$ since if $\alpha(h_0) \neq 0$, we may choose $\beta = -\alpha$. Then

$$[X_{\alpha}h_1, X_{\beta}] = [cX_{\alpha} + h_0, X_{\beta}] = cN_{\alpha,\beta}X_{\alpha+\beta} + \beta(h_0)X_{\beta},$$

where $N_{\alpha,\beta}$ are the Chevalley coefficients. Similarly,

$$[X_{\alpha}, X_{\beta}h_1] = [X_{\alpha}, c'X_{\beta} + h'_0] = c'N_{\alpha,\beta}X_{\alpha+\beta} - \alpha(h'_0)X_{\alpha}.$$

Then $[X_{\alpha}h_1, X_{\beta}] + [X_{\alpha}, X_{\beta}h_1] \neq 0$, which contradicts the identity (PR3). Thus $h_0 = 0$, that is, $\mathfrak{g}_{\alpha}\mathfrak{h} \subset \mathfrak{g}_{\alpha}$. By (PR1), we deduce that $\mathfrak{h}\mathfrak{g}_{\alpha} \subset \mathfrak{g}_{\alpha}$. Step 3: $X_{\alpha}h = f(h)X_{\alpha}$ and $X_{-\alpha}h = -f(h)X_{-\alpha}$ for some $f \in \mathfrak{h}^*$. From the above discussion, we may assume that

$$X_{\alpha}h = f(h)X_{\alpha}$$
 and $X_{-\alpha}h = g(h)X_{-\alpha}$

for some $f, g \in \mathfrak{h}^*$, since dim $\mathfrak{g}_{\alpha} = 1$. By (PR3),

$$[X_{\alpha}h, X_{-\alpha}] + [X_{\alpha}, X_{-\alpha}h] = 0.$$

It follows that

$$[f(h)X_{\alpha}, X_{-\alpha}] + [X_{\alpha}, g(h)X_{-\alpha}] = 0.$$

Then $(f(h) + g(h))[X_{\alpha}, X_{-\alpha}] = 0$. Therefore, f(h) + g(h) = 0. Step 4: $\mathfrak{g}_{\alpha}\mathfrak{h} = \{0\}$. For every root α , there exists $h_1 \in \mathfrak{h}$ such that $\alpha(h_1) \neq 0$. For all $h_2 \in \mathfrak{h}$,

$$[h_1h_2, X_{\alpha}] + [h_1, X_{\alpha}h_2] = 0$$
 and $[h_1h_2, X_{-\alpha}] + [h_1, X_{-\alpha}h_2] = 0.$

Since $\mathfrak{h}\mathfrak{h} \subset \mathfrak{h}$, $X_{\alpha}h = f(h)X_{\alpha}$ and $X_{-\alpha}h = -f(h)X_{\alpha}$, we see that

$$\alpha(h_1h_2)X_{\alpha} + f(h_2)\alpha(h_1)X_{\alpha} = 0;$$

(-\alpha)(h_1h_2)X_{-\alpha} + (-f)(h_2)(-\alpha)(h_1)X_{-\alpha} = 0

Thus

$$\alpha(h_1h_2) + f(h_2)\alpha(h_1) = 0$$
 and $(-\alpha)(h_1h_2) + f(h_2)\alpha(h_1) = 0.$

Therefore, $f(h_2) = \alpha(h_1h_2) = 0$. So $X_{\alpha}h_2 = f(h_2)X_{\alpha} = 0$. Since h_2 is arbitrary, $X_{\alpha}\mathfrak{h} = 0$, that is, $\mathfrak{g}_{\alpha}\mathfrak{h} = 0$.

Step 5: $\mathfrak{h}\mathfrak{h} = \{0\}$. Suppose that $h_1h_2 \neq 0$ for some $h_1, h_2 \in \mathfrak{h}$. Then there is a root α such that $\alpha(h_1h_2) \neq 0$. Thus

$$[h_1h_2, X_\alpha] = \alpha(h_1h_2)X_\alpha \neq 0.$$

By (PR3) and the fact that $\mathfrak{g}_{\alpha}\mathfrak{h} = \{0\},\$

$$[h_1h_2, X_{\alpha}] = -[h_1, X_{\alpha}h_2] = 0.$$

This is a contradiction, so $h_1h_2 = 0$, that is, $\mathfrak{h}\mathfrak{h} = \{0\}$. Step 6: $\mathfrak{g}_{\alpha}\mathfrak{g}_{\beta} \subset \mathfrak{g}_{\alpha+\beta}$, where $\mathfrak{g}_0 = \mathfrak{h}$. For all $h \in \mathfrak{h}$,

$$[h, X_{\alpha}X_{\beta}] + [hX_{\beta}, X_{\alpha}] = 0.$$

But $[hX_{\beta}, X_{\alpha}] \in \mathfrak{g}_{\alpha+\beta}$ since $hX_{\beta} \in \mathfrak{g}_{\beta}$. Thus $[h, X_{\alpha}X_{\beta}] \in \mathfrak{g}_{\alpha+\beta}$ for all $h \in \mathfrak{h}$. Therefore

$$X_{\alpha}X_{\beta} \in \mathfrak{g}_{\alpha+\beta} + \mathfrak{h}.$$

Assume that $X_{\alpha}X_{\beta} = c_{\alpha,\beta}X_{\alpha+\beta} + h_1$, where $c_{\alpha,\beta} \in \mathbb{C}$ and $h_1 \in \mathfrak{h}$. If $\alpha + \beta = 0$, we are done since $\mathfrak{g}_{\alpha+\beta} = \mathfrak{g}_0 = \mathfrak{h}$. So in the following, we assume that $\alpha + \beta \neq 0$.

If $h_1 \neq 0$, then there exists a root γ such that $\gamma(h_1) \neq 0$. We may assume that $\gamma \neq \alpha$, since if $\alpha(h_1) \neq 0$, we may choose $\gamma = -\alpha$. Then

$$[X_{\gamma}, X_{\alpha}X_{\beta}] = [X_{\gamma}, c_{\alpha,\beta}X_{\alpha+\beta} + h_1] = c_{\alpha,\beta}[X_{\gamma}, X_{\alpha+\beta}] - \gamma(h_1)X_{\gamma}.$$

Suppose that $X_{\gamma}X_{\beta} = c_{\gamma,\beta}X_{\gamma+\beta} + h_2$. Then

$$[X_{\gamma}X_{\beta}, X_{\alpha}] = [c_{\gamma,\beta}X_{\gamma+\beta} + h_2, X_{\alpha}] = c_{\gamma,\beta}[X_{\gamma+\beta}, X_{\alpha}] + \alpha(h_2)X_{\alpha}$$

It follows that $[X_{\gamma}, X_{\alpha}X_{\beta}] + [X_{\gamma}X_{\beta}, X_{\alpha}] \neq 0$ since $\alpha + \beta \neq 0$, $\alpha \neq \gamma$ and $\gamma(h_1) \neq 0$. This is a contradiction, so $h_1 = 0$. Hence $X_{\alpha}X_{\beta} \in \mathfrak{g}_{\alpha+\beta}$.

Step 7: $\mathfrak{hg}_{\alpha} = \{0\}$. Suppose that $hX_{\alpha} \neq 0$, for some $h \in \mathfrak{h}$. Then $hX_{\alpha} = f(h)X_{\alpha}$ and $f(h) \neq 0$. By (PR3),

$$[h, X_{-\alpha}X_{\alpha}] + [hX_{\alpha}, X_{-\alpha}] = 0.$$

Since $X_{-\alpha}X_{\alpha} \in \mathfrak{g}_0 = \mathfrak{h}$,

$$[h, X_{-\alpha}X_{\alpha}] + [hX_{\alpha}, X_{-\alpha}] = [hX_{\alpha}, X_{-\alpha}] = f(h)[X_{\alpha}, X_{-\alpha}] \neq 0.$$

This is a contradiction, so $\mathfrak{hg}_{\alpha} = \{0\}.$

Finally, we have reached a contradiction, since $[\mathfrak{h}, \mathfrak{g}_{\alpha}] = \{0\}$ as $\mathfrak{h}\mathfrak{g}_{\alpha} = \mathfrak{g}_{\alpha}\mathfrak{h} = \{0\}$. Thus \mathfrak{g} is not a semi-simple Lie algebra.

Now we come to the proof of our main result.

Proof of Theorem 3.1. First, extend the base field of \mathfrak{g} to its algebraic closure if necessary. Let $\mathfrak{g} = \mathfrak{s} + \mathfrak{r}$ be a Levi decomposition of \mathfrak{g} . Then

 $[s_1s_2, s_3] + [s_1, s_3s_2] = 0$

for all $s_1, s_2, s_3 \in \mathfrak{s}$. Let $s_i s_j = s_{i,j} + r_{i,j}$, where $s_{i,j} \in \mathfrak{s}$ and $r_{i,j} \in \mathfrak{r}$. Then

$$[s_{1,2} + r_{1,2}, s_3] + [s_1, s_{3,2} + r_{3,2}] = 0,$$

that is,

$$([s_{1,2}, s_3] + [s_1, s_{3,2}]) + ([r_{1,2}, s_3] + [s_1, r_{3,2}]) = 0.$$

Thus

$$[s_{1,2}, s_3] + [s_1, s_{3,2}] = [r_{1,2}, s_3] + [s_1, r_{3,2}] = 0,$$

since \mathfrak{s} is a subalgebra and \mathfrak{r} is an ideal of \mathfrak{g} . Define a product $\circ : \mathfrak{s} \times \mathfrak{s} \to \mathfrak{s}$ by

$$s_1 \circ s_2 = P_s(s_1 s_2),$$

where P_s denotes the projection from \mathfrak{g} to \mathfrak{s} with respect to the Levi decomposition. Then the product \circ is bilinear.

Further, for all $s_1, s_2 \in \mathfrak{s}$,

$$[s_1, s_2] = s_1 s_2 - s_2 s_1 = s_{1,2} + r_{1,2} - s_{2,1} - r_{2,1} = (s_{1,2} - s_{2,1}) + (r_{1,2} - r_{2,1}) \in \mathfrak{s}.$$

Hence $r_{1,2} - r_{2,1} = 0$ and

$$s_1 \circ s_2 - s_2 \circ s_1 = P_s(s_1 s_2) - P_s(s_2 s_1) = s_{1,2} - s_{2,1} = [s_1, s_2].$$

Moreover, for all $s_1, s_2, s_3 \in \mathfrak{s}$,

$$[s_1 \circ s_2, s_3] + [s_1, s_3 \circ s_2] = [P_s(s_1 s_2), s_3] + [s_1, P_s(s_3 s_2)] = [s_{1,2}, s_3] + [s_1, s_{3,2}] = 0.$$

Thus, (\mathfrak{s}, \circ) satisfies the conditions of Lemma 3.4, which implies that \mathfrak{s} is not semi-simple. Then \mathfrak{s} must be 0, and \mathfrak{g} is solvable.

4. A new proof of Boucetta's results

In this section, we will use our results to classify Riemann–Lie algebras and low dimensional linear pseudo-Riemannian Poisson manifolds. Boucetta [2, 3] proved or claimed similar results. However, our proof is much simpler. For example, Lemma 3.5 in [3] is a trivial consequence of our main theorem.

First, we collect some basic properties of pseudo-Riemannian Lie algebras that will be used frequently. In this section, an ideal of a pseudo-Riemannian Lie algebra \mathfrak{g} means a subspace of \mathfrak{g} that is invariant under left and right multiplications in \mathfrak{g} ; hence an ideal is automatically a Lie ideal.

To state the next lemmas, let $C(\mathfrak{g})$ and $C(\mathfrak{g})^{\perp}$ be the center of \mathfrak{g} and its orthogonal complement:

$$C(\mathfrak{g}) = \{ a \in \mathfrak{g} \mid ax = xa \ \forall x \in \mathfrak{g} \}$$
$$C(\mathfrak{g})^{\perp} = \{ u \in \mathfrak{g} \mid (u, C(\mathfrak{g})) = \{0\} \}.$$

Lemma 4.1. The subspace $C(\mathfrak{g})$ is an ideal of \mathfrak{g} , and xy = 0 for all $x, y \in C(\mathfrak{g})$.

Proof. By (PR3), for all $x \in C(\mathfrak{g})$ and $y, z \in \mathfrak{g}$,

$$[xy, z] + [x, zy] = [xy, z] = 0.$$

It follows that $xy = yx \in C(\mathfrak{g})$ for all $x \in \mathfrak{g}$.

For all $x, y \in C(\mathfrak{g})$ and $z \in \mathfrak{g}$,

$$(xy,z) = -(y,xz) = -(y,zx) = (zy,x) = (yz,x) = -(z,yx) = -(xy,z).$$

It follows that (xy, z) = 0 for all $z \in \mathfrak{g}$, and thus xy = 0.

Remark 4.2. This lemma is nontrivial, since the center is not necessarily an ideal for general algebras (for instance, associative algebras).

Lemma 4.3. The subspace $C(\mathfrak{g})^{\perp}$ is an ideal of \mathfrak{g} . If the restriction of the bilinear form to $C(\mathfrak{g})$ is nondegenerate (say, if \mathfrak{g} is a Riemann-Lie algebra), then $[\mathfrak{g},\mathfrak{g}] \subset C(\mathfrak{g})^{\perp}$ and

$$\mathfrak{g} = C(\mathfrak{g}) \oplus C(\mathfrak{g})^{\perp}.$$

Proof. For all $x \in C(\mathfrak{g}), y \in C(\mathfrak{g})^{\perp}$, and $z \in \mathfrak{g}$,

$$(x, yz) = -(yx, z) = -(xy, z) = (y, xz) = 0,$$

 $(x, zy) = -(zx, y) = 0.$

So $yz, zy \in C(\mathfrak{g})^{\perp}$ since $C(\mathfrak{g})$ is an ideal.

Consequently, we have the following result.

Corollary 4.4. If \mathfrak{g} is a nilpotent Riemann-Lie algebra, then \mathfrak{g} is abelian.

Proof. By Lemma 4.3, $\mathfrak{g} = C(\mathfrak{g}) \oplus C(\mathfrak{g})^{\perp}$. Then $C(\mathfrak{g})^{\perp}$ is also a nilpotent Riemann-Lie algebra. The center of $C(\mathfrak{g})^{\perp}$ is contained in the center of \mathfrak{g} , so $C(\mathfrak{g})^{\perp}$ must be trivial.

Henceforth, span $\{S\}$ denotes the subspace spanned by S. Further, let

$$\mathfrak{gg} = \operatorname{span}\{xy \mid x, y \in \mathfrak{g}\}$$

and

$$Z_r(\mathfrak{g}) = \{ u \in \mathfrak{g} \mid r_u = 0 \}.$$

Lemma 4.5. The subspace \mathfrak{gg} is an ideal of \mathfrak{g} and $(\mathfrak{gg})^{\perp} = Z_r(\mathfrak{g})$.

Proof. The first assertion is trivial. For the second, observe that the following statements are equivalent: first, $x \in (\mathfrak{gg})^{\perp}$; second, (x, yz) = 0 for all $y, z \in \mathfrak{g}$; third, (yx, z) = 0 for all $y, z \in \mathfrak{g}$; fourth, yx = 0 for all $y \in \mathfrak{g}$; and finally, $x \in Z_r(\mathfrak{g})$.

It is easy to see that $[\mathfrak{g},\mathfrak{g}] \subset \mathfrak{gg}$, but, in general, $[\mathfrak{g},\mathfrak{g}] \neq \mathfrak{gg}$ and $[\mathfrak{g},\mathfrak{g}]$ is not necessarily an ideal of \mathfrak{g} although it is a Lie ideal. Define the adjoint ϕ^t of $\phi \in \operatorname{End}(\mathfrak{g})$ by

$$(\phi(v), w) = (v, \phi^t(w)) \quad \forall v, w \in \mathfrak{g},$$

and set

$$[\mathfrak{g},\mathfrak{g}]^{\perp} = \{ x \in \mathfrak{g} \mid (x, [\mathfrak{g},\mathfrak{g}]) = \{0\} \}.$$

Then the following lemma is easy.

Lemma 4.6. The following equality holds:

$$[\mathfrak{g},\mathfrak{g}]^{\perp} = \{ u \in \mathfrak{g} \mid r_u = r_u^t \}.$$

Furthermore, uu = 0 for all $u \in [\mathfrak{g}, \mathfrak{g}]^{\perp}$.

Proof. The following are equivalent: first, $u \in [\mathfrak{g}, \mathfrak{g}]^{\perp}$; second, (u, [v, w]) = 0 for all $v, w \in \mathfrak{g}$; third, (u, vw) = (u, wv) for all $v, w \in \mathfrak{g}$; fourth, (vu, w) = (v, wu) for all $v, w \in \mathfrak{g}$; and finally, $r_u = r_u^t$.

Next, r_u is self-adjoint for all $u \in [\mathfrak{g}, \mathfrak{g}]^{\perp}$, so, for all $w \in \mathfrak{g}$,

$$(w, uu) = (w, r_u(u)) = (r_u(w), u) = (wu, u) = 0.$$

The last equality follows from (PR2). Thus uu = 0.

Now we give our classification of Riemann–Lie algebras, which agrees with Theorem 3.1 in [3].

Theorem 4.7. Let $(\mathfrak{g}, (\cdot, \cdot))$ be a Riemann-Lie algebra. Then $\mathfrak{g} = Z_r(\mathfrak{g}) + [\mathfrak{g}, \mathfrak{g}]$, where $Z_r(\mathfrak{g})$ is an abelian subalgebra and $[\mathfrak{g}, \mathfrak{g}]$ is an abelian ideal.

Conversely, let V be a real finite-dimensional vector space with an inner product (\cdot, \cdot) and, as usual, let

$$\mathfrak{so}(V) = \{ \mathcal{A} \in \operatorname{End} V \mid (\mathcal{A}u, v) + (u, \mathcal{A}v) = 0 \}.$$

Choose an arbitrary torus $S \subset \mathfrak{so}(V)$ and set $\mathfrak{g} = S + V$. Extend the inner product on V to an inner product on \mathfrak{g} such that $S \perp V$. Then \mathfrak{g} is a Riemann-Lie algebra and every Riemann-Lie algebra may be obtained in this way. **Proof.** The last assertion is clear, so we prove only the first. By Lemmas 4.5 and 4.6, we need to prove that

$$[\mathfrak{g},\mathfrak{g}]^{\perp}=Z_r(\mathfrak{g}).$$

Now the bilinear form (\cdot, \cdot) is positive definite and r_u is diagonalizable. Let $\lambda \in \mathbb{R}$ be an eigenvalue of r_u and $v \in \mathfrak{g}$ be an associated eigenvector. Then

$$\lambda^{2}(v,v) = \lambda(vu,v) = \lambda([v,u],v) = ([vu,u],v) = -([v,uu],v) = 0.$$

Therefore $\lambda = 0$. Hence $r_u = 0$ since the only eigenvalue of r_u is zero.

By the main theorem, \mathfrak{g} is solvable, hence $[\mathfrak{g}, \mathfrak{g}]$ is nilpotent. Then $[\mathfrak{g}, \mathfrak{g}]$ is abelian by Corollary 4.4.

Example 4.8. Let \mathfrak{g} be a 3-dimensional nonabelian Riemann-Lie algebra. Then dim $[\mathfrak{g},\mathfrak{g}] = 2$. There exists an orthonormal basis $\{s, x, y\}$ of \mathfrak{g} and $a \in \mathbb{R}$ such that $s \in \mathbb{Z}_r(\mathfrak{g})$ and $x, y \in [\mathfrak{g},\mathfrak{g}]$, and [s, x] = sx = ay and [s, y] = sy = -ax. Define $\langle u, v \rangle = a^2(u, v)$, and $s' = a^{-1}s$, $x' = a^{-1}x$, $y' = a^{-1}y$. Then

 $\{s', x', y'\}$ is an orthonormal basis of \mathfrak{g} ; furthermore, [s', x'] = s'x' = y' and [s', y'] = s'y' = -x'. In other words, there is a unique inner product on the Lie algebra \mathfrak{g} (up to a positive constant) such that \mathfrak{g} is a Riemann–Lie algebra.

In the rest of this paper, we will classify linear pseudo-Riemannian Poisson manifolds of dimension at most 3. Actually, it is enough to give the classification of pseudo-Riemannian Lie algebras of dimension 3 or less. Boucetta claimed the same classification in [2, Theorem 1.6] without proof. Furthermore, Theorem 1.6 [2] is not correct and Boucetta did not describe the product and bilinear form for \mathfrak{g} to be a pseudo-Riemannian Lie algebra. Using our definition and methods, we will give the classification explicitly in the following.

Theorem 4.9. The unique 2-dimensional pseudo-Riemannian Lie algebra is the 2-dimensional abelian Lie algebra.

There are three 3-dimensional nonabelian pseudo-Riemannian Lie algebras:

- (a) The Heisenberg Lie algebra, given by [x, y] = z and [x, z] = [y, z] = 0. The bilinear form and the product may be given as follows:
 - (x, z) = 1 and $(y, y) \neq 0$; other undetermined expressions are zero;
 - $xx = -(y, y)^{-1}y$ and xy = z; other undetermined products are zero.

Furthermore, \mathfrak{g} cannot be a Riemann-Lie algebra.

- (b) The Lie algebras \mathfrak{g}_{\pm} given by [x, y] = z, $[x, z] = \pm y$ and [y, z] = 0. The bilinear form and the product may be given as follows:
 - (x, x) = t, (y, y) = 1 and $(z, z) = \pm 1$, where $t \neq 0$; other undetermined expressions are zero;
 - xy = [x, y] and xz = [x, z]; other undetermined products are zero.

Furthermore, \mathfrak{g}_{-} is a Riemann-Lie algebra when t is chosen.

Remark 4.10. As we may see from the above theorem, there are essentially three nonabelian pseudo-Riemannian Lie algebras of dimension 3, and \mathfrak{g}_{-1} is the only nonabelian Riemann–Lie algebra. This may be contrasted with the incorrect statement in Theorem 1.6 of [2].

Proof. Assume that \mathfrak{g} is the nonabelian Lie algebra of dimension 2. We need only show that \mathfrak{g} cannot be a pseudo-Riemannian Lie algebra.

Choose a basis $\{x, y\}$ for \mathfrak{g} such that [x, y] = y. If (y, y) = 0, then $(x, y) \neq 0$. Replacing x by $x - [2(x, y)]^{-1}(x, x)y$, we may assume that (x, x) = 0. Now (xy, y) = 0, so $xy \in \operatorname{span}\{y\}$. Furthermore, (xx, x) = (yx, x) = 0, which implies that $xx, yx \in \operatorname{span}\{x\}$. Thus [x, y] = y implies that xy = y, yx = 0, and [xx, y] + [x, yx] = 0 implies that xx = 0. So (xy, x) + (y, xx) = 0 implies that (y, x) = 0, a contradiction. If $(y, y) \neq 0$, a similar argument also leads to a contradiction.

Now we assume that \mathfrak{g} is a nonabelian 3-dimensional Lie algebra. Then $\dim C(\mathfrak{g}) \leq 1$. There are two cases to consider.

Case 1: dim $C(\mathfrak{g}) = 1$. In this case, \mathfrak{g} is a Heisenberg Lie algebra or a direct sum of $C(\mathfrak{g})$ and the two dimensional nonabelian Lie algebra.

Assume that $\{z\}$ is a basis of $C(\mathfrak{g})$. One may easily see that (z, z) = 0. Otherwise, $\mathfrak{g} = C(\mathfrak{g}) + C(\mathfrak{g})^{\perp}$ and $C(\mathfrak{g})^{\perp}$ is a 2-dimensional pseudo-Riemannian Lie algebra, hence \mathfrak{g} is abelian, which is a contradiction. Therefore, $C(\mathfrak{g}) \subset C(\mathfrak{g})^{\perp}$. Assume that $\{y, z\}$ is a basis of $C(\mathfrak{g})^{\perp}$. Then $(y, y) \neq 0$. Choose $x \in \mathfrak{g}$ such that (x, x) = (x, y) = 0 and (x, z) = 1. Then zx = xz = 0 since (zx, x) = 0. Furthermore, zy = yz = 0 since (zy, x) = -(y, zx) = 0. So

$$\mathfrak{gg} \subset C(\mathfrak{g})^{\perp} = \operatorname{span}\{y, z\}.$$

Since (xx, x) = (xx, z) = 0, we have $xx \in \operatorname{span}\{y\}$. Thus [x, yx] = -[xx, y] = 0. Now (yx, x) = 0, so yx = 0, for otherwise it would follow that $x \in C(\mathfrak{g})$. Therefore $[x, y] = xy \in \operatorname{span}\{z\}$ since (xy, y) = 0. It means that \mathfrak{g} is the Heisenberg Lie algebra. We may assume that [x, y] = z. Similarly, we may show that yy = 0 and $xx = -(y, y)^{-1}y$.

Case 2: dim $C(\mathfrak{g}) = 0$. Since \mathfrak{g} is solvable, there exists a basis $\{x, y, z\}$ of \mathfrak{g} such that

$$[x, y] = ay + bz, \quad [x, z] = cy + dz, \quad [y, z] = 0,$$

where $ad - bc \neq 0$.

First we prove that the bilinear form restricted to $[\mathfrak{g},\mathfrak{g}] = \operatorname{span}\{y,z\}$ is nondegenerate. If not, we may assume that $z \in \operatorname{span}\{y,z\}^{\perp}$. So $(y,y) \neq 0$. Choose x such that (x,y) = 0, (x,x) = 0 and (x,z) = 1. Then we claim that $\mathfrak{gg} = [\mathfrak{g},\mathfrak{g}]$. To see this, one may easily deduce from (PR2) that $yz, zy, yy, zz \in \operatorname{span}\{y,z\}^{\perp} = \operatorname{span}\{z\}$. Furthermore, $xz \in \operatorname{span}\{y,z\}$ and $zx \in \operatorname{span}\{y,z\}$ since (xz,z) = 0, so

$$0 = [xz, y] = -[x, yz] = -[x, zy] = [xy, z]$$

which implies that yz = 0 and $xy \in \text{span}\{y, z\}$. Thus (zx, y) = -(x, zy) = 0 and $\langle zx, x \rangle = 0$ imply that zx = 0 since $zx \in \text{span}\{y, z\}$. Finally, [xx, z] = -[x, zx] = -[x, zx] = -[x, zx]

0, so $xx \in \operatorname{span}\{y, z\}$. Hence we see that $\mathfrak{gg} \subset [\mathfrak{g}, \mathfrak{g}]$, therefore $\mathfrak{gg} = [\mathfrak{g}, \mathfrak{g}]$. So $Z_r(\mathfrak{g}) = (\mathfrak{gg})^{\perp} = [\mathfrak{g}, \mathfrak{g}]^{\perp} = \operatorname{span}\{z\}$. So [x, z] = xz = 0, a contradiction.

Now that the restriction to span{y, z} of the bilinear form is nondegenerate, we may choose x, y, z orthogonal. Since $x \in [\mathfrak{g}, \mathfrak{g}]^{\perp}$, we have $r_x^t = r_x$ and xx = 0. For all $u \in \mathfrak{g}$, (ux, x) = 0, thus $ux \in \text{span}\{y, z\}$. By [ux, x] = -[u, xx] = 0, we have $ux \in \text{Ker} \text{ad}_x \cap \text{span}\{y, z\} = \{0\}$, that is, $x \in Z_r(\mathfrak{g})$. Then $\mathfrak{gg} = [\mathfrak{g}, \mathfrak{g}]$, which is abelian as a 2-dimensional pseudo-Riemannian Lie algebra. Furthermore, since (xy, y) = 0, we have $[x, y] = xy \in \text{span}\{z\}$, thus a = 0. Similarly, d = 0. Replacing x by $b^{-1}x$, we see the Lie algebra structure of \mathfrak{g} is given by [x, y] = z, [x, z] = cy and [y, z] = 0. Since (xz, y) = -(z, xy), one has c(y, y) = -(z, z). Replacing the bilinear form by a suitable multiple, we may assume that (y, y) = 1, then (z, z) = -c. Replacing x by $|c|^{-1/2}x$ and y by $|c|^{1/2}y$, we may take $c = \pm 1$.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 10971103 and 11001133) and the Fundamental Research Funds for the Central Universities.

References

- Boucetta, M., Compatibilité des structures pseudo-riemanniennes et des structures de Poisson, C. R. Acad. Sci. Paris, 333 (2001), 763–768.
- [2] —, Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras, Differential Geom. Appl., **20** (2004), 279–291.
- [3] —, On the Riemann-Lie algebras and Riemann-Poisson Lie groups, J. Lie Theory, 15 (2005), 183–195.
- [4] Vaisman, I., "Lectures on the Geometry of Poisson Manifolds," Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994.
- [5] Weinstein, A., The local structure of Poisson manifolds, J. Differential Geom., 18 (1983), 523–557.

Zhiqi Chen School of Mathematical Sciences and LPMC Nankai University Tianjin 300071, China chenzhiqi@nankai.edu.cn Fuhai Zhu (Corresponding author) School of Mathematical Sciences and LPMC Nankai University Tianjin 300071, China zhufuhai@nankai.edu.cn

Received February, 26, 2009 and in final form January 30, 2012