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Abstract. Let n > 2 . We prove that, up to conjugation, SP2n (Z) is the unique lattice in
SP2n (R) of the smallest covolume.
Mathematics Subject Classification: Primary 22E40; secondary 11E57, 20G30, 51M25.
Key Words: Symplectic group, arithmetic group, lattice, covolume, Prasad’s volume formula.

1. Introduction
A lattice in a semisimple Lie group G is a discrete subgroup Γ such that the G-
invariant measure on the quotient G/Γ is finite. For example, SLn(Z) is a lattice in
SLn(R) , and Sp2n(Z) is a lattice in Sp2n(R) , for any n > 1 . In fact, by the work
of Siegel, the covolumes of these lattices are known exactly: When the measures µ
on G ∈ {SLn(R), Sp2n(R)} are suitably normalized, one has the beautiful formulas

µ(G/Γ) =

{
ζ(2)ζ(3) · · · ζ(n), if G = SLn(R),

ζ(2)ζ(4) · · · ζ(2n), if G = Sp2n(R),
(1)

where Γ = G ∩ GLn(Z) in either case, and µ(G/Γ) denotes the volume of a
fundamental domain of Γ in G . However, both the special linear and the symplectic
group contain many more lattices than these standard examples.
In this paper, we investigate lattices of minimal covolume; that is, lattices which
are as dense as possible in their ambient groups. Moreover, we focus our attention
on Sp2n(R) . An obvious question is whether such a lattice necessarily exists – for
example, in the case of the group Rn , one may find lattices of arbitrarily large or
small covolume. The setting when one considers a semisimple Lie group such as
G = Sp2n(R) , however, is more rigid, as the Kazdan-Margulis Theorem [14] shows
that lattices of minimal covolume always exist. Clearly, such a lattice has to be
maximal, i.e. not properly contained in any other lattice. Thus, we let Γ ⊆ Sp2n(R)
be a lattice with minimal covolume.
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By the celebrated arithmeticity theorem of Margulis (see [21, Thm. 16.3.1]), any
irreducible lattice Λ in a semisimple Lie group G of real rank greater than 1 is
also an arithmetic subgroup of G . In particular, if such a Lie group G is a simple,
any lattice is arithmetic. That is, there exists a Q-embedding ι : G → GLn(R)
such that Λ is commensurable to the group G(Z) = ι−1(ι(G) ∩GLn(Z)) of integer
points of G . For our purposes, the utility of this identification of lattices with
arithmetic subgroups is that arithmetic subgroups are, in some sense, easier to
describe. However, as any individual arithmetic subgroup of G is associated to a
corresponding embedding of G into GLn(R) , investigating all arithmetic subgroups
involves the abstraction of treating all Q-isomorphic copies of G in GLn(R) equally.
We therefore let G be an algebraic group over a number field K, for which there
exists an embedding υ0 : K → R which induces an R-isomorphism from Sp2n (the
standard split form of the symplectic group) to G . This is enough to capture any
candidate for Γ that we will want to consider. Moreover, it leads to a useful al-
ternative characterization of Γ : Rohlfs gave a cohomological criterion [28, Satz 3.5]
(see also [6, Prop. 1.4]) for maximality of arithmetic subgroups, according to which
the lattice Γ ⊆ Sp2n(R) must be conjugate to the normalizer of a so-called prin-
cipal arithmetic subgroup Λ of G(K) . Such subgroups are distinguished by being
topologically well-behaved in relation to the group G(AK) of adelic points of G .
In particular, Λ is given by the intersection G(K) ∩ Πυ<∞Pυ for a certain (topo-
logically coherent) family of compact-open (more precisely, parahoric) subgroups
Pυ ⊆ G(Kυ) , where υ ranges over all finite places of K . These facts make the
problem of computing the covolume of Λ , and thereby identifying a lattice Γ of
minimal covolume, amenable to a wide range of analytic and algebraic tools.
The main tool for studying the covolume of principal arithmetic subgroups of certain
well-behaved algebraic groups G is Prasad’s volume formula, which expresses the
covolume of Λ (identified with its diagonal embedding) in

G∞ :=
∏
υ|∞

G(Kυ)

in terms of a variety of arithmetic invariants of the number field K and, additionally,
in terms of the product of certain measures of the parahoric subgroups {Pυ : υ < ∞}
(see Section 6 for more details). As such, it has been used in several works to identify
lattices of minimal covolume in different Lie groups. Many concrete instances
of this problem have been studied before: The case SL2(C) was studied from
different perspectives by Meyerhoff [20], Gehring-Martin [10], and Marshall-Martin
[19]. Lubotzky [17] considered this group over function fields and studied minimal
covolume lattices of SL2(Fq((t

−1))) . For certain indefinite orthogonal groups, lattices
of minimal covolume were identified by Belolipetsky [4] (in the case of SO(n, 1))
and Belolipetsky-Emery [5] (for PO(n, 1)◦ ). Also, Emery-Kim [8] considered the
analogous question for the indefinite symplectic group Sp(1, n) . Most recently,
Thilmany [31] proved that in the special linear groups SLn(R) with n > 3 , the
lattices of minimal covolume are precisely the conjugates of the standard lattice
SLn(Z) . By contrast, for the case n = 2 it was already known to Siegel [30] that the
(2, 3, 7) triangle group 〈s, t | s2 = t3 = (st)7 = 1〉 has minimal covolume in SL2(R) .
In light of Thilmany’s result about SLn(R) and the fact that SL2(R) = Sp2(R) , it is
natural to ask about the corresponding minimal covolume lattices in Sp2n(R) . The
purpose of this paper is to answer this question by proving the following theorem.
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Theorem 1.1. For n > 2, let Γ ⊆ Sp2n(R) be a lattice of minimal covolume.
Then for some g ∈ GSp2n(R), Γ = g−1Sp2n(Z)g .

2. Outline of the argument

We now describe the method of proof, which is based on [31] and other works in
which questions of arithmetic lattices of minimal covolume are investigated.
By the symplectic part of the formula (1), we know the covolume of Γ0 := Sp2n(Z)
in Sp2n(R) explicitly. The idea is then to use this number as a reference, which is
to be compared to the covolume µ(G∞/Λ) assigned by Prasad’s volume formula to
an arbitrary principal arithmetic subgroup Λ of G(K) , and thus, with the help of
the relation

µ(G∞/Γ) =
1

[Γ : Λ]
µ(G∞/Λ),

to the covolume of Γ . However, a subtle point here is that the parametrization of
the Haar measure on the maximal compact subgroup SO(2n)∩ Sp2n(R) implicit in
the equality (1) is, in fact, different from the parametrization implicit in the volume
formula; hence our reference covolume will have to be corrected with the appropriate
factor, which turns out to be Π(n) :=

∏n
j=1(2π)

−2j(2j − 1)! . Thus, we will instead
be comparing µ(G∞/Γ) to

Ψ(n) := µ(Sp2n(R)/Γ0) =
n∏

j=1

ζ(2j)
(2j − 1)!

(2π)2j
= Π(n)

n∏
j=1

ζ(2j). (2)

This comparison involves both global and local aspects, for which all relevant pa-
rameters are introduced and discussed in Sections 4–6.
As far as our global considerations are concerned, Prasad’s Volume Formula involves
certain arithmetic invariants of the number field K, such as the absolute value DK

of the discriminant of K and the degree dK := [K : Q] . As we are interested in Γ
of minimal covolume, the condition µ(Sp2n(R)/Γ) 6 Ψ(n) , which results from the
minimality we demand of µ(Sp2n(R)/Γ) , will eventually put a number of restrictions
on these arithmetic invariants, effectively narrowing down the list of possible number
fields K that can realize Γ (in the sense of the discussion above).
The restrictions mentioned above are described explicitly in Sections 7 and 8, follow-
ing a series of lower bounds on the covolume µ(G(Kυ0)/Γ) , where G(Kυ0) denotes
the image of Sp2n(R) under the isomorphism induced by the embedding υ0 dis-
cussed above. These bounds are the result of a form of compromise: on the one
hand, it is difficult to keep track of too many parameters (e.g. the regulator RK, the
class number hK, etc.) at the same time, so it is convenient to eliminate as many of
these as we can by estimating them in terms of dK ; on the other hand, we also want
the precision of the lower bounds that do involve these invariants. As such, we will
initially use our crudest bounds to obtain upper bounds on dK and DK depending
on the rank n of our group, and then subsequently apply detailed estimates for each
single case where the arithmetic invariants are no longer abstract parameters, but
concrete numbers that we can either compute or look up.
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Once the number of admissible number fields K is sufficiently small, we can take
the relevant local aspects into account and analyze them on a case-by-case basis to
determine if they can give rise to a lattice of minimal covolume. After identifying Q
as the only possibility, we conclude that G must be the split form of the symplectic
group, and that Γ must be a conjugate of Sp2n(Z) . This is accomplished in Sections
9 and 10.

3. Notation and conventions
We will use the following notation throughout:

• Q , R , and C will denote the fields of rational, real, and complex numbers
(respectively). For a prime number p , Qp will denote the field of p-adic
numbers, and Zp its ring of integers. Fq will denote the finite field with q
elements.

• K will denote a number field, and AK will denote the corresponding ring of
adeles. The degree of K (over Q) will be denoted by dK , and the absolute
value of its discriminant (over Q) will be denoted by DK . The notation K
will be used to denote an algebraic closure of K .

• G will denote a linear algebraic group defined over K, which is a real form of
Sp2n(R) . Moreover, G will denote the unique quasisplit inner K-form of G .
Without necessarily mentioning it explicitly, we will occasionally consider
G(K) and its subgroups as embedded diagonally into G(AK) whenever this
is appropriate.

• The symbol υ will be used to denote a place of K, either infinite (in which
case we write υ | ∞) or finite (in which case we write υ < ∞). Moreover, υ0
will denote a distinguished real place of K, over which our algebraic group G
splits, i.e. G(Kυ0) ' Sp2n(R) .

• Pυ (where υ denotes a finite place of K ) will denote a parahoric subgroup of
G(Kυ) .

• Γ ⊆ Sp2n(R) will denote a lattice of minimal covolume defined by the K-form
G of Sp2n . (We will also consider the gamma function and denote it by Γ ,
but this will cause no ambiguity.) Γ0 will denote the Siegel modular group
Sp2n(Z) .

• Λ will denote the principal arithmetic subgroup of G∞ defined by the collec-
tion of parahorics {Pυ : υ < ∞} , for which Γ is its normalizer in the group
G(R) (cf. [6, Prop. 1.4.iv)]).

• ζ will denote the Riemann zeta function, and ζK will denote the Dedekind
zeta function of the number field K .

Preliminaries

In the following sections we recall a number of definitions and results from algebraic
number theory and the theory of algebraic and arithmetic groups. We conclude by
describing in Section 6 the main technical tool needed in this paper, namely the
volume formula due to G. Prasad.
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4. Number fields
Let K be an algebraic number field, i.e. an extension of the rational numbers of
degree dK < ∞ , and let DK be the absolute value of its discriminant.
The discriminant is of course unbounded as a function of the degree, but it is possible
to give lower bounds for DK in terms of dK . For our purposes, the series of bounds
provided by Odlyzko for totally real K will suffice: These bounds have the form

DK > AdKe−E, (3)

where the pair (A,E) can be chosen from the list [23].
In the remainder of this section, we will assume that K is totally real. This means
that K has precisely r = dK distinct embeddings σ1, . . . , σr into C with σi(K) ⊆ R
for all i . If OK ⊆ K is the ring of algebraic integers of K, the multiplicative group
O×

K of units is a finitely generated abelian group and can therefore be decomposed
as O×

K ' µ(K)×UK , where µ(K) denotes the torsion subgroup, consisting of units
of finite order, and UK denotes the free part. Then the statement of Dirichlet’s
unit theorem [22, Thm. I.7.3] is that UK has rank r − 1 = dK − 1 . Let us
suppose that K 6= Q so that this rank is non-zero. Then, any set of r − 1 units
{ε1, . . . , εr−1} ⊆ O×

K that generate the free group UK is called a fundamental system
of units or a collection of fundamental units. For example, if K is a quadratic number
field, then a fundamental unit is given by

ε =
a+ b

√
DK

2
, (4)

where (a, b) ∈ Z2
+ is the smallest pair of integers satisfying the Pell-Fermat equation

a2 −DKb
2 = ±4 .

Two particular subgroups of UK will be of special interest to us, namely the group
of totally positive units

U+
K :=

{
u ∈ O×

K : σi(u) > 0 for i = 1, . . . , dK
}
,

and the group U2
K of squares of units. If u2 ∈ U2

K is any such square, then naturally
u2 is totally positive as σi(u) ∈ R for each i ; that is, U2

K ⊆ U+
K is a subgroup. For

its index we will need the following facts, which are straightforward consequences of
Dirichlet’s unit theorem:

• With no assumptions on the totally real number field K, one always has[
U+
K : U2

K

]
=
∣∣U+

K/U
2
K

∣∣ 6 2dK+rK−1 = 22dK−1. (5)

• If K is a real quadratic number field with fundamental unit ε , it is known
that if ε is not totally positive, then[

U+
K : U2

K

]
= 1. (6)

Under the Minkowski embedding

log+◦σ = (log+◦σ1, ..., log
+◦σr) : K

× −→ Rr, α 7−→ (log |σ1(α)|, ..., log |σr(α)|),
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the image σ(UK) ⊆ Rr of the multiplicative group UK is a free additive group of
rank r−1 , or in other words, an (r−1)-dimensional lattice in its (r−1)-dimensional
ambient space σ(UK)⊗R ⊆ Rr . (A collection of fundamental units could then also
be defined as the preimage of any basis for σ(UK) under log+◦σ .) Denoting the
(finite) covolume of this lattice in σ(UK)⊗R by

VK := vol ((σ(UK)⊗R)/σ(UK)) ,

we obtain the regulator of K as the scaled covolume RK = VK/
√
r = VK/

√
dK . (In

case K = Q , one defines RK := 1 .) It is a useful fact that this quantity can be
bounded from below in terms of the degree dK of K . Indeed, Zimmert proved [34]
that for any totally real number field K,

RK > 0.04e0.46·dK . (7)

Although the regulator of K does not appear in relation to Prasad’s volume formula,
it is closely related to an invariant of K that appears in the crucial estimate (18) of
the index [Γ : Λ] (see Section 6). This invariant is the class number hK of K (see
[22, §I.6]). The relation between RK and hK is given by the following version of the
Brauer-Siegel formula, which appears at various places in the literature concerning
the covolumes of arithmetic groups (e.g. [6, eq. (6.1)]).

Proposition 4.1. (Corollary to [29]) Let K be a totally real number field of degree
dK = [K : Q], and let ζK denote the Dedekind zeta function of K . Let DK denote
the absolute value of the discriminant of K, and let hK and RK denote the class
number and the regulator of K, respectively. Then for any t > 0, one has the
estimate

RKhk 6 t(t+ 1)21−dK
(
π−dKDK

)(1+t)/2
Γ
(
1 + t

2

)dK
ζK(1 + t).

Proof. We initially define the notation

N(x) = x1x2 · · ·xdK , Tr(x) = x1 + x2 + · · ·+ xdK , x = (x1, . . . , xdK ) ∈ RdK .

If we let H =
{

x ∈ RdK : N(x) > 1
}

and λ =
√
DK · ress=1 ζK(s) , we obtain from

[29, Lemma 1] that, for any s ∈ C ,

π−dKs/2D
s/2
K Γ

(
s

2

)dK
ζK(s)

=
∑

m⊆OK

∫
H

(
N(x)s/2 +N(x)(1−s)/2

)
e−πN(m)2/dKD

−1/dK
K Tr(x) dx1

x1
· · · dxd

xd

+
λ

s(s− 1)
,

since K is assumed to be totally real.
The definition of H implies that the sum over ideals m ⊆ OK is positive. If we
suppose that s is real and satisfies s > 1 , then we have

π−dKs/2D
s/2
K Γ

(
s

2

)dK
ζK(s) > λ

s(s− 1)
, s > 1. (8)
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By the class number formula [22, Corollary 5.11], we have λ = 2dK−1RKhK . The
claim now follows from this by substituting s = t + 1 in (8), where t > 0 is
arbitrary.

In order to handle the gamma function appearing in the statement of Proposition
4.1, we record the following “pointwise” version of Stirling’s formula due to Robbins
[27]. Thus, if n > 1 is arbitrary, one has the estimates

√
2πn

(
n

e

)n
e1/(12n+1) < n! <

√
2πn

(
n

e

)n
e1/12n. (9)

We will also need to consider the adele ring AK of K . To describe this ring, we recall
that a place of K is an equivalence class of valuations on K, where two valuations are
deemed equivalent if they induce the same topology on K . Suppressing the formality
of equivalence classes, we say that a finite place υ of K is such a valuation | · |υ
which extends a p-adic valuation on Q for some rational prime p . Equivalently,
the completion Kυ of K with respect to υ is a finite extension of the field Qp of
p-adic numbers. On the other hand, an embedding of K into the field C of complex
numbers is an infinite place of K . If the image of K under this embedding is real,
the corresponding place is dubbed a real place; and if not, it is complex. The image
of K is then R or C , respectively.
The adele ring AK of K is the locally compact topological ring given by the
restricted direct product

AK =
∏
υ|∞

Kυ ×
∏′

υ<∞

Kυ = lim
→

AS, AS =
∏
υ∈S

Kυ ×
∏
υ ̸∈S

Oυ,

where S runs over all finite subsets of places containing all the infinite places. We
recall that the restricted direct product defining AK is characterized by the fact
that, as far as the coordinates belonging to the finite places are concerned, at most
finitely many coordinates lie outside of the ring Oυ := OKυ of integers in Kυ . In
particular, the number field K embeds diagonally into AK . We refer to [24, Chapter
1] for more information.

5. Algebraic groups
We will now recall some standard definitions and results from the theory of linear
algebraic groups (cf. also [24, Chapters 2 and 3]). Throughout this section, K will
denote a number field, and G will denote a linear algebraic group.
A (linear) algebraic group is a Zariski-closed subgroup G ⊆ SLn(C) of some special
linear group over the complex numbers. In other words, G can be identified with
the vanishing locus of an ideal of polynomials. We say that G is defined over K, or
that G is an K-group, if G can be defined by a set of polynomials over K.
We say that an algebraic group G is simply connected if any isogeny from a connected
algebraic group to G is trivial. Moreover, we will call G K-simple if it does not
contain any non-trivial connected, closed, normal subgroups defined over K. In case
G is defined over K and simple over an algebraic closure K of K, we will call G
absolutely simple.
For K-groups G and H , we say that H is a K-form of G if there exists an
isomorphism from G to H defined over K . Two forms are said to be equivalent
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if they are isomorphic over K. Let E(K,G) be the set of all equivalence classes of
K-forms of G . The Galois group Gal(K/K) acts on the set of all isomorphisms
from G to H : If ϕ : G → H is an isomorphism and σ ∈ Gal(K/K) , then σ.ϕ := ϕσ

is the isomorphism obtained by applying σ to all the coefficients of the rational
functions defining ϕ . Let now ϕ be any fixed isomorphism from G to H . Then we
obtain a map Gal(K/K) → AutK(G) to the group of all K -automorphisms of G ,
which is given by σ 7→ ϕ−1◦ϕσ . In the case when the image of this map in AutK(G)
consists only of inner automorphisms of G (considered as an algebraic group over
K ), we say that H is an inner form of G . If not, H is called an outer form of G .
The group Sp2n(R) has no outer forms. Indeed, from [24, Sect. 2.1.13] it follows in
particular that the number of isomorphism classes of outer forms of a group is equal
to the number of graph automorphisms of its Dynkin diagram. Since the diagram
Cn has no non-trivial automorphisms, our claim follows.
On the other hand, the (simply connected) inner forms of Sp2n(R) can be described
in the following straightforward manner: By [24, Prop. 2.19] every simply connected
inner form of a group of type Cn is of the form SUm(D, f) where D is a central
division algebra of index 2n/m ∈ Z over K, equipped with an involutive antiauto-
morphism τ : D → D , and f is a nondegenerate sesquilinear form, which is either
Hermitian or skew-Hermitian (depending on the type of τ – see [24, Sect. 2]).
A subgroup B ⊆ G is called a Borel subgroup if it is both connected and solvable and
not properly contained in any other connected, solvable subgroup of G . G itself is
called quasisplit over K if it contains a Borel subgroup which is defined over K. An
important fact is that over any field K, an algebraic group has a unique quasisplit
inner form (cf. [7, Prop. 7.2.12]).
Another distinguished type of subgroup T ⊆ G is called a torus if it is a connected
and closed subgroup of G which is diagonalizable over an algebraic closure of K.
We say a torus is K-split if is diagonalizable over K, and the group G is called
K-split if it contains a maximal K-split torus which is defined over K.
It is well-known that if a group G is K-split, it is also quasisplit over K. In
particular, for an algebraic group without outer forms, the notions of a quasisplit
form and a split form coincide.
Let G be an algebraic group defined over K. Then there is a canonical way to
turn G into an algebraic group defined over Q , namely restriction of scalars or
Weil restriction: Suppose the K-group G equals the vanishing locus of the ideal
〈f1, . . . , fm〉 , where each fj is a polynomial with coefficients in K. Let r1 and
r2 be the respective number of real and complex embeddings of K. For any such
embedding σ : K ↪→ C , we then let Gσ be the group whose corresponding ideal is
I(Gσ) = 〈σ ◦ f1, . . . , σ ◦ fm〉 . Then the restriction of scalars ResK/Q(G) of G is the
algebraic Q-group defined by

ResK/Q(G) =

r1+r2∏
i=1

Gσi .

(Strictly speaking, ResK/Q(G) is an algebraic group which is isomorphic over K to
the product on the right-hand side above. More specifically, the group of Q-rational
points of ResK/Q(G) is isomorphic to the group of K-rational points of G .)
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In particular, we take note of the fact that

ResK/Q(G)(R) '
∏
υ|∞

G(Kυ),

where Kυ is the completion of K at the infinite place υ . For more details, we refer
to [24, Sect. 2.1.2].
Rather than looking at rational points over a smaller field, we can also consider
the group of points of G over the adele ring AK. Since the ring operations work
coordinatewise, one has the explicit description

G(AK) =
∏′

υ

G(Kυ) = G∞ ×
∏′

υ<∞

G(Kυ).

Furthermore, as a consequence of the fact that K embeds diagonally into AK, the
same is true for the group G(K) of K-rational points, which in fact embeds as a
discrete subgroup of G(AK) . We refer to [18, Sect. I.(0.33)] for more details.
As mentioned above, we know that our lattice Γ is a maximal arithmetic subgroup
of Sp2n(R) . In consequence, K must be a totally real number field:
First of all, we see from [21, §18.5] that at least K ⊆ R . Next, [21, Corollary
5.5.16] shows that G(R) is simple, and that the diagonal embedding ∆(G(OK)) in
ResK/Q(G)(R) is therefore an irreducible lattice due to [21, Prop. 5.5.8 and Remark
5.5.9].
If we consider the projection of ResK/Q(G)(R) onto the factor corresponding to
the identity embedding, we have π(∆(G(OK))) = G(OK) = Γ . Accordingly, if the
product defining the restriction were to contain two or more non-compact factors,
the projection of an irreducible lattice would (by definition) be dense in the first
factor. Since Γ is discrete, it therefore follows that G(σ(K)) is compact for any
embedding σ 6= id .
This means, in turn, that any such σ must be a real embedding of K since, in the
alternative case where σ(K) 6⊆ R , the group G(σ(K)) ' Sp2n(C) is not compact.
(By contrast, the explicit description of G as a special unitary group shows that for
a real embedding σ , the corresponding group of points can be compact.)

6. Prasad’s volume formula

One of the most subtle parts of Prasad’s volume formula has to do with a certain set
of compact open subgroups which are intrinsically linked to the principal arithmetic
subgroup under consideration. Before discussing the volume formula in detail, we
will describe some generalities about these groups.

6.1 Parahoric Subgroups. Just as one has the notions of Borel and parabolic sub-
groups of a reductive algebraic group, one has the notions of Iwahori and parahoric
subgroups of an algebraic group over non-archimedean local fields.
As a matter of fact, the following picture provides a useful intuition: if Kυ is the
completion of a number field K at a finite place υ , and Oυ ⊆ Kυ is the valuation
ring of Kυ containing the unique maximal ideal mυ = {x ∈ Oυ : υ(x) > 0} , one has
the usual projection map Oυ/mυ � Fqυ to the finite field with qυ elements. An
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Iwahori subgroup Iυ ⊆ G(Kυ) is then essentially the preimage π−1(B) of a Borel
subgroup B of G , the group G “considered” as a group over the finite field Fqυ .
(This will be made precise below.) Furthermore, a parabolic subgroup of G(Fqυ) is,
by definition, any group containing (a conjugate of) B , and a parahoric subgroup
Pυ ⊆ G(Kυ) is then essentially the preimage π−1(P ) of a parabolic subgroup.
We now proceed to more precise definitions. A subgroup Bυ ⊆ G(Kυ) is an Iwahori
subgroup if it is the normalizer of a maximal pro-p-subgroup of G(Kυ) (that is,
the inverse limit of a coherent sequence of finite p-groups, which is not properly
contained in any other such group). A subgroup Pυ ⊆ G(Kυ) is called parahoric if
it contains an Iwahori subgroup.
We recall the following facts from [24, Sect. 3.4]: There is an Iwahori subgroup Bυ

in G(Kυ) and a maximal Kυ -split torus Sυ ⊆ G(Kυ) (say, of dimension dimSυ = `)
such that with Nυ = (NG(Sυ))(Kυ) equal to the normalizer of Sυ , the pair (Bυ, Nυ)
is a so-called BN -pair for the group of Kυ -rational points G(Kυ) . This means
in particular that Hυ := Bυ ∩ Nυ is a normal subgroup in Nυ , and that there is
a size ` + 1 generating subset ∆υ = {r0, r1, . . . , rℓ} ⊆ Wυ := Nυ/Hυ of the Weyl
group Wυ , corresponding to the vertices in the local Dynkin diagram of G(Kυ) , with
every element of ∆υ having order 2 . It turns out that if Bυ ⊆ Pυ for some subgroup
Pυ ⊆ G(Kυ) , then there is a subset Θυ ⊆ ∆υ of generators, and a resulting subgroup
WΘυ ⊆ W∆υ = Wυ generated by the elements of Θυ , such that Pυ = BυWΘυBυ .
The subset Θυ ⊆ ∆υ is then called the type of Pυ .
From the perspective of Bruhat-Tits buildings, a subgroup P = Pυ ⊆ G(Kυ) is
parahoric if and only if it is the stabilizer of a simplex in the Bruhat-Tits building
B(G, Kυ) associated with G(Kυ) . Naturally, the correspondence between simplices
and their stabilizers is inclusion-reversing. In particular, the maximal parahoric
subgroups of G(Kυ) are precisely the stabilizers of individual vertices in the building
B(G, Kυ) .
A particular class of parahoric subgroups will play a central role in our subsequent
analysis, namely the special and hyperspecial parahorics. We say that a parahoric
subgroup Pυ ⊆ G(Kυ) is (hyper)special if it stabilizes a point in B(G, Kυ) , which
is (hyper)special. Here, a point x ∈ A = A(G) in an apartment of the building is
special if every hyperplane in A is parallel to a hyperplane that passes through x
(see [1, Prop. 10.19]). Moreover, such a point x is called hyperspecial if it continues
to be special in the Bruhat-Tits building B(G, K̂υ) where K̂υ denotes the maximal
unramified extension of Kυ . (Note that all apartments in a building are isometric.
These properties therefore do not depend on the choice of an apartment containing
the given point.)
For example, if G = Sp2n is defined over Q , and υ is a finite place corresponding to
the prime number p , the subgroup Sp2n(Zp) ⊆ Sp2n(Qp) is a hyperspecial parahoric
subgroup.

Remark 6.1. We recall from [6, Sect. 3.1] that a parahoric subgroup Pυ , which
has maximal volume among all parahoric subgroups, is necessarily special; and
from [6, Sect. 3.2] that a hyperspecial parahoric subgroup necessarily has maximal
volume. (See also [6, Prop. A.5].)
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Remark 6.2. Since we want Γ ⊆ Sp2n(R) to be of minimal covolume, we claim
that we are, in fact, free to assume that at each finite place υ , the parahoric subgroup
Pυ ⊆ G(Kυ) has maximal volume. Namely, this follows from the following two
points: First of all, the argument in [5, Sect. 4.3] (which builds on [6, Sect. 3.8])
shows that the covolume of Γ = NG(R)(Λ) can only decrease when a parahoric
subgroup Pυ in the coherent sequence of Λ is replaced with a parahoric of larger
volume, in case Pυ is not already maximal. (Although the statements made in [5]
pertain to groups of type Dn , the proof of the inequality after [5, eq. 4.(15)] extends
almost immediately to groups of type Cn as well, with only minor adjustments
required.) Second, we will show that the covolume must, in fact, decrease in this
situation. This argument will rely on the analysis that follows (where every Pυ is
assumed to be maximal) and, in particular, on Theorem 6.3 below, which we have
not yet discussed. For this reason, we postpone the justification of this claim to
Section 11 where the result is stated in the form of Lemma 11.2.

Assume from now on that each Pυ is special. This fact has at least the following
useful consequences. First of all, the type Θυ of any parahoric Pυ in our sequence
has no symmetries, as is shown in [8, Sect. 3.1]. Second, the following simple
characterization of hyperspecial parahoric subgroups holds: for a finite place υ ,

Pυ is hyperspecial ⇐⇒ G splits over Kυ. (10)

Indeed, it follows immediately from the definition that Pυ is hyperspecial if G splits
over Kυ . Conversely, if Pυ ⊆ G(Kυ) is hyperspecial, then G must be quasisplit
over Kυ by [13, Prop. 10.2.1]. Accordingly, G splits over Kυ by uniqueness of the
quasisplit inner form over any field.
We now proceed to the discussion of parahoric subgroups in the context of Prasad’s
volume formula. Additional details are given in [25, Sect. 2.2] and [13, Sect. 4.1].
A parahoric subgroup Pυ is related to a smooth affine Oυ -group scheme Gυ .
In particular, the group Pυ coincides with the Oυ -points of this scheme, that is
Gυ(Oυ) = Pυ . Therefore one may consider the reduction (mod mυ ) of Pυ in the
form of the base change Gυ := Gυ ×Oυ Fqυ . (Intuitively speaking, the resulting
group of points simply consists of the points of Gυ where all of its defining equations
have been reduced modulo qυ , over the finite field Fqυ .) The group Gυ(Fqυ) then
admits a Levi decomposition MυnRu(Gυ(Fqυ)) where Mυ ⊆ Gυ(Fqυ) is a maximal
connected reductive subgroup (the Levi component), and Ru(Gυ(Fqυ)) denotes the
unipotent radical.
If we now let G be a K-form of Sp2n and let G be the unique quasisplit inner
K-form of G , we obtain in an analogous way the maximal connected reductive
subgroup Mυ ⊆ Gυ(Fqυ) . Since Sp2n is itself split, we have in fact G = Sp2n and
Mυ = Sp2n(Fqυ) .
With these details in place, we can now describe the local factors appearing in
Prasad’s volume formula. Thus, we define

e(Pυ) :=
q
(dim Mυ +dimMυ)/2
v

#Mυ(Fqυ )
, (11)

and e′(Pυ) := q(dimMυ−dimMυ)/2
υ

#Mυ(Fqυ )

#Mυ(Fqυ )
= e(Pυ)

#Mυ(Fqυ )

qdimMυ
υ

. (12)
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We note that e′(Pυ) is always a non-negative integer (cf. [26, Sect. 2.5]).
Of course, it is possible to simplify both of these expressions to some extent by using
the explicit description of Mυ as the standard split form of the symplectic group
over the residue field Fqυ . We will do this in the next section. For now, we note (cf.
[26, Sect. 2.5]) that one always has the inequality

e′(Pυ) < e(Pυ). (13)

For later use, we also note the following equivalences (cf. [25, Sect. 2.2]):

e′(Pυ) = 1 ⇐⇒ dimMυ = dimMυ and #Mυ(fυ) = #Mυ(fυ)

⇐⇒ Pυ is hyperspecial.

6.2. The statement of the volume formula. With the necessary preparations
in place, we will now describe the main technical tool used in the paper, which is
Prasad’s voluma formula. In our specific case of interest where G has type Cn and
K is totally real (see the end of Section 5), this formula can be stated as follows. For
both this result and future purposes, it will be useful to define (as we did implicitly
in the introduction) the number

Π(n) :=
n∏

j=1

(2j − 1)!

(2π)2j
. (14)

Theorem 6.3. [25, Thm. 3.7] Let G be an absolutely simple, simply connected
algebraic group of rank n and type Cn defined over a totally real number field K.
Let µ∞ denote the product measure on G∞ , where (for each infinite place υ) the
measure µυ on G(Kυ) is described in [25, Sect. 1.3, Sect. 1.4]. Let Λ be the principal
arithmetic subgroup determined by a coherent collection {Pυ : υ < ∞} of parahoric
subgroups Pυ ⊆ G(Kυ). Then we have the formula

µ∞(G∞/Λ) = D
n(2n+1)/2
K Π(n)dK

n∏
j=1

ζK(2j)
∏
υ<∞

e′(Pυ),

where the factors e′(Pυ) are given by (12), and ζK denotes the Dedekind zeta function
of K.

Remark 6.4. The measure µ∞ on G∞ is normalized to give any maximal com-
pact subgroup measure 1 . In particular, if G(Kυ) is compact for any infinite place
υ 6= υ0 , the left-hand side of Theorem 6.3 is µ(G(Kυ0)/Λ) .

Proof. Let υ be any finite place of K. Given that the exponents mi of G are
mi = 2i− 1 for i = 1, . . . , n (see [26, Sect. 2.4]), we observe that

dimG = n+ 2(1 + 3 + · · ·+ 2n− 1) = 2n2 + n,

and, to justify the appearance of the Dedekind zeta values, that

e′(Pυ) = e(Pυ)
n∏

j=1

(
1− 1

q
mj+1
υ

)
= e(Pυ)

n∏
j=1

(
1− 1

q2jυ

)
, (15)

where qυ = #fυ = N(pυ) denotes the size of the residue field fυ of K at υ (or,
equivalently, the norm of the prime ideal pυ ⊆ OK associated with υ ).
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Indeed, this follows from [26, Sect. 2.4] and the fact that G is of type Cn and
thus without outer forms. Upon multiplying the right-hand side above over all
finite places υ of K, one recognizes the reciprocal of the Euler product defining
ζK(2) · · · ζK(2n) .
As noted above, the quasisplit inner K-form G of G splits over K. In consequence
L = K, and the factor involving DL/D

[L:K]
K vanishes. Moreover, since the number

field K is totally real, its number of (inequivalent) infinite places equals [K :Q] = dK,
and hence the product over the infinite places of K can be rewritten as claimed (cf.
also [25, Rem. 3.8]). The claimed formula now follows from these observations and
the fact that the Tamagawa number τK(G) is equal to 1 (see [16]).
Since our approach to using Prasad’s Volume Formula involves the initial step of ig-
noring the contribution of the parahoric factors e′(Pυ) to the covolume µ(G(Kυ0/Λ) ,
it will be convenient for us to introduce the notation

S(Λ) := µ(G(Kυ0)/Λ)

(∏
υ<∞

e′(Pυ)

)−1

= D
n(2n+1)/2
K Π(n)dK

n∏
j=1

ζK(2j). (16)

In terms of this number, the covolume of Γ can be expressed as

µ (G(Kυ0)/Γ) =
1

[Γ : Λ]
S(Λ)

∏
υ<∞

e′(Pυ). (17)

Bounding the Covolume: Global considerations

In these sections we estimate the right-hand side of Prasad’s volume formula from
below and to different degrees of accuracy. As we described in the introduction,
the assumption that Γ has smaller covolume than Γ0 will, in combination with the
simplest bounds we prove, result in a number of numerical bounds on the arithmetic
invariants related to our number field, e.g. DK and dK. Since many number fields
are thus excluded from our list of candidates, we can use progressively finer (and
more involved) bounds to rule out even more number fields and trim the list even
further.

7. Lower bounds in terms of dK , DK , and n

By Theorem 6.3 and the discussion at the end of Section 6.1, we have the lower
bound µ(G(Kυ0)/Λ) > S(Λ) . We begin this section by converting this fact into a
lower bound on the covolume of Γ , making use of the different number theoretic
estimates mentioned in Section 4.

Lemma 7.1. Let K be a totally real number field of degree [K : Q] = dK and
class number hK , and let DK be the absolute value of the discriminant of K over
Q. Then the covolume of Γ satisfies

µ(G(Kυ0)/Γ) >
S(Λ)[

U+
K : U2

K

]
· hK

> S(Λ)

22dK−1hK
,

where the subgroups U+
K , U

2
K ⊆ O×

K are defined in Section 4.
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Proof. Let T denote the set of finite places υ of K with the property that Pυ

is not hyperspecial. (Equivalently, by (10), T is the set of all υ such that G does
not split over Kυ .) From the discussion in Section 6.1 we know that the types Θυ

of the parahorics Pυ are without symmetries. By [8, Lemma 6.3] we then have the
bound

[Γ : Λ] 6 hK2
#T [U+

K : U2
K

]
6 hK2

2dK−1+#T , (18)

where the last inequality is (5). To derive our claim from Theorem 6.3, we now write

µ(G(Kυ0)/Λ) = S(Λ)
∏
υ∈T

e′(Pυ)
∏
υ ̸∈T

e′(Pυ).

From our discussion in Section 6.1 we also see that the product over υ 6∈T equals 1 ,
and that each factor in the other product is an integer e′(Pυ) strictly greater than 1 .
In combination with the first inequality in (18), this shows that

µ(G(Kυ0)/Γ) = µ(G(Kυ0)/Λ) [Γ : Λ]−1 > S(Λ)2#T h−1
K 2−#T [U+

K : U2
K

]−1

= S(Λ)h−1
K

[
U+
K : U2

K

]−1
.

This proves the first bound. The second bound is proved analogously with the
second inequality in (18).

Remark 7.2. We should point out that, although the result [8, Lemma 6.3] is
stated and proved in the context of a different real form of the symplectic group, its
proof makes no special use of the structure of G at the real places of the relevant
number field k (in the notation of [8]). Rather, the argument only relies on the
structure at the non-archimedean places. As such, all types of parahorics in G(Kυ)
can occur within the framework of [8, Lemma 6.3], and its analysis is therefore
exhaustive in our situation as well.

Remark 7.3. In order to keep things as simple as possible, we will mainly use
the weaker of the two estimates in Lemma 7.1 in the sequel, as it has the benefit
that its right-hand side depends only on dK and hK and not on the unit groups.
On the other hand, since the index

[
U+
K : U2

K

]
can be computed rather easily for

many particular number fields, we will make use of the full strength of the lemma
once our other analyses have identified a small list of candidates for K.

Remark 7.4. For the convenience of readers unfamiliar with Galois cohomology,
we wish to mention the paper [2] where a version of the bound (18) is derived in the
special case hK = 1 using other techniques than those in [8] and [6]. In particular, it
is demonstrated here how a change in the involved parahoric subgroups can change
the index [Γ : Λ] .

Corollary 7.5. Suppose that µ (G(Kυ0)/Γ) 6 Ψ(n) where Ψ(n) is defined in (2).
Then the discriminant of K satisfies the bound

DK <
(
0.915 · 22dKhKΠ(n)

1−dK
)1/(n2+n/2)

. (19)
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Proof. This follows from straightforward manipulations of the weaker estimate
given in the lemma. We only need the additional observation that

Ψ(n) < Π(n)
∞∏
j=1

ζ(2j) < 1.83 · Π(n), (20)

where the numerical bound for the infinite product follows from [15, Lemma 1].

Lemma 7.6. The covolume µ (G(Kυ0)/Γ) satisfies the bound

µ (G(Kυ0)/Γ) > F (dK , DK , n) :=
1

750
D

n2+n/2−3
K

(
7.6e0.46Π(n)

)dK . (21)

Proof. If RK is the regulator of K and t > 0 is any real number, Proposition
4.1 and Zimmert’s bound for the regulator (7) imply that

1

hK
> RK

H(dK , DK , t)
> 1

25 ·H(dK , DK , t)
e0.46·dK ,

where

H(dK , DK , t) = 2t(t+ 1)
(

1

2π(1+t)/2
Γ
(
t+ 1

2

))dK
D

(t+1)/2
K ζK(t+ 1). (22)

With Lemma 7.1 we thus obtain the estimate

µ (G(Kυ0)/Γ) >
2

25
D

n(2n+1)/2
K

(
1

4
e0.46Π(n)

)dK 1

H(dK , DK , t)

=
1

25
D

n(2n+1)/2
K

(
1

2
e0.46π(t+1)/2Γ

(
t+ 1

2

)−1

Π(n)

)dK
1

t(t+ 1)D
(1+t)/2
K ζK(t+ 1)

> D
(2n2+n−t−1)/2
K

25t(t+ 1)

(
1

2
e0.46Π(n)α(t+ 1)

)dK
, (23)

where we used the classical estimate ζK(t+ 1) 6 ζ(t+ 1)dK and wrote

α(t+ 1) = π(t+1)/2Γ
(
t+ 1

2

)−1

ζ(t+ 1)−1 =
t(t+ 1)

2ξ(t+ 1)
,

where ξ denotes the Riemann xi function. Since we are free to choose the value of
t , we take t = 4.99 which gives α(t + 1) ≈ 15.2199 . Then since t(t + 1) < 30 , we
conclude from (23) that

µ (G(Kυ0)/Γ) >
1

750
D

n2+n/2−3
K

(
7.6e0.46Π(n)

)dK .

This completes the proof.

Corollary 7.7. Suppose that µ (G(Kυ0)/Γ) 6 Ψ(n). Then the discriminant of
K satisfies the bound

DK <

(
1372.5 · Π(n)1−dK

(
7.6e0.46

)−dK
)1/(n2+n/2−3)

. (24)

Proof. This follows in an analogous way to the proof of Corollary 7.5.
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8. Monotonicity of the lower bounds
In this section we arrive at the following preliminary conclusions: if n > 3 , then
K = Q ; and if n = 2 , then K is either Q(

√
5) or Q .

We proceed by bounding the right-hand side of (21) in terms of only dK and n ,
effectively eliminating DK from the statement of Lemma 7.6 (for now). This will
allow us to deduce upper bounds on dK (depending on n) under the assumption
that Γ has smaller covolume than Γ0 .

I. The cases n > 4

We proceed by bounding DK from below in terms of dK with Odlyzko’s estimates.
In our case where K is totally real, inserting the bound (3) into the bound (21)
from Lemma 7.6 and writing f(n) = n2 + n/2− 3 , we obtain that

µ (G(Kυ0)/Γ) > O(n, dK , A, E), (25)

where O(n, dK , A, E) := F (dK , A
dKe−E, n) =

1

750
e−E·f(n) (7.6e0.46Af(n)Π(n)

)dK .

For a certain choice of the pair (A,E) from Odlyzko’s table, which will be made
more explicit later, we now make the following claims.

Lemma 8.1. There exists a choice of parameters (A,E) such that the following
claims hold:

(a) For n > 2, the function n 7→ Π(n)−1O(n, 2, A, E) is increasing.
(b) For n > 3, the function dK 7→ O(n, dK , A, E) is increasing.
(c) We have Π(4)−1O(4, 2, A, E) > 1.83.

Together, these claims imply that for any n > 4 , the lattice Γ must “come from Q”
in the sense discussed earlier. Indeed, we know that the covolume of Γ0 in Sp2n(R)
is smaller than 1.83 · Π(n) . If n > 4 and K 6= Q , so that [K : Q] = dK > 2 , the
three claims of the lemma then imply that

Π(n)−1O(n, dK , A, E) > Π(n)−1O(n, 2, A, E) > Π(4)−1O(4, 2, A, E) > 1.83,

and consequently O(n, dK , A, E) > 1.83 · Π(n) . In view of (2), (20), and (25), this
implies that for n > 4 , a number field K of degree greater than 1 cannot give rise
to a lattice Γ of minimal covolume. Hence, under these assumptions, dK = 1 and
K = Q , as claimed.

Proof of Lemma 8.1. To see part (a), suppose n > 1 is arbitrary. Then we
compute that

log
(
Π(n+ 1)−1O(n+ 1, 2, A,E)

Π(n)−1O(n, 2, A,E)

)
= −E · (2n+ 3/2) + (4n+ 3) logA+ log

(2n+ 1)!

(2π)2n+2

> −E · (2n+ 3/2) + (4n+ 3) logA− (2n+ 2) log 2π

+ 1
2
log 2π(2n+ 1) + (2n+ 1) log(2n+ 1)− (2n+ 1),

where we used the inequality (9).
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Writing Ω(A,E) = 4 logA − 2E − 2 log 2π − 2 and rearranging the terms on the
right-hand side of the estimate above, we find that

log
(
Π(n+ 1)−1O(n+ 1, 2, A,E)

Π(n)−1O(n, 2, A,E)

)
> n (2 log(2n+ 1) + Ω(A,E)) + 3

2
log(2n+ 1) + 3 logA− 3

2
E − 3

2
log 2π − 1

> n(2 log(2n+ 1) + Ω(A,E)) + 3
2
log(2n+ 1) + 3

4
Ω(A,E).

Since our claim will follow if the logarithm we are estimating is non-negative, we
derive a condition on Ω(A,E) which expresses this. The right-hand side above is
non-negative if and only if

Ω(A,E) · (n+ 3/4) + 2n log(2n+ 1) + 3
2
log(2n+ 1) > 0,

which is equivalent to

4 logA− 2E > 2 log 2π + 2− 2 log(2n+ 1). (26)

Since the right-hand side of (26) is decreasing in n , we conclude that our claim is
justified if we can choose A and E such that

2 logA− E > log 2π + 1− log 5 ≈ 1.2284. (27)

We postpone the matter of choosing A and E such that (27) is satisfied until a later
point.
To prove part (b), we need to show that there is a choice of A > 1 such that for
n > 3 , 7.6e0.46Af(n)Π(n) > 1 , or equivalently,

logA > − log Π(n)− log 7.6− 0.46

f(n)
. (28)

n Π(n)

1 2.5× 10−2

2 9.8× 10−5

3 1.9× 10−7

4 3.9× 10−10

5 1.5× 10−12

6 1.6× 10−14

7 6.6× 10−16

8 1.5× 10−16

9 2.2× 10−16

10 2.9× 10−15

11 4.1× 10−13

12 7.5× 10−10

13 2× 10−5

14 9.96
... ...

By computing approximations of the first values of Π(n) (see
the table) and using Stirling’s formula, one can easily see
that Π(n) is increasing for n > 14 . Since f(n) is certainly
also increasing for n > 14 , we only need to choose A such
that (28) holds for n = 3, . . . , 14 . By using lower bounds
for the values of Π(n) and inspecting the inequalities (28)
for these values of n , we find that A satisfies the claim (b)
provided that

A > 5.66. (29)

Provided that such an A exists which also satisfies (27), the
claim is proved.
We now prove part (c). By using the approximation of Π(4)
given in the table, we see that this claim is satisfied if

e−E·f(4)A2·f(4)Π(4) > 1.83 · 750 · 1

7.62
· e−0.92 ≈ 9.4697.
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In order for this to hold, it is sufficient that

−E + 2 logA >
log 9.47− log Π(4)

f(4)
. (30)

The proof will be concluded once we show that we can choose A and E that satisfy
this inequality while also satisfying (29) and (27).
We now search through the possible pairs (A,E) to find a choice of A and E
satisfying the three requirements (30), (29), and (27). It turns out that we may take

(A,E) = (6.894, 2.2667),

and the lemma is proved.

II. The case n = 3

When n = 3 we are no longer able to rule out all the cases dK > 2 in a uniform
way. Rather, we will have to consider different regimes of dK and argue accordingly.
Hence, our first order of business is to determine these regimes.
Initially, we ask how large dK has to be in order that

Π(n)−1O(n, dK , A, E) = Π(3)−1O(3, dK , A, E) > 1.83.

Since Π(3) = 45/256π12 , we have

Π(3)−1O(3, dK , A, E) =
1

750
Π(3)−1e−E·7.5 (7.6e0.46A7.5 · Π(3)

)dK
=

256π12

33750
· e−7.5E

(
e0.46A7.5 342

256π12

)dK
.

This quantity exceeds 1.83 precisely when

dK

(
7.5 logA+ 0.46 + log

342

256π12

)
− 7.5E > log

1.83 · 33750
256π12

,

and for A > 5.65 (ensuring that the coefficient of dK is positive), this is certainly
satisfied when

dK >
7.5E − 8.25

7.5 logA− 12.99
(31)

because of the approximations

0.46 + log
342

256π12
≈ −12.987, log

1.83 · 33750
256π12

≈ −8.251.

In conclusion, (31) is a sufficient condition for the inequality
O(3, dK , A, E) > 1.83 · Π(3)

to hold. The task now, therefore, is to choose the pair (A,E) from Odlyzko’s
table in such a way as to minimize the right-hand side of (31). Using a computer
algebra system, we find that the minimal value is 3.31 and is attained for the values
(A,E) = (13.047, 3.8667) . It follows that a number field of degree at least 4 cannot
give rise to the lattice Γ .
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To completely settle the case n = 3 we must now exclude the two remaining
undesirable possibilities dK = 2 and dK = 3 . To this end, assuming that Γ has
covolume smaller than µ (Sp6(R)/Γ0) = ζ(2)ζ(4)ζ(6)Π(3) < 1.83 ·Π(3) , we see from
Corollary 7.7 that

DK <

(
1372.5 · Π(3)

(
7.6e0.46Π(3)

)−dK
)1/7.5

≈

{
10.63 if dK = 2,

60.09 if dK = 3.

By consulting the L-functions and modular forms database [35], we find that K is
restricted to being one of the following number fields:

• If dK = 2 , there are two possible number fields, both with class number 1 ,
with respective discriminants DK = 5, 8 . In light of the additional information
that hK = 1 , the estimate (19) in Corollary 7.5 can be applied to these fields to
yield an even sharper bound on DK. Thus, with (n, dK) = (3, 2) , we find that
in fact DK < 5.27 , so that DK = 5 and K = Q

[√
5
]

is the only possibility.
We postpone the matter of conclusively excluding this number field until a
later point when we have determined the possibilities in the case n = 2 as
well.

• If dK = 3 , the only possibility is DK = 49 , in which case one also has hK = 1 .
Knowing the class number, we can again apply Corollary 7.5 and obtain the
strengthened bound DK < 28.087 . This is impossible since any totally real
cubic number field must have discriminant at least 49 .

III. The case n = 2

We are now forced to refine our covolume estimates in order to get the implied
bounds on dK within a range where inspection in number field databases is a viable
way forward. We thus begin by recalling from Lemma 7.6 and (23) that, when
n = 2 ,

µ(G(Kυ0)/Γ) >
D

5−(t+1)/2
K

25t(t+ 1)

(
3e0.46

64π6
π(t+1)/2Γ

(
t+ 1

2

)−1

ζ(t+ 1)−1
)dK

(32)

=
e−5E+E(t+1)/2

25t(t+ 1)

(
3e0.46

64π6
A4.5−t/2π(t+1)/2Γ

(
t+ 1

2

)−1

ζ(t+ 1)−1
)dK

,

where we also used the generic bound (3) with (A,E) an unspecified pair from
Odlyzko’s table [23]. For specific choices of A , E , and t , we initially want to show
that for dK larger than a certain threshold, the right-hand side of (32) exceeds the
covolume ζ(2)ζ(4)Π(2) of Sp4(Z) in Sp4(R) . Moreover, we wish to choose (A,E, t)
such that this threshold is as low as possible. Getting such a lower bound on dK
requires us to guarantee in some way that the base of the exponential expression of
the degree above is strictly bigger than 1 , i.e.

3e0.46

64π6
A4.5−t/2π(t+1)/2Γ

(
t+ 1

2

)−1

ζ(t+ 1)−1 > 1. (33)

Since the search for the optimal parameters (A,E) will involve a computer algebra
system in any case, we merely add the condition (33) into our search parameters
and carry out the following program:
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(Python 3.11)
# The bound 5.5535611217287 was obtained with A, E, t = 21.512, 6.0001,

1.2000000000000002
# List of values of A in Odlyzko's Table 4 of discriminant bounds
Alist = [ ... ]
# List of values of E in Odlyzko's Table 4 of discriminant bounds
Elist = [ ... ]
eta = 3*math.exp(0.46)/(64*(math.pi)**6)
standardcovolumetwo = scipy.special.zeta(2)*scipy.special.zeta(4)

*(3/(32*(math.pi)**6))
def alpha(s):

return (math.pi)**(s/2)*(scipy.special.gamma(s/2))**(-1)
*(scipy.special.zeta(s))**(-1)

def rhs(A,E,t):
logXcoeff = E*(t+1)/2-5*E - math.log(25*t*(t+1))
return (math.log(standardcovolumetwo)

- logXcoeff)/math.log((eta*A**(4.5-t/2)*alpha(t+1)))
def optimizer():

minvalue = 58
for i in range(0,len(Alist)):

A = Alist[i]
E = Elist[i]
for increment in range(1,250):

t = 0.1*increment
if eta*A**(4.5-t/2)*alpha(t+1)>1:
# ensuring the base of the exponential function is > 1

if rhs(A,E,t) < minvalue:
minvalue = rhs(A,E,t)
abest = A
ebest = E
tbest = t

print('The bound', minvalue, 'was obtained with A, E,
t =', abest, ',', ebest, ',', tbest)

(By fine-tuning the search for an optimal value of t , given that this value is ≈ 1.2 ,
we made only insignificant improvements on the resulting bound on dK.) Thus, with
the choices

(A,E, t) = (21.512, 6.0001, 1.2), (34)

we get that µ(G∞/Γ) > Ψ(2) whenever dK > 6 . Accordingly, we know that the
number field K which realizes our lattice of minimal covolume must have degree
dK ∈ {1, 2, 3, 4, 5} .
We now translate this bound on dK into bounds on the discriminant DK , which will
force K to belong to a small list of possible number fields. To this end, we compute
that Π(2) = 3/32π6 and insert the optimized parameter t = 1.2 into (23) to obtain

µ (G(Kυ0)/Γ) >
D3.9

K

66

(
3e0.46

64π6
α(2.2)

)dK
>

D3.9
K

66
· 0.00019dK ,
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where we also computed that

3e0.46

64π6
α(2.2) ≈ 0.0001919 . . . > 0.00019.

By demanding that µ (G(Kυ0)/Γ) < ζ(2)ζ(4)Π(2) = 1/5760 , we obtain the following
upper bounds on DK :

DK <

(
11 · 0.00019−dK

960

)1/3.9

≈


25.74 if dK = 2,

231.65 if dK = 3,

2084.50 if dK = 4,

18757.18 if dK = 5.

(35)

Consulting the L-functions and modular forms database [35], we can translate the
discriminant bounds given in (35) into the following list of concrete possibilities for
K. (The information given is enough to uniquely identify K in each case.)

• If dK = 5 , the bound (35) points to a unique totally real number field, which
has discriminant DK = 14641 and class number hK = 1 . Inserting this
information into Corollary 7.5, we get the refined bound DK 6 3177 , which
makes this case impossible.

• If dK = 4 , we find six possible number fields, all with class number 1 , with
respective discriminants DK = 725, 1125, 1600, 1957, 2000, 2048 . Appealing
again to Corollary 7.5, we find that for a quartic extension with class number
1 , necessarily DK 6 436 , which makes all five cases impossible.

• If dK = 3 , we find five possible number fields, all with class number 1 , with
respective discriminants DK = 49, 81, 148, 169, 229 . Corollary 7.5 implies
that, with hK = 1 , the field K must have discriminant DK 6 59 . Hence
only the case DK = 49 is possible.

• If dK = 2 , we find seven possible number fields, all with class number 1 , with
respective discriminants DK = 5, 8, 12, 13, 17, 21, 24 . By Corollary 7.5, one
even has DK 6 8 in this case; hence only the cases DK = 5, 8 are possible.

Now, for each possible number field K, knowing its relevant arithmetic invariants
allows us to compute the explicit lower bound S(Λ) for the covolume of the principal
arithmetic subgroup Λ . By Lemma 7.1 and (17), we can then obtain a corresponding
lower bound for the covolume of Γ . By comparing this lower bound to the covolume

Ψ(n) = µ (Sp2n(R)/Γ0) =

{
1/5760 ≈ 1.736 · 10−4 if n = 2,

1/2903040 ≈ 3.445 · 10−7 if n = 3,

we end up with an upper bound on the possible contribution of the index [Γ : Λ]
and the parahoric factors e′(Pυ) that were not taken into account so far. Since
all of the possible fields that have not yet been ruled out have class number 1 ,
we use Lemma 7.1 with hK = 1 and determine the values of 21−2dKS(Λ) for
all the possible combinations of degrees and discriminants. Additionally, as the
inequality 21−2dKS(Λ) 6 Ψ(n) is necessary in order for Γ to have minimal covolume
in Sp2n(R) , we also compute the quotient Ψ(n)/

(
21−2dKS(Λ)

)
in each case.
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When n = 2 , we have Π(n) = Π(2) = 3/32π6 , and

S(Λ)

22dK−1
= 2D5

K

(
3

128π6

)dK
ζK(2)ζK(4),

which we evaluate as follows:

• If dK = 3 and DK = 49 , we find that

S(Λ)

22dK−1
≈ 8.75 · 10−6,

and the quotient of Ψ(n) = Ψ(2) = 1/5760 and this approximate value of
21−2dKS(Λ) is approximately 19.85 .

• If dK = 2 and DK = 5 , we have

S(Λ)

22dK−1
≈ 4.34 · 10−6,

and the quotient of 1/5760 and this approximate value of 21−2dKS(Λ) appears
to be exactly equal to 40 .

• If dK = 2 and DK = 8 , we have

S(Λ)

22dK−1
≈ 5.97 · 10−5,

and the quotient of 1/5760 and this approximate value of 21−2dKS(Λ) is
approximately equal to 2.91 .

When n = 3 , on the other hand,

S(Λ)

22dK−1
= 2D10.5

K

(
45

1024π12

)dK
ζK(2)ζK(4)ζK(6),

and we compute that

• if dK = 2 and DK = 5 , then

S(Λ)

22dK−1
≈ 1.15 · 10−7.

The quotient of 1/2903040 and this approximate value of 21−2dKS(Λ) is ap-
proximately equal to 2.99 .

Since all the quotients computed above exceed 1 , we are forced to make one final
refinement to rule out all but one of these number fields. Namely, for the fields listed
above, it is not too difficult to compute the index related to the groups U+

K and U2
K

which appear in the first inequality of Lemma 7.1. Since the quotient of the middle
part and the right-hand side of the lemma is c(K) = 22dK−1/

[
U+
K : U2

K

]
, we adjust

the quotients computed above accordingly by multiplying the values obtained by
1/c(K) . For n = 2 , we can argue as follows:
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• If dK = 3 and DK = 49 , we computed the quotient 19.85 .
Since c(K) = 25/

[
U+
K : U2

K

]
, the adjusted quotient is

[
U+
K : U2

K

]
· 19.85/32 ,

which is less than 1 (thus making this case impossible) if and only if we have[
U+
K : U2

K

]
= 1 . We now argue that this is indeed the case:

K = Q(α) where α = 2 cos(2π
7
) ≈ 1.25 has minimal polynomial

X3 +X2 − 2X − 1

and conjugates α′ = −1/(α+1) and α′′ = −1/(α′ +1) = −(1 + 1/α) . In this
case, one may check (e.g. with the help of [35]) that two fundamental units
are ε1 = α and ε2 = α2 − 1 . We now show that the group U+

K of totally
positive units is generated by ε21 and ε22 , which will prove that the index of
U2
K in U+

K is 1 .
Suppose that u = ±εℓ11 ε

ℓ2
2 ∈ O×

K is totally positive. Since ε1, ε2 > 0 , we
must have u = εℓ11 ε

ℓ2
2 . Moreover, by dividing by the totally positive number

ε
2⌊ℓ1/2⌋
1 ε

2⌊ℓ2/2⌋
2 , we can replace `1 and `2 with their remainders (mod 2); that

is, we assume that `1, `2 ∈ {0, 1} . If `1 = `2 = 1 , in which case u = α(α2−1) ,
u is not totally positive, as its conjugate

α′′ ((α′′)2 − 1
)
= −(1 + 1/α)

(
2/α + 1/α2

)
is negative. Therefore either `1 = 0 or `2 = 0 , corresponding to the two
possibilities u = ε2 or u = ε1 . However, neither of these cases are possible:
The conjugate α′ of ε1 = α is negative; and for ε2 = α2 − 1 , one sees that its
conjugate

(α′)2 − 1 = 1/(α + 1)2 − 1 < 1− 1 < 0

is also negative. In conclusion, `1 = `2 = 0 , as claimed.

• If dK = 2 and DK = 5 , we computed the quotient 40 . In this case we
can check that

[
U+
K : U2

K

]
= 1 so that c(K) = 23/

[
U+
K : U2

K

]
= 8 , and

hence the adjusted quotient is 5 . Indeed, this follows from (6) since, by
(4), the fundamental unit in this case is ε = (1 +

√
5)/2 (corresponding to

a2 − 5b2 = −4 with (a, b) = (1, 1)), which is not totally positive, as the non-
trivial embedding K ↪→ R maps ε to (1 −

√
5)/2 < 0 . In summary, the

current case (dK , DK) = (2, 5) has yet to be ruled out.

• If dK = 2 and DK = 8 , we computed the quotient 2.91 . Once again, we have[
U+
K : U2

K

]
= 1 , which yields an adjusted value of

[
U+
K : U2

K

]
· 2.91/8 < 1 and

rules out this case. Indeed, for this field we have ε = (2 + 2
√
2)/2 = 1 +

√
2

(corresponding to a2 − 8b2 = −4 with (a, b) = (2, 1)), which is not totally
positive, and we can then argue as in the previous case.

Finally, for n = 3 , we can argue as follows:

• If dK = 2 and DK = 5 , we computed the quotient 2.99 . As we observed
in the second case above, the index

[
U+
K : U2

K

]
is 1 , and hence the adjusted

quotient becomes 2.99/8 < 1 . This case has therefore been ruled out.
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Local Considerations and the Final Steps

We have now singled out the number field K = Q(
√
5) as the only candidate other

than Q that can give rise to the lattice Γ (and only for n = 2). As we cannot shed
any more light on this matter with the global methods we have used up until this
point, we will now take the parahoric factors coming from the finite places of K
into account. This will allow us to conclusively rule out the field Q(

√
5) and prove

Theorem 1.1 after a detailed analysis of the only remaining case K = Q .

9. Estimates of the parahoric factors
For K = Q(

√
5) and n = 2 , Theorem 6.3 shows that

µ(G(Kυ0)/Λ) =
28125

1024π12
ζK(2)ζK(4)

∏
υ<∞

e′(Pυ),

since DK = 5 and Π(2) = 3/32π6 . In terms of the covolume of Γ , this says that

µ(G(Kυ0)/Γ) = [Γ : Λ]−1 28125

1024π12
ζK(2)ζK(4)

∏
υ<∞

e′(Pυ).

From our discussion in the previous section, it follows that Γ has minimal covolume
if and only if the combined contribution of the index [Γ : Λ] and the parahoric factors
does not exceed 5 . That is, we can rule out the field K if we can show that

[Γ : Λ]−1
∏
υ<∞

e′(Pυ) > 5. (36)

The stronger bound in (18) now states that [Γ : Λ] 6 2#T , so (36) will certainly
follow if we can show that ∏

υ<∞

e′(Pυ) > 5 · 2#T , (37)

where T denotes the set of finite places υ where Pυ is not hyperspecial.
It is possible, using Bruhat-Tits theory, to describe the Levi components Mυ for
each parahoric subgroup Pυ ⊆ G(Kυ) explicitly, and hence to compute the exact
values of e′(Pυ) with the help of (12). Conveniently, for the case of a K-form of
Sp4 , these computations already exist in the literature. Namely, we obtain from [9,
Sect. 3, Table 2] that for any place υ < ∞ of K, one either has

Mυ = Sp2(Fqυ)× 2O2(Fqυ) = SL2(Fqυ)× 2O2(Fqυ)

or Mυ = Sp4(Fqυ) . (Here 2O2 denotes the non-split, quasisplit orthogonal group.)
By computing the orders of these groups and using (12) (cf. also [9, eq. (2.12)], one
then has the two possibilities

e′(Pυ) = 1 or e′(Pυ) = T (qυ) :=
q4υ − 1

2(qυ + 1)
. (38)

By the discussion at the end of Section 6.1, we note that essentially (37) can only
fail if the number of parahorics which are not hyperspecial is very small. Indeed,
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every Pυ with e′(Pυ) 6= 1 contributes to the right-hand side of (37) with a factor 2 ,
whereas the left-hand side receives a contribution of a factor ≈ q3υ , which exceeds 2
already for small values of qυ .
More precisely, we check that T (2) = 2.5 , T (3) = 10 , and T (x) > 25 for x > 4 .
Therefore, if (37) fails, then Pυ is hyperspecial for any finite place υ with qυ > 4 .
Hence, the only possibilities for non-hyperspecial Pυ come from residue fields of
order qυ = 2 or qυ = 3 . However, neither of these possibilities can occur for
K = Q(

√
5) , as we will now demonstrate.

If qυ = 2 , then Kυ = Q2 [X] /〈X2 − 5〉 is a quadratic extension of Q2 since 5 is
not a square in Q2 . (It is well-known that x = 2nu with u ∈ Z×

2 is a square in
Q2 if and only if n is even and u ≡ 1 (mod 8), which is not the case for x = 5 .)
Consequently, the local degree of K at a place υ lying above 2 is qυ = 4 .
On the other hand, if qυ = 3 , then Kυ must also be a quadratic extension, as
x = pnu (with u ∈ Z×

p ) is a square in Qp if and only if n is even and u (mod p) is
a quadratic residue. Since 5 (mod 3) is a quadratic non-residue, our claim follows,
and the local degree is qυ = 9 .
We have now established that e′(Pυ) = 1 for all finite places υ of K, meaning that
G splits at all finite places by (10). To conclusively rule out K, we note that since
2n = 4 , our discussion in Section 5 shows that G must be a special unitary group
over quaternion algebra HK. Moreover, if υ denotes any place of K, we recall from
[8, Lemma 2.3] that SU(HKυ ; τ ;h) is Kυ -split if and only if the quaternion algebra
HKυ splits; that is, if and only if there is an isomorphism defined over Kυ such that

HKυ ' Mat2×2(Kυ).

By [33, Thm. 14.6.1], we then conclude that, because G is split at all finite places
(which means that HK splits at all finite places), the number of infinite places where
HK is ramified (i.e non-split) is either 0 or 2 . It cannot be the case that HK is
ramified at both real places of K, since G splits at υ = υ0 . Hence G must even be
split at the other real place υ1 of K. However, this is impossible, as we have already
established, since then G(Kυ1) = Sp4(R) is not compact.

10. Identifying the lattice Γ

In this final section we will show that G is isomorphic to the split form Sp2n over
Q and complete the proof of Theorem 1.1.
By the arguments up until this point, we know that for n > 2 , a lattice Γ ⊆ Sp2n(R)
of minimal covolume comes from Q ; that is, G is defined over Q , and Γ is the
normalizer in G(R) of the principal arithmetic subgroup Λ = G(Q) ∩

∏
υ<∞ Pυ .

Recall from Theorem 6.3 and (2) the relation

µ(G∞/Γ) = [Γ : Λ]−1 µ(G∞/Γ0)
∏
υ<∞

e′(Pυ),

and that for almost all places υ < ∞ , the parahoric Pυ is hyperspecial and e′(Pυ) =
1 . Under these circumstances, any contribution to the covolume of Γ in G∞ must
come from [Γ : Λ] and the local factors corresponding to non-hyperspecial parahoric
subgroups, which are indexed by the set T (cf. the proof of Lemma 7.1).
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In the case of K = Q , Lemma 7.1 states that [Γ : Λ] 6 2#T . For the proof that
G is Q-split it will therefore be sufficient to show that any local factor e′(Pυ) not
equal to 1 is strictly larger than 2 . To this end, let e′(Pυ) > 1 be any such factor.
By (10) we then see that G does not split over Qυ . Due to this, and since Pυ is
special, we can use the explicit formulas for e′(Pυ) in [8], which we record in the
following lemma.

Lemma 10.1 ([8, Lemma 4.1]). Let υ be a finite place of Q and Pυ ⊆ G(Qυ) a
special, non-hyperspecial parahoric subgroup. If qυ denotes the size of the residue
field of Qυ , then

e′(Pυ) =


∏n

j=1 (q
j
υ + (−1)j) if n is odd,∏m

j=1 (q
4j−2
υ − 1) if n = 2m is even.

Proof. We only need to justify the formula in the case of even rank. However, this
follows immediately from [8, eq. (4.9)] once we split the product in the numerator
into two products depending on the parity of the indexing variable j .

With this lemma we can easily deduce that e′(Pυ) > 2 for any place υ ∈ T . Indeed,
we certainly have qυ > 2 for any υ , so if n > 2 is odd, then e′(Pυ) > 1 · 5 · 7 = 35 .
On the other hand, if n is even, then e′(Pυ) > 3 . It follows that, if Γ has minimal
covolume, then G must split at all finite places. Since G also splits at the unique
infinite place υ0 , we conclude (as in the previous section) that G = Sp2n .
To complete the proof of Theorem 1.1, all that remains is to show that Λ = Γ = Γ0 ,
where the last equality holds up to conjugation.
For υ an arbitrary finite place of Q , the fact that the parahoric subgroup Pυ is
hyperspecial means that can find an element gυ in

GSp2n(Qυ) =
{
g ∈ GL2n(Qυ) : g

ᵀ ( 0 I
−I 0

)
g = χ(g)

(
0 I
−I 0

)
for some χ(g) ∈ Q×

υ

}
,

such that gυPυg
−1
υ = Sp2n(Zυ) . Indeed, GSp2n acts transitively on the hyperspecial

parahoric subgroups of the symplectic group (cf. [32, Sect. 2.5]). Because of
the topology on the restricted product AQ and the coherence of the collection
{Pυ : υ < ∞} , we can assume that gυ = I for all places υ except finitely many.
Doing so, we thus obtain an element

g =
(
1, (gυ)υ<∞

)
∈ GSp2n(AQ).

The class number of a split reductive group is at most the class number of any
maximal split torus (cf. [24, Corollary to Thm. 8.11]). Since Q has class number
1 , it follows that GSp2n has class number 1 over Q , and we have

GSp2n(AQ) =

(
GSp2n(R)×

∏
υ<∞

GSp2n(Zυ)

)
·GSp2n(Q).

In terms of the coordinate corresponding to a finite place υ , this means that we can
write gυ = g′υh where g′υ ∈ GSp2n(Zυ) and h ∈ GSp2n(Q) .
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Since h = (g′υ)
−1gυ and conjugation by g′υ leaves Sp2n(Zυ) invariant, so that hPυh

−1

simply equals Sp2n(Zυ) , we now finally obtain

hΛh−1 = hSp2n(Q)h−1 ∩
∏
υ<∞

hPυh
−1 = Sp2n(Q) ∩

∏
υ<∞

Sp2n(Zυ) = Γ0.

We have established that Λ = h−1Γ0h for h ∈ GSp2n(Q) . Since Γ is the normalizer
of Λ in Sp2n(R) , and Γ0 = NSp2n(R)(Γ0) is its own normalizer (cf. [3]), we now
conclude that

Γ =
{
g ∈ Sp2n(R) : hgh−1 ∈ Γ0

}
= Sp2n(R) ∩ h−1Γ0h.

In other words, hΓh−1 = Sp2n(R) ∩ Γ0 = Γ0 where h ∈ GSp2n(Q) . Taking
into account the isomorphism (now, automorphism) Sp2n(R)

∼−→ G(R) = Sp2n(R)
induced by the distinguished real place υ0 of K = Q , we conclude that Γ is
conjugate to Γ0 by an element of GSp2n(R) (cf. [11]). This concludes the proof of
Theorem 1.1.

11. A final remark on non-special parahorics

We have proved Theorem 1.1 under the assumption that every parahoric had max-
imal volume. We will now justify this assumption, as promised in Section 6.1.
For the remainder of the paper, we will deviate from our previous notation and
use the symbols Γ and Λ as free variables that denote, respectively, any maximal
lattice in Sp(2n,R) and the principal arithmetic subgroup it normalizes (by the
maximality criterion [28, Satz 3.5] of Rohlfs). Likewise, G will denote the algebraic
K-group that defines Λ . Pυ(Λ) = Pυ(Γ) will denote the parahoric subgroup at υ
associated to the pair (Λ,Γ) . Finally, we will also write Λmax to denote a principal
arithmetic subgroup for which every Pυ(Λ) is of maximal volume; and Γmax will
then denote the normalizer of Λmax . In the same vein, for a pair (Λ,Γ) , we will
write Λmax and Γmax to denote the corresponding “maximized” principal arithmetic
subgroup (as explained in [5, Sect. 4.3] and [6, Sect. 3.8]) and its normalizer in
G(R) , respectively.
Up until this point, we have proved the following result in particular.

Theorem 11.1. Let V0 denote the minimal covolume of all lattices in Sp(2n,R).
If a lattice of the form Γmax has covolume V0 , then G splits at every finite place of
K, and every parahoric Pυ associated to Γmax satisfies e′(Pυ) = 1.

We now prove that any lattice of minimal covolume must, in fact, be of the form
Γmax .

Lemma 11.2. Suppose that Γ ⊆ Sp(2n,R) is a maximal lattice, associated to an
algebraic K-group G, with covolume V0 . Then Γ = Γmax ; that is, every parahoric
Pυ(Γ) has maximal volume among all parahoric subgroups of G(Kυ).

Proof. The discussion in Section 6.1 shows that also Γmax has covolume V0 .
Since both Γ and Γmax come from G , Theorem 11.1 implies that G splits at all
finite places – in particular, a parahoric subgroup of G(Kυ) is special if and only if
it is hyperspecial, and consequently Γ = Γmax if and only if every Pυ(Γ) is special.
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Theorem 11.1 also gives e′(Pυ(Γ
max)) = 1 , so we obtain from Theorem 6.3 and the

inequality [5, 4.3.(15)] that

1 =
µ(G(R)/Γ)

µ(G(R)/Γmax)
=

[Γmax : Λmax]

[Γ : Λ]

∏
υ<∞

e′(Pυ(Γ)) >
∏
υ<∞

e′(Pυ(Γ))

#ΞΘυ

, (39)

where ΞΘυ ⊆ Aut(∆υ) is the subgroup of all diagram automorphisms that preserve
the type Θυ = Θυ(Pυ(Γ)) of Pυ(Γ) , and ∆υ denotes the local Dynkin diagram of
G over Kυ .
Concretely, we have #ΞΘυ ∈ {1, 2} for every υ , and in fact #ΞΘυ = 1 when Pυ(Γ)
is special (see [8, Sect. 3.1] or [6, Sect. 3.2]). Therefore, any factor corresponding
to a special parahoric on the right-hand side of (39) must be equal to 1 . The
crucial fact, as we will see below, is that the converse holds as well: If Pυ(Γ) is not
special, then the corresponding factor exceeds 1 . As this is impossible, the proof
will be concluded once we demonstrate this claim. Equivalently, we must show that
e′(Pυ(Γ)) > 2 whenever Pυ(Γ) is not special.
Let υ be any fixed place such that Pυ(Γ) is not special. If the residue field of Kυ

has degree qυ = 2 and G has rank n = 2 , then our claim follows immediately from
the inequality

e′(Pυ(Γ)) > q4υ − 1

2(qυ + 1)
=

15

6
> 2,

which follows by inspection of [9, Sect. 3, Table 2]. We therefore have either n > 3 or
qυ > 3 . In this situation, we can use the “volume rigidity estimate” proved for non-
special parahorics in [25, Prop. 2.10.(iv)] together with (15) (which is independent
of the assumption we are in the process of justifying) to conclude that

e′(Pυ(Γ)) > qn+1
υ

qυ + 1

n∏
j=1

(
1− 1

q2jυ

)
=: h(qυ, n).

It is straightforward that h(qυ, n) is increasing in both qυ > 2 and n > 1 . In
consequence, as (qυ, n) 6= (2, 2) , we either have h(qυ, n) > h(2, 3) ≈ 3.69 or
h(qυ, n) > h(3, 2) ≈ 17.75 . In any case, we arrived at the desired conclusion.
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