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Abstract. Let E ⊇ F be a field extension and M a graded Lie algebra of maximal class over
E . We investigate the F -subalgebras L of M , generated by elements of degree 1 . We provide
conditions for L being either ideally r -constrained or not just infinite. We show by an example that
those conditions are tight. Furthermore, we determine the structure of L when the field extension
E ⊇ F is finite. A class of ideally r -constrained Lie algebras which are not (r − 1) -constrained is
explicitly constructed, for every r ≥ 1 .
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1. Introduction

Narrowness conditions for N-graded Lie algebras in zero characteristic have been
introduced in [7]. Shalev and Zelmanov built on the remarkable example of the
variety of algébres filiformes, whose study was started by Vergne in [8, 9], showing
that the most important algebras are narrow in some sense. Thin algebras arise as
the class of positively graded, infinite dimensional Lie algebras, generated by two
elements of degree 1 and satisfying the following narrowness condition: every non-
zero graded ideal is trapped between two consecutive Lie powers of the Lie algebra.
As an immediate consequence of the definition, every homogeneous component
of a thin algebra has dimension 1 or 2 . Thin algebras have been introduced
in [2] and are currently widely studied. Although classification results have been
provided for several families of these algebras, the special class of thin algebras,
whose homogeneous components except for the second one have dimension 2 , is
less understood. In [6] it is proved that all metabelian thin algebras belong to this
class and they are in one-to-one correspondence with the quadratic extensions of
the underlying field F . These results have been extended to the non-metabelian
case in [1]. The main idea in those papers is to consider a quadratic field extension
E ⊇ F and a Lie algebra M of maximal class over E , that is M is a thin algebra
over E whose homogeneous components, but the first one, have dimension 1 (see
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Section 2 for details). In the cited papers, the authors consider the Lie algebras
generated over F by two elements of M of degree 1 and they characterise the thin
ones, showing that their homogeneous components except for the second one have
dimension 2 .

Ideally r -constrained Lie algebras arise naturally as a generalisation of thin Lie
algebras and they are the main topic of this paper. According to [4], we say that
a Lie algebra L :=

⊕
i≥1 Li is ideally r -constrained (or r -constrained for short)

if, for every non-zero graded ideal I of L , there exists an integer i such that
Li ⊇ I ⊇ Li+r , where Lk =

⊕
j≥k Lj is the k -th Lie power of L . Here, r is a

positive integer and when r = 1 we will simply say that L is ideally constrained.
Thus, a thin algebra is an ideally constrained Lie algebra whose first homogeneous
component has dimension 2 . Note also that a finitely generated r -constrained Lie
algebra is just infinite, meaning that every non-zero graded ideal of the algebra has
finite codimension. Periodic just infinite Lie algebras have been studied in [5], where
it is proved that those algebras are necessarily r -constrained.
In the spirit of [1], we consider an arbitrary field extension E ⊇ F and a Lie al-
gebra M of maximal class over E . We provide conditions for an F -subalgebra
L of M , generated in degree 1 , to satisfy a dichotomy, that is to be either ideally
r -constrained or not just infinite. Precisely, we associate to L a sequence of interme-
diate fields Fi ’s, depending on the intersection of the first homogeneous component
of L with the 2-step centralisers Ci ’s of M (see Section 2). Differently from [1],
where only the dimensions of the fields Fi ’s matter, in this paper the field K gener-
ated by the Fi ’s plays a role in the above mentioned dichotomy. In particular, we
can determine the structure of L when the field extension E ⊇ F is finite or when
E is algebraic over F and M has only finitely many Ci ’s.
The paper is structured as follows. In Section 2, we recall the standard definitions
and properties of Lie algebras of maximal class and introduce the techniques needed
to define the fields Fi ’s. Section 3 is devoted to collecting the properties of the
Fi ’s and to proving the main result stated in Theorem 3.8. Section 4 concludes the
paper by providing examples and open problems. In particular, for every r ≥ 1 we
exhibit an r -constrained Lie algebra which is not (r−1)-constrained. We also show
that the assumptions of Theorem 3.8 are tight by considering the case where E is
transcendental over F .

2. Preliminaries

If X is a subset of a (left) module V over a ring R , we denote by RX the R-
submodule generated by X . We will simply write Rx when X = {x} . By a Lie
algebra we mean a graded Lie algebra L :=

⊕
i≥1 Li over some field, generated by

its first homogeneous component L1 . If not otherwise stated, we shall assume that
Li 6= 0 for every i : in particular L is infinite dimensional. Given a Lie algebra L and
subsets X and Y of L , we denote by [X,Y ] the additive subgroup of L generated by
the elements [x, y] as x ranges in X and y ranges in Y . We will simply write [X, y]
when Y = {y} . In particular, Li = [Li−1, L1] for every i ≥ 2 , as we are assuming
that L is generated by L1 . A Lie algebra M :=

⊕
i≥1Mi over a field E is said to

be of maximal class if dimE M1 = 2 and dimE Mi = 1 for every i ≥ 2 . Borrowing
some terminology from the theory of (pro) p-groups of maximal class, the i-th
2-step centraliser for i ≥ 2 is defined as Ci = CM1(Mi) = {a ∈M1 : [a,Mi] = 0} :
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this is a subspace of dimension 1 . Note that for every non-zero li ∈ Mi we have
Ci = CM1(li) . The following lemma, which we quote for easy reference, is implicitly
stated in [3, Proposition 4.1].

Lemma 2.1. Let M be a Lie algebra of maximal class and C be a 2-step
centraliser. If t is the smallest integer such that Ct = C , then in every interval of
integers of length t there is at least one j such that Cj = C . In particular, there
are infinitely many occurrences of C .

We say that a Lie algebra L :=
⊕

i≥1 Li is ideally r -constrained if, for every non-
zero graded ideal I , there exists an integer i such that Li ⊇ I ⊇ Li+r , where
Lk =

⊕
j≥k Lj is the k -th Lie power of L . Equivalently, L is ideally r -constrained

if, for every positive integer i and every non-zero homogeneous element z of degree
i , we have that [z, rL1] = Li+r , where [z, kL1] is defined recursively by setting
[z, 1L1] := [z, L1] and [z, kL1] := [[z, k−1L1].L1] for k ≥ 2 . When r = 1 we will
simply say that L is ideally constrained. A Lie algebra of maximal class is ideally
constrained. A just infinite (dimensional) Lie algebra is an algebra whose non-zero
graded ideals have finite codimension. A finitely generated ideally r -constrained Lie
algebra is just infinite.

Definition 2.2. Let V be a vector space over a field E and U a subgroup of
the additive group of V . We denote by EU the subset of E of the elements α such
that αU ⊆ U .

Lemma 2.3. With the previous notation, the subset EU of E is a subring of E .
The subset U is an R-module with respect to a given subring R of E if and only
if R ⊆ EU : in particular, U is an EU -module. If there exists a subfield F of EU

such that dimF U is finite, then EU is a subfield of E .

Proof. We prove the last statement since the rest is trivial. If U = 0 then
EU = E ; if U 6= 0 , take u ∈ U \ {0} and note that the map from EU to U sending
k in ku is an injective F -linear map so dimF EU is finite, and therefore EU is a
field.

Remark 2.4. Let L be a Lie algebra over some field E . If U is an additive
subgroup of L and X is a subset of L , then E[U,X] ⊇ EU .

Lemma 2.5. Let X and Y be subsets of a field E such that X = Y u for some
non-zero u in E and 1 ∈ X ∩Y . Then the subfield generated by X and the subfield
generated by Y coincide.

Proof. Since 1 ∈ Y , we have that u = 1u ∈ X . Thus, given y in Y , we get that
y = yu · u−1 belongs to the subfield generated by X . For the other inclusion, just
note that Y = Xu−1 .

Definition 2.6. Let E ⊇ F be fields, V an E -vector space, C an E -subspace of
V of codimension 1 , and W an F -subspace of V , such that W * C . Let ϕ : V → E
be an E -linear map such that kerϕ = C and 1 ∈ ϕ(W ) (such a map clearly exists).
We denote by F(W/C) the subfield of E generated by ϕ(W ) .

The notation just introduced is unambiguous since the following result holds.
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Lemma 2.7. The subfield F(W/C) contains F and does not depend on the
choice of ϕ. Furthermore, F(W/C) = F if and only if dimF (W/W ∩ C) = 1.
Finally, |F(W/C) : F | ≥ dimF (W/W ∩ C), and, under the additional assumption
that dimF (W/W ∩ C) is finite, equality holds if and only if ϕ(W ) is a field.

Proof. If ψ is another map with the required properties, then there exists a non-
zero u in E such that ψ = uϕ : by Lemma 2.5, ψ(W ) and ϕ(W ) generate the same
subfield. Since ϕ(W ) is an F -subspace of E containing 1 , it contains F and so
does F(W/C) . Moreover, |F(W/C) : F | ≥ dimF ϕ(W ) = dimF (W/W ∩ C) and,
under the additional requirement that dimF (W/W ∩ C) is finite, equality holds if
and only if ϕ(W ) = F(W/C) , that is ϕ(W ) is a field; in particular, F(W/C) = F
if and only if dimF (W/W ∩ C) = 1 .

3. Finitely generated F -subalgebras of M

In the rest of this paper E ⊇ F will be fields and M will be a Lie E -algebra of
maximal class. We are interested in the description of the structure of the Lie F -
algebra generated by an F -subspace L1 of M1 . First note that if dimE EL1 ≤ 1
then the elements of L1 commute and the Lie F -algebra generated by L1 is L1

itself equipped with the trivial Lie product. Thus we will assume that EL1 = M1 :
in particular, L1 * Ci = CM1(Mi) for every i ≥ 2 . We associate to L1 a sequence
of subfields {Fi}i≥2 of E by setting Fi := F(L1/Ci) as in Definition 2.6. If K is a
subfield of E containing F and T1 denotes the K -subspace KL1 , then ET1 =M1 ,
so we may similarly associate to T1 a sequence of subfields Ki := F(T1/Ci) . It
easily turns out that Ki = K(Fi) for every i ≥ 2 .

Remark 3.1. When dimF L1 = 2 , a sequence of integers {di}i≥2 associated to
L1 is defined in [1] by setting di := dimF (L1 ∩ Ci) : since L1 * Ci , the possible
values for di are just 0 and 1 and di = 1 if and only if Fi = F so the sequence of
the Fi ’s (possibly) carries more information than the sequence of the di ’s.

The following result, whose proof is immediate, will be used repeatedly hereafter.

Lemma 3.2. If x is an element of M1 \Ci for some i ≥ 2, then the adjoint map
l 7→ [l, x] is an E -isomorphism between Mi and Mi+1 .

Lemma 3.3. Let U be an additive subgroup of Mi for some i ≥ 2 and x an
element in M1 \ Ci . Then EU = E[U,x] .

Proof. By Remark 2.4, the inclusion EU ⊆ E[U,x] holds. To prove the reverse
inclusion, we must show that αu ∈ U for every α ∈ E[U,x] and u ∈ U . Since U is
an additive group, we have [U, x] = {[u, x] | u ∈ U} : thus [αu, x] = α[u, x] = [u′, x]
for some u′ ∈ U . By Lemma 3.2, αu = u′ ∈ U .

Lemma 3.4. Let U be a finite-dimensional F -subspace of Mi for some i ≥ 2.
Then dimF [U,L1] ≥ dimF U and equality holds if and only if EU contains Fi , in
which case EU = E[U,L1] .

Proof. Take x ∈ L1 \ Ci : by Lemma 3.2, dimF [U,L1] ≥ dimF [U, x] = dimF U .
Equality holds if and only [U, x] = [U,L1] , that is [U, y] ⊆ [U, x] for every y ∈ L1 .
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Let ϕ : M1 → E be the E -linear map such that kerϕ = Ci and ϕ(x) = 1 . Then
y − ϕ(y)x ∈ Ci , so that [U, y] = ϕ(y)[U, x] . Thus, [U, y] ⊆ [U, x] for every y ∈ L1

if and only if ϕ(L1) ⊆ E[U,x] . By Lemma 3.3, E[U,x] = EU , and this is a field by
Lemma 2.3. Thus ϕ(L1) ⊆ E[U,x] if and only if EU ⊇ Fi . Finally, if equality holds,
then [U, x] = [U,L1] and so E[U,L1] = E[U,x] = EU .

Proposition 3.5. Let K be a subfield of E containing Fi for every i ≥ 2. If
T :=

⊕
i≥1 Ti is the K -algebra generated by L1 then dimK Ti = dimK T1 − 1 for

every i ≥ 2.

Proof. Let i ≥ 2 . Since EL1 = M1 , it follows that L1 * Ci and, a fortiori,
T1 * Ci . We choose xi ∈ L1 \ Ci and the E -linear map ϕi : M1 → E such that
kerϕi = Ci and ϕi(xi) = 1 : thus Fi is generated by ϕi(L1) and Ki is generated
by ϕi(T1) . Since T1 = KL1 , we have Ki = K(Fi) = K : Lemma 2.7 implies that
dimK(T1/T1 ∩ Ci) = 1 so that T1 = Kxi + (T1 ∩ Ci) . Thus Ti+1 = [Ti, T1] = [Ti, xi]
and T2 = [T1, T1] = [T1∩C2, x2] (note that the elements in C2 commute each other).
By Lemma 3.2, dimK Ti+1 = dimK Ti for i ≥ 2 and dimK T2 = dimK(T1 ∩ C2) ,
therefore dimK T2 = dimK T1 − dimK(T1/T1 ∩ C2) = dimK T1 − 1 .

Definition 3.6. The 2-step field of the Lie algebra L is the field K generated
by {Fi}i≥2 .

Proposition 3.7. Suppose that t := |K : F | is finite. Let X0 be a finite-
dimensional F -subspace of Mi for some i ≥ 2. Define recursively Xj := [Xj−1, L1]
for j ≥ 1. Then dimK KXj = dimK KX0 for every j ≥ 0 and there exists an integer
l , independent of X0 and i, such that Xl+k is a K-vector space for every k ≥ 0.

Proof. Since KXj = [KXj−1, L1] for every j ≥ 1 , Lemma 3.4 yields the first
claim.
In order to prove the second claim, we first consider the case dimF X0 = 1 , so that
dimF KXj = dimF KX0 = |K : F | = t for every j ≥ 0 .
Since t is finite, there exists an integer r such that K is generated by the Fu ’s with
u ≤ r . Let l := (t − 1)r . We need to prove that EXl+k

⊇ K for every k ≥ 0 .
We proceed by contradiction assuming, in virtue of Remark 2.4, that EXj

+ Fu for
some u ≤ r and every 0 ≤ j ≤ l . By Lemma 2.1, we may choose t − 1 indices
0 ≤ c1 < c2 < · · · < ct−1 < l such that Fi+c1 = · · · = Fi+ct−1 = Fu . Thus,
Lemma 3.4 yields

1 = dimF X0 ≤ dimF Xc1 < dimF Xc1+1 ≤ dimF Xc2 < dimF Xc2+1 ≤ . . .

· · · ≤ dimF Xct−1 < dimF Xct−1+1 ≤ dimF Xl.

Hence dimF Xl ≥ t = dimF KXl and therefore Xl = KXl , a contradiction. When
dimF X0 > 1 , decomposing X0 as sum of one-dimensional subspaces completes the
proof.

We are now in position to state a dichotomy for the F -subalgebras of a Lie E -algebra
of maximal class, showing that they are either ideally r -constrained for some r or
they are not just infinite.
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Theorem 3.8. Let E ⊇ F be fields, M a Lie E -algebra of maximal class and
L =

⊕
i≥1 Li the Lie F -algebra generated by a finite-dimensional F -subspace L1 of

M1 such that EL1 =M1 . Assume that the 2-step field K of L is a finite extension
of F . One of the following holds
(1) dimK KL1 = 2 and L is ideally r -constrained for some r ;
(2) dimK KL1 > 2 and L is not just infinite.

Proof. Let T =
⊕

i≥1 Ti be the K-algebra generated by L1 , so T1 = KL1 . By
Proposition 3.5, dimK Ti = dimK T1 − 1 for every i ≥ 2 .
Assume first that dimK T1 = 2 . Let I be a non-zero graded ideal of L : set
Ij := I ∩ Lj for every j ≥ 1 . Let i be the smallest integer such that Ii 6= {0} .
Suppose that i ≥ 2 : by Proposition 3.7, there exists l independent of i such that
Ii+l contains a non-zero K-subspace of Ti+l . Since dimK Ti+l = 1 this implies that
Ii+l = Ti+l and, a fortiori, Ii+l = Li+l . If i = 1 , then I2 6= {0} and the same
argument yields I2+l = L2+l . In any case Li ⊇ I ⊇ Li+l+1 , that is L is ideally
(l + 1)-constrained.
Assume now that dimK T1 > 2 so that dimK Ti > 1 for every i ≥ 2 . By Proposi-
tion 3.7, Li is a K-vector space for i large enough. Since KLi = Ti , this means that
Li = Ti for i large enough: in particular, dimF Li ≥ dimK Ti > 1 . Choose such an
i and let X be a non-zero proper K-subspace of Li . Denote by I and J the ideals
generated by X respectively in L and T : clearly I ⊆ J . Lemma 3.4 implies that
dimK(Tj ∩ J) = dimKX for every j ≥ i so that Tj ∩ J is a proper subspace of Tj :
as an obvious consequence Lj ∩I is a proper subspace of Lj (remind that Lj = Tj ):
therefore I has infinite codimension in L , which is not just infinite.

Remark 3.9. There are assumptions that imply the finiteness of |K : F | . The
simplest one is that |E : F | is finite. Another possibility is that E is an algebraic
extension of F and M has finitely many distinct 2-step centralisers.

Corollary 3.10. In the same hypotheses of Theorem 3.8, if L is ideally con-
strained then dimF Li = |K : F | for every i ≥ 3 and Fi = K for every i ≥ 2.

Proof. Let z be a (non-zero) homogeneous element of L of degree i with i ≥ 2 :
since [z, L1] = Li+1 we have dimF Li+1 = dimF (L1/L1 ∩ Ci) . By Lemma 2.1, there
are infinitely many values of i such that dimF Li+1 = dimF L3 . By Lemma 3.4,
{dimF Li}i≥2 is a weakly increasing sequence, so it is constant for i ≥ 3 . By the
proof of Theorem 3.8, Li is a K-vector space of dimension 1 for i large enough:
thus dimF Li = |K : F | for i ≥ 3 . By Lemma 2.7, we have

|K : F | ≥ |Fi : F | ≥ dimF (L1/L1 ∩ Ci) = dimF Li+1

for i ≥ 2 , whence the last claim.

Remark 3.11. If dimF L1 = 2 then, since dimF L1 ≥ dimK KL1 ≥ dimE EL1 = 2 ,
the algebra generated by L1 is ideally r -constrained. However this can happen even
if dimF L1 > 2 : see Example 4.2.

4. Examples and open problems
We now show that both cases of Theorem 3.8 actually occur. We remind that all
the 2-step centralisers of the metabelian Lie algebra of maximal class coincide.
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Example 4.1. Let E ) F be fields with |E : F | finite and let M be the metabelian
Lie E -algebra of maximal class. Let L1 be the F -subspace of M1 generated by an
element x in M1 \ C2 and an F -subspace U of C2 of dimension d ≥ 2 . Take the
E -linear map ϕ : M1 → E such that ϕ(x) = 1 and kerϕ = C2 ; thus K = F2 = F
and dimK KL1 = dimF L1 ≥ 3 so that the Lie F -algebra generated by L1 is not
just infinite.

Example 4.2. Let α be an algebraic element of degree d ≥ 2 over a field F and
let E := F (α) . Let M be a Lie algebra of maximal class over E with at most two
distinct 2-step centralisers. Denote by C a 2-step centraliser and choose a non-zero
element y in C . Choose another non-zero element x of M1 as follows: if M has
two distinct 2-step centralisers, x belongs to the 2-step centraliser different from C ;
otherwise x is just an element not in C . Let L1 be the F -subspace of M1 generated
by x , αx and y . Given an index i such that Ci = C , consider the E -linear map
ϕ : M1 → E such that ϕ(x) = 1 and kerϕ = C ; thus Fi = F (α) = E = K and
dimK KL1 = 2 so that the Lie F -algebra L generated by L1 is ideally r -constrained
for some r .
We now compute r : some notation is needed. Given a non-zero homogeneous
element z of L of degree i , we denote by cd(z) the smallest k such that [z, kL1] =
Li+k . If r is the maximum of cd(z) as z ranges over the set of homogeneous elements
of L , then L is ideally r -constrained but not ideally (r − 1)-constrained.
Given a non-zero homogeneous element z of degree i ≥ 2 of M and a nonnegative
integer t , we denote by U(z, t) the set of the elements of the form p(α)z as p(α)
ranges over the set of the polynomials in α with coefficients in F and degree at most
t . The set U(z, t) is clearly an F -subspace of Mi and its dimension is t + 1 for
t < d and d for t ≥ d− 1 . If Ci = C then [U(z, t), L1] = U([z, x], t+ 1) ; this is the
only possibility if M is metabelian. If M is not metabelian there are indices i such
that Ci 6= C : for those indices, we have [U(z, t), L1] = U([z, y], t) . In particular,
dimF U(z, t) < dimF [U(z, t), L1] if and only if Ci = C and t < d− 1 .
If w is a non-zero homogeneous element of M of the same degree i ≥ 2 as z and
t and s are nonnegative integers such that U(z, t) is strictly contained in U(w, s)
but [U(z, t), L1] = [U(w, s), L1] , then Ci = C and t = d− 2 .
Given an integer i ≥ 2 and a nonnegative integer k , we denote by mi,k the number
of integers j such that i ≤ j < i + k and Cj = C ; we denote by mi the
smallest k such that mi,k = d − 1 . Since mi,k ≤ k , we have that mi ≥ d − 1 ,
and equality holds for every i when M is metabelian. An easy induction shows
that [U(z, t), kL1] = U(w, t + mi,k) for some homogeneous element w of degree
i + k . In particular, since L2 = U([y, x], 1) , we have that for every j ≥ 2 ,
Lj = U(w, 1 +m2,j−2) for some homogeneous element w of degree j .
If z is an element of L of degree i ≥ 2 , then the F -subspace generated by z ,
that is U(z, 0) , is strictly contained in Li = U(w, t) for some w of degree i and
some positive integer t . By the previous discussion, [U(z, 0), kL1] = [Li, kL1] if and
only if k ≥ mi , so that cd(z) = mi . It remains to consider non-zero elements in
L1 : if z is such an element then [z, L1] is a non-zero subspace of L2 and therefore
cd(z) ≤ m2 + 1 ; if we choose z := x then [x, L1] is the F -vector space generated
by [x, y] and therefore cd(z) = m2 + 1 . Summarising, the maximum of cd(z) , that
is the integer r such that L is ideally r -constrained but not (r − 1)-constrained,



418 Avitabile, Gavioli, Monti

is m2 + 1 if m2 = max{mi} and is max{mi} otherwise. In particular, if M is the
metabelian Lie algebra of maximal class, then r = d thus showing that there exist
examples of ideally r -constrained Lie algebras for every positive integer r .

We close the paper with some problems left open to the reader.

Problem 4.3. In Theorem 3.8 we have assumed that K ⊇ F is a finite extension.
What can be said when the degree of the extension is infinite? For instance, let
E = F (α) , where α is transcendental and M be the metabelian Lie E -algebra of
maximal class. Consider L to be the F -algebra generated by x and αx+ y , where
x ∈M1 \C2 and 0 6= y ∈ C2 . Then E = K and an argument similar to Example 4.2
shows that L is the free 2-generated metabelian algebra. Note also that L coincides
with the algebra constructed in [6, Lemma 1].

Problem 4.4. Is it possible to compute the smallest r in the first case of Theorem 3.8?

Problem 4.5. What can be said if we take subalgebras of a thin algebra or even
more generally of an ideally r -constrained algebra over E ?
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