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Abstract. We study AV -modules, as in the work of Billig and collaborators, from a more
geometric perspective. We show that if the underlying sheaf is a vector bundle, then the covariant
derivative by a vector field depends almost O -linearly on the vector field. More precisely, we will
show that a certain Lie map is a differential operator. This strengthens a theorem of the author
and Rocha, in the sense that the bound on the order of a certain differential operator is improved
upon quadratically.
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1. Introduction and background

Let X be a smooth variety over k := C . We let ΘX denote the sheaf of vector
fields. This short note concerns certain sheaves which are somewhat similar to
D -modules, but are strictly more general. More precisely, we are interested in
sheaves V equipped with an action of vector fields by Lie derivatives. For η a
vector field, we write Lη for the corresponding Lie derivative. We demand that
Lη(fs) = fLη(s) + η(f)s as usual but we do not demand Lfη = fLη , which we
remark does not hold, for example for the natural action of ΘX on differential forms
or indeed for the adjoint action of ΘX on itself. The authors of [4] and [6] refer to
such objects as AV -modules (in fact the authors work only with global sections with
their action by global vector fields), and study them from a representation theoretic
point of view. We will study these objects from a more geometrically motivated
optic.
A first step in the description of these objects is the formal local classification for
finite rank objects. Even this is not trivial (as it is for D -modules for example),
because of the lack of O -linear dependence of Lη on η . We will show in this note
that we retain at least a weakened form of O -linearity. Namely, what we refer to as
the Lie map will be shown to be a differential operator. We further show that this
result globalises to any smooth variety and an AV module of finite type (as an O
module).
In order to emphasize that we think of AV -modules as sheaves equipped with a sort
of infintesimal equivariance, and in order to avoid confusion with the purely global
definition of [4], we will switch to more geometric terminology. We now refer to the
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category of AV as InfEqX and refer to its objects as infinitesimally equivariant
sheaves, or infeq sheaves for short. If the underlying sheaf is a vector bundle, we
refer to them as infeq bundles, and denote the resulting category InfEqfin

X .
We reformulate the informal definition given above. First let us recall the Atiyah
algebra associated to a sheaf V on X. For a detailed discussion of these, and related,
constructions, the reader is referred to [2]. We have Diff≤1(V ,V) , the sheaf of
differential operators from V to itself of order at most one. This is equipped with
a symbol, σ , to ΘX ⊗ EndOX

(V) . The preimage under σ of the sheaf ΘX is called
the Atiyah algebra of V , and denoted At(V) . This is naturally a Lie algebroid
with anchor given by the symbol, and is in fact the Lie algebroid of infintesimal
symmetries of the pair (X,V) , cf. [2].
Definition 1.1. The category InfEqX consists of sheaves, V , equipped with
a choice of k -linear Lie algebra splitting of the symbol, σ : At(V) → ΘX . The
splitting will be denoted L , and will be referred to as the Lie map.

Example 1.2. If we impose the relation Lfη = fLη we of course just obtain
D -modules, which are in particular the simplest examples of infeq sheaves. There
are, however, many natural examples in which we lose the relation Lfη = fLη .
Indeed, Ω1

X is naturally an object of InfEqX , with the usual action of Lie derivatives
determined by the Cartan relation [d, ι] = L , where ι denotes contraction. The sheaf
J nO of n-order jets of sections is another example. Neither of these examples is a
D -module.

Remark 1.3. Let us note that in both of the examples constructed above, the
splitting L is in fact a differential operator. Indeed, in the case of Ω1

X , we have
the relation fLη − Lfη = dfιη , which we note is O -linear in the vector field η . In
the case of J n one can check explicitly that the construction of the action of vector
fields implies that L is a differential operator of n . With this in mind we could
define a sequence of categories Dn

X , as the full subcategories of InfEqX consisting
of those infeq sheaves such that L is a differential operator of order n . We also have
the colimit, D∞

X , of these Dn
X taken along the natural embeddings. We can think

of Dn
X as something like an n-th infinitesimal neighbourhood of the category D0

X ,
which is of course just the category of D -modules on X .

We state for reference the main theorems of this note.
Theorem 1.4. Let X be a smooth C-scheme and let V be an element of InfEqX

which is locally free and of finite rank as an OX -module. Then the Lie map L is
a differential operator of order at most rank(V) + 1. In particular, the category
InfEqfin

X agrees with D∞
X .

We will also show in the course of the proof that all of the data of a finite type infeq
bundle V on an affine X is contained in the data of the action of Θ(X) := Γ(X,ΘX)
on global sections Γ(X,V) . In the language of [4] this shows that finite type AV
modules can be globalised, and thus agree with the finite type infeq sheaves that we
study in this note. We obtain thus the following stronger result:
Theorem 1.5. Let L : Θ(X) → Γ(X,AtX(V )) be a splitting of the symbol (on
global sections), then L is a differential operator of order at most rank(V) + 1, in
particular it sheafifies in the Zariski topology.
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Remark 1.6. As we have taken the view point in this note that all our objects
should be sheaves to begin with, we can view this statement confirming the intuition
that on affines, such sheaves should depend only on their global sections. If we had
taken the global view point of [4], we could view this result as saying that the objects
studied in loc. cit. automatically sheafify, at least in the finite dimensional case.

In the sections to follow we will prove the above theorem by reducing to the formal
local case, which we will then prove by hand. Note that the reduction is not itself
trivial as it is not even immediate that one can formally complete the Lie map, as it
is not O -linear, or even (a-priori) a differential operator. Essentially all of the work
goes into proving that one can formally complete the Lie map at a point.

2. Formal local structure
We will now specialize the above considerations to the case of the formal disc of
dimension d , Dd := spec k[[z1, ..., z

d]] . Note that any vector bundle V on Dd admits
a trivialization. The corresponding Atiyah bundle is thus a semi-direct product of
ΘDd with glr(ODd) . The structure of an infeq bundle on such a V is then equivalent
to a splitting of the projection from this semi-direct product. Recall that if a Lie
algebra g acts by derivations on a Lie algebra h then the semi-direct product is the
vector space g× h with the Lie bracket

[(x1, y1), (x2, y2)] := ([x1, x2], x1(y2)− x2(y1) + [y1, y2]), x ∈ g , y ∈ h.

Splittings of the projection to g are thus linear maps L , satisfying the following
non-abelian cocycle equation;

L([a, b]) = aL(b)− bL(a) + [L(a), L(b)] a, b ∈ g.

We will work with infinite order differential operators on Dd . In order to do so let
us introduct some notation: if I := (i1, ..., id) is a multi-index, we denote by ∂I the
differential operator ∂i1

z1
...∂id

zd
, and function zI is similarly defined as zi11 ...z

id
d . We

right νj(f) for the zj -adic order of a function f , which is defined as ∞ for f = 0 .
We let ν(f) denote the total order of vanishing at 0 of a function f . Finally we
write wt(I) :=

∑
j ij , for a multi-index I . An infinite order differential operator on

Dd is defined to be a sum,
∑

I fI∂
I , such that ν(fI)−wt(I) → ∞ , as wt(I) → ∞ .

The vector space of such operators is naturally an algebra. Further, the condition
on the growth of ν(fI) ensures that an infinite order differential operator acts as a
continuous endomorphism of the k -vector space ODd . We now recall the following
well known lemma.

Lemma 2.1. Any continuous k -linear endomorphism of ODd can be represented
in a unique fashion as an infinite order differential operator.
Proof. This is easily confirmed.
We are now in a position to state and prove the main lemma of this section.

Lemma 2.2. If V is an infeq vector bundle on the formal disc Dd , with Lie map
L, then L is a differential operator of some finite order.
Proof. Let L be a k -linear splitting of the symbol map. Recall that this is equiv-
alent to the data of a k -linear map, L : ΘDd → glr(ODd) which is a non-abelian
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cocycle in the sense that we have the equation
L([a, b]) = aL(b)− bL(a) + [L(a), L(b)] , a, b ∈ ΘDd .

Recall that we wish to show that L is a differential operator of some order. We
restrict to the summand O∂j for a fixed j , and denote the resulting map (abusively)
by L . Certainly it suffices to show that this map is a differential operator of some
order. Now, we know by Lemma 2.1 that L is a matrix valued differential operator
of potentially infinite order. That is to say we have matrices AI indexed by multi-
indices I = (i1, ..., id) ∈ Zd

≥0 , so that L =
∑

I AI∂
I , when restriced to the summand

ODd∂j .
For a multi-index, I ∈ Zd

≥0 , and l = 1, ..., d , we have the element zI∂l ∈ ΘDd .
These elements obviously form a k -basis, in the topological sense, for ΘDd . Writing
0 := (0, 0, ..., 0) we obtain the following special case of the non-abelian cocycle
equation, corresponding to the pair (0, l), (I, j) :

∂lL(z
I∂j)− zI∂jL(∂l) = ilL(z

I(l)∂j) + [L(zI∂j), L(∂l)],

where I(l) is the multi-index (i1, ..., il−1, ..., id) . We now view L as a k -linear map
ODd → glr(ODd) . The Lie algebra glr(ODd) naturally acts on the space of such maps,
by the adjoint action, denoted ad . The above equation can then be interpreted as
follows, writing Bl := L(∂l) , we have the following identity of continuous k -linear
morphisms from ODd to glr(ODd) :

[∂l, L] = adBl
(L) + ∂jBl.

Recall that we have L =
∑

I AI∂
I , when restriced to the summand ODd∂j . Using

the uniqueness result from Lemma 2.1, we can equate coefficients of infinite order
differential operators. Doing so we will obtain the following relations, according to
whether I = 0 := (0, ..., 0) or not:

∂lAI = [Bl, AI ], I ̸= 0, ∂lA0 = [Bl, A0] + ∂jBl.

We must now show that only finitely many of the AI are non-zero. To do so, let us
recall that the order of vanishing at 0 of AI goes to ∞ as wt(I) does. In particular,
if there are infinitely many non-zero AI , then for some l , the zl -adic orders of these
AI get arbitrarily large. Note that we may assume that I ̸= 0 . Taking such an l we
observe that both Bl and ∂jBl have non-negative zl -adic order, whence the zl -adic
order of ∂lAI is either strictly less than that of [Bl, AI ] , which is a contradiction as
∂lAI = [Bl, AI ] , or is ∞ , which is to say ∂lAI = 0 . This is incompatible with the
zl -adic orders becoming large, and concludes the proof.

Remark 2.3. In fact with more work we can completely describe the category
of infeq sheaves on Dd . It is equivalent to the category of representations of the
Lie algebra gd of derivations of Dd which vanish at the origin. The functor in
one direction is gotten by restricting L to gd and then composing with the map
gl(O) → gl(k) , and the inverse functor can be checked to simply be coinduction
(which must be checked to admit an O -module structure compatibly with the action
of vector fields!).

3. Globalisation
We wish now to deduce Theorem 1.2 above by a reduction to the local case. In order
to do so we will make use of the following simple lemma:
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Lemma 3.1. Let Vi be two vector bundles on a C-scheme X , and x be a smooth
point of X . Let F : V0 → V1 be a k -linear morphism of sheaves which is mx -adically
continuous where mx is the maximal ideal of x. Then if the associated morphism
of O∧

X,x -modules Fx : V∧
0,x → V∧

1,x , is a differential operator, so too is F .

Proof. This is easily confirmed as differential operators are defined by the van-
ishing of iterated commutators inside Homk(V0,V1) , which can be checked on com-
pletions, as the natural maps Vi → V∧

i,x are injective and functorial.

We will need the following lemma in the course of the proof of Theorem 1.2. If
D ⊂ X is a divisor, we write Θ(X,D) for the Lie sub-algebra of Θ(X) consisting
of vector fields tangent to D . We write Θ(X,nD) for those tangent to D to order
n + 1 . This is an ideal of Θ(X,D) for n ≥ 1 . The proof of the following lemma
uses the arguments of [3], as suggested to the author by Yuly Billig.

Lemma 3.2. Any ideal of Θ(X,D) contains Θ(X,nD) for n sufficiently large.

Proof. We use the arguments and notation of [3]. Let J be any ideal of Θ(X,D) ,
the argument of Proposition 3.3 of loc. cit. implies that for points P ∈X\D we have
some µ∈J , f ∈OX , so that µ(f) ̸= 0 . In particular, Corollary 3.5 of loc. cit. holds
for all such p . The argument of Theorem 3.6. of loc. cit. now constructs an ideal I0 ,
so that I0Θ(X) ⊂ J , where I0 contains functions which are non-vanishing at any
given point of X \D . By the Nullstellensatz we are done, the ideal I0 is set-
theoretically supported on D and hence contains a power of the ideal defining D .

Remark 3.3. This lemma is similar in spirit to Theorem 0.1 of [1]. Thanks are
owed to the anonymous referee for alerting us to this similarity.

We will need another lemma in the course of the proof of Theorem 1.2., which we
have chosen to record seperately as it is perhaps of individual interest. It expresses
a certain non-linearity property of Θ(X) as a k -Lie algebra. We will say that a k -
Lie algebra is quasi-linear if it admits an embedding into glr(K) for some (possibly
infinite) extension k ⊂ K .

Lemma 3.4. If dim(X) is positive, then Θ(X,D) is not quasi-linear. That is to
say, for any extension of fields, k → K , and any morphism, ρ : Θ(X,D) → glr(K),
ρ has non-trivial kernel.

Proof. Let there be given a field K and and a morphism ρ as in the statement
of the lemma. We first pick some f ∈ O(X) , so that f vanishes along D . We
may assume that the powers fn are linearly independant over k , as dim(X) > 0 .
Note that for any ∂ ∈ Θ(X) , we have f i∂ ∈ Θ(X,D) for all i ≥ 1 . Given a linear
relation,

N∑
i=1

λiρ(f
i∂),

with λi all non-zero elements of K , we define its length to be N . We now take the
minimum over all lengths of such relations, where ∂ is subject to ∂(f) ̸= 0 . We
note that this minimum is well defined, as there is at least one ∂ with ∂(f) ̸= 0 , as
f is non-constant and dim(X) > 0 , coupled with the fact that the target is finite
dimensional as a K -vector space. If this length is 1 , then of course ρ is not injective.
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We claim that N = 1 . Suppose otherwise, so that we have N > 1 , and let
N∑
i=1

λiρ(f
i∂)

realise this minimum. Then ρ(fN∂) is K -proportional to
∑N−1

i=1 λiρ(f
i∂) , whence

in particular commutes with it. We expand out the commutator, noting that all
commutators taken in the target are K -bi-linear. We have

[
N−1∑
i=1

λiρ(f
i∂), ρ(fN∂)] =

N−1∑
i=1

λi[ρ(f
i∂), ρ(fN∂)]

=
N−1∑
i=1

λiρ([f
i∂, fN∂]) =

N−1∑
i=1

(N − i)λiρ(f
i+N−1∂(f)∂) = 0.

Now ∂(f)∂ is also a vector field which does not vanish on f , and all the coefficients
(N − i)λi are non-zero, whence we arrive at a contradiction.

Remark 3.5. Note that this in particular implies that Θ(X) is not quasi-linear.

We are now in a position to prove the main technical lemma of this note.

Lemma 3.6. Let X be a smooth affine variety, with point x ∈ X , and let
L : Γ(X,Θ(X)) → Γ(X,AtX(V)) be a splitting of the symbol (on global sections).
Then L is mx -adically continuous, whence extends to the formal completion at x.
Proof. We first prepare some notation. Let zi, i = 1, ..., n be generators of the
local ring at x . We may assume that the first d := dim(X) of them form local
parameters at x . Let ∂i be derivations whose specialisations ∂i(x) form the basis
of the fibre ΘX,x dual to the basis of Ω1

X,x given by dzi(x) (for i = 1, ..., d). That is
to say, we have ∂izj = δij + mx . The formal completion O∧

X,x is isomorphic to the
power series ring k[[z1, ..., zd]] , and we will often identify functions with their images
in this formal completion. The derivations ∂i all extend to this formal completion
and we identify them with their extensions to the formal completion. The ∂i form
a topological basis for vector fields on the formal completion. In particular, the
topological k -vector space of sections of the tangent bundle of the formal completion
has a dense subspace of derivations coming from X , namely sums of the ∂i with
coefficients polynomials in the zi .
We write νi for zi -adic order. We note the following crucial property – if νi(f) > 0 ,
then we have νi(∂i(f)) < νi(f) . Let us write Di for the divisor cut out in X
by zi = 0 and again we abusively write Di to denote also the divisor cut out in
the formal completion. It is easy to see that we get an action of Θ(X) on the
formal completion V∧

x . This formal completion is a trivial vector bundle on the
disk, and hence the Atiyah bundle is the semi-direct product of formal vector fields
and glr(O∧

X,x) , where r is the rank. All the data of the Lie map is thus contained
in a morphism (also, and abusively, denoted L),

Γ(X,Θ(X)) → glr(O∧
X,x),

satisfying the non-abelian cocycle identity. For a vector field η we identify L(η)
with its image in glr(O∧

X,x)
∼= glr(k[[z1, ..., zd]]) .
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It suffices to show that for an arbitrary vector field ∂ coming from X (as we have seen
these topologically span formal vector fields), and for zIj a sequence of monomials
in the generators zi , which tends to 0 mx -adically, we have that L(zIj∂) goes to
0 in the mx -adic topology. First note that restriction to Di defines a morphism of
k -Lie algebras, Γ(X,Θ(X,Di)) → glr(O∧

Di,x
) , as the other terms in the non-abelian

cocycle identity vanish on Θ(X,D) after restriction to D . Composing with the
inclusion glr(O∧

Di,x
) → glr(K) , with K the fraction field, this morphism necessarily

has a kernel by Lemma 4.3. By Lemma 4.2. the kernel contains Γ(X,Θ(X,nDi)) for
some n . This implies that if some vector fields go to zero zi -adically, then eventually
their images in glr(O∧

X,x) vanish along zi = 0 , which is to say are divisible by zi .
Now we may assume that our sequence of monomials zIj goes to zero zi -adically
for some fixed i . In particular the above observation implies that L(zIj∂) vanishes
along zi = 0 for all sufficiently large j . Now we observe the following consequence
of the non-abelian cocycle identity: we have

L([∂i, z
Ij∂]) = L(∂i(z

Ij)∂) = ∂iL(z
Ij∂)− zIj∂L(∂i) + [L(zIj∂), L(∂i)].

Now, we know that eventually the L(zIj∂) vanish along zi = 0 , hence we know that
eventually ∂iL(z

Ij∂) has strictly smaller zi -adic order than L(zIj∂) . In particular,
the above relation implies that we have νi(L(z

Ij∂)) ≥ min{νi(L(∂i(zIj∂)), νi(zIj)} ,
whence we are done by an evident induction on the weight of the monomial.

We now easily deduce the main theorems of this text:

Theorem 3.7. Let L : Γ(X,Θ(X)) → Γ(X,AtX(V )) be a splitting of the symbol
(on global sections), then L is a differential operator of some order, In particular it
sheafifies in the Zariski topology. In particular, if V is an infeq bundle, then the Lie
map is a differential operator.

Proof. Lemma 4.4 implies that we can take the formal completion of L at a
point x . Lemma 3.2 implies that this formal completion is a differential operator
and Lemma 4.1 implies the desired result.

Further we can obtain the claimed bound on the order of the Lie map L .
We begin with a lemma:

Lemma 3.8. Let gd be the Lie algebra of vector fields on Dd which vanish at
the origin. For each N , let gNd be the quotient of gd by the ideal of vector fields on
Dd vanishing to order N + 2 at the origin. Then if gd acts on a C vector space V
of dimension r , the action factors through the quotient grd . Further, if r = 1, the
quotient actually factors through g0d .

Proof. There is a natural Gm action on Dd , and gd is topologically spanned
by weight vectors for this action. Further, all weights occuring are non-negative
integers and gNd is the quotient by the ideal spanned (topologically) by vectors of
weight at least N + 1 . Finally, if ν :=

∑
i zi∂i is the Euler vector field, and η is of

weight w , then [ν, η] = wη .
We first show that the action of gd factors through the quotient gNd for large enough
N . Call the representation ρ . It suffices to show that there is some N such that
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any vector of weight at least N +1 acts as 0 . If the image of the Euler vector field,
ρ(ν) vanishes, then this holds trivially, as any non-zero weight vector is in the ideal
generated by ν . We may thus assume that ν maps to a non-zero element of gl(V ) .
Such an element can have only finitely many distinct eigenvectors when acting on
gl(V ) via the adjoint representation. It follows immediately that there exists an N
as claimed, as the image of any weight vector of weight w is an eigenvector for ρ(ν)
acting on gl(V )ad .
Now we show that we can take N = r . The Lie algebra gNd is a finite dimensional
solvable Lie algebra, and so we know that the image of ρ is contained in a Borel
subalgebra of gl(V ) , by Lie’s theorem. We must now show that any vector of weight
at least N + 1 is in the N -th derived subalgebra of gNd . This can be proven by an
easy induction, using the operators [z2i ∂i,−] .
Finally, when r = 1 , the action must factor through the abelianization of gd , which
is easily seen to be a quotient of g0d , as non-zero weight vectors lie in the image of
[ν,−] .

Corollary 3.9. If V is an infeq module then the Lie map L is a differential
operator of order at most rank(V) + 1.

Proof. By Lemma 4.1 it suffices to check this after formal completion at a point,
which is possible by Lemma 4.4. The result then reduces to the case of the formal
disk Dd . Evaluating the Lie map at the point 0 ∈ Dd we obtain a representatation
of gd . By the above lemma this factors through its quotient grd . It is easily checked
that this corresponds to the differential operator having order less than or equal to
r + 1 .

Remark 3.10. We regret that we do not know if the above bound rank(V) + 1
is optimal for every choice of d and r . Of course, the proof above makes it clear
that this is a purely Lie theoretic question.

• For r = 1 it the bound of 1 is always obtained - for example by the determinant
bundle ωX .

• For d = 1 we can always find a rank r infeq bundle so that L has order r ,
indeed we can take the sheaf of r -jets of sections of O .

• For d = 1 and r = 2 we can achieve the bound of 3 with the infeq bundle
on ∆1 whose Lie map is h∂ + e∂3 , with h, e ∈ sl2(C) ⊂ gl2(O) the evident
elements.

Acknowledgements. The author wishes to thank Yuly Billig for numerous helpful
discussions on the results presented, and for explaining that Lemma 4.2 can also be
deduced from the results of [5].
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