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Abstract. This paper studies the relationship between crossed modules of Lie algebras and
their centres. We show that the homotopy of the centre of any crossed module ∂ : L1 → L0 of Lie
algebras fits in an exact sequence involving cohomology of the homotopy Lie algebras π0(L∗) and
π1(L∗) .
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1. Introduction
Crossed modules (of groups) were introduced by J. H. C. Whitehead in the 1940’s as
a tool to study relative homotopy groups π2(X,A) [13]. It was discovered in the
60’s that the category of crossed modules is isomorphic to the category of internal
categories in the category of groups, see for example [9]. Thus crossed modules can
be considered as simplifications of such internal categories. A similar simplification
exists also for internal categories in the category of Lie algebras. The corresponding
objects are known as crossed modules of Lie algebras (see [4], [8], [12]).
The aim of this work is to introduce the centre of a crossed module of Lie algebras. It
is analogous to the centre of a crossed module (of groups) introduced by the author
in [10] which is closely related to the Gottlieb group [5] of the classifying space and
the Drinfeld centre of the corresponding monoidal category [6].
Recall that a crossed module of Lie algebras can be defined as a linear mapping
∂ : L1 → L0 , where L0 is a Lie algebra, L1 is an L0 -module, i.e. we are given a
bilinear map L0 × L1 → L1 , (x, a) 7→ x · a such that

[x, y] · a = x · (y · a)− y · (x · a),

∂ is a Lie module homomorphism (i.e ∂(x · a) = [x, ∂(a)]) for which the relation

∂(a) · b+ ∂(b) · a = 0

holds. This definition is equivalent to the more commonly used Definition 2.1, see
Lemma 2.4. The essential invariants of a crossed module L∗ = (L1

∂−→ L0) are the
Lie algebra π0(L∗) = Coker(∂) and the π0(L∗)-module π1(L∗) = ker(∂) . Recall
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also that a braided crossed module of Lie algebras is a linear map of vector spaces
∂ : L1 → L0 together with a bilinear map L0×L0 → L1, (x, y) 7→ {x, y} satisfying
the identities (6), (12) and (13), see Proposition 2.5. Any braided crossed module
is also a crossed module, where the Lie algebra structure on L0 and the action of
L0 on L1 are given by

[x, y] = ∂{x, y}, x · a = {x, ∂(a)}.

Now we state our main result.
Theorem. (i) Let ∂ : L1 → L0 be a crossed module of Lie algebras. There exists a

braided crossed module δ : L1 → Z0(L∗), where Z0(L∗) is the collection of all
pairs (x, ξ), where x ∈ L0 and ξ : L0 → L1 is a linear map satisfying the
following identities

∂ξ(t) = [x, t], ξ(∂a) = x · a, ξ([s, t]) = s · ξ(t)− t · ξ(s).

Here x, s, t ∈ L0 and a ∈ L1 . The linear map δ : L1 → Z0(L∗) is given
by δ(c) = (∂(c), ξc), where ξc(t) = −t · c. Moreover, the structural bracket
Z0(L∗)× Z0(L∗) → L1 is given by {(x, ξ), (y, η)} = ξ(y).
We call the braided crossed module δ : L1 → Z0(L∗) the centre of the crossed
module ∂ : L1 → L0 and denote it by Z∗(L∗).

(ii) Denote by z0 the map Z0(L∗) → L0 given by z0(x, ξ) = x. Define an action
of L0 on Z0(L∗) by y · (x, ξ) := ([y, x], ψ). Here y ∈ L0 , (x, ξ) ∈ Z0(L∗) and
ψ(t) = t · ξ(y). With this action, the map z0 : Z0(L∗) → L0 is a crossed module
of Lie algebras which is denoted by L∗//Z∗(L∗).

(iii) Let L∗ be a crossed module of Lie algebras. Then

π1(Z∗(L∗)) ∼= H0(π0(L∗), π1(L∗))

and one has an exact sequence

0 → H1(π0(L∗), π1(L∗)) → π0(Z∗(L∗)) → Zπ1(L∗)(π0(L∗)) → H2(π0(L∗), π1(L∗)).

Here, for a Lie algebra M and an M -module A, one denotes by ZA(M) the
collection of all m ∈ M such that [m,x] = 0 for all x ∈ M (so m is central)
and m · a = 0 for all a ∈ A.

Part (i) of the Theorem is proved below as Proposition 3.2, while parts (ii) and (iii)
are proved as Proposition 3.6 and Corollary 3.10 respectively.
To summarise parts (i) and ii), say that any crossed module ∂ : L1 → L0 of Lie
algebras fits in a commutative diagram

L1

id
��

δ // Z0(L∗)

z0
��

L1
∂ // L0

where the top horizontal L1
δ−→ Z0(L∗) and right vertical Z0(L∗)

z0−→ L0 arrows have
again crossed module structures. Hence all four arrows in the square are crossed
modules. In fact, the first one is even a braided crossed module. The pair of maps
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(z0, idL1) defines a morphism of crossed modules Z∗(L∗) → L∗ . The crossed module
L∗//Z∗(L∗) should be understood as the “homotopic cofibre” of Z∗(L∗) → L∗ since
we have the following obvious exact sequence

0 → π1(Z∗(L∗)) → π1(L∗) → π1(L∗//Z∗(L∗)) →

→ π0(Z∗(L∗)) → π0(L∗) → π0(L∗//Z∗(L∗)) → 0.

As we said, the construction of Z∗(L∗) and the above properties are parallel to the
similar construction given in [10]. However the centre defined in [10] has one more
important property. Let us recall this property, closely following [10]. Let B(G∗)
denote the classifying space of G∗ . Next, for a topological space X denote by Z(X)
the connected component of the space Maps(X,X) of self continuous maps X → X
containing the identity map idX . Then the following assertion holds:

Z(BG∗) ∼= B(Z∗(G∗)). (1)

Recall also that if (X, x) is a pointed map, then the evaluation at x gives rise to a
pointed map evx : (Z(X), idX) → (X, x) . Now apply the functor π1 and denote by
G(X, x) the image of the induced map

π1(Z(X), idX) → π1(X, x).

The group G(X, x) is known as the Gottlieb group [5]. As a consequence of
isomorphisms we proved previously in [10], for X = B(G∗) the classifying space
of a crossed module G∗ , we identified G(X, x) as a specific subgroup of the so
called Whitehead centre of X , which consists of those elements of π1(X) which are
central and act trivially on π2(X) .
The author would like to thank the referee for excellent work.

2. Crossed modules in Lie algebras

In this section we fix terminology and notation for (braided) crossed modules in Lie
algebras [2], [8].

2.1. Definition of crossed and braided crossed modules of Lie algebras
In this paper we fix a field k of characteristic 6= 2 . All vector spaces and linear
maps are considered over k . Accordingly, the Lie algebras are defined over k .
Recall that if L is a Lie algebra, then a (left) L-module is a vector space V together
with a bilinear map L× V → V, (x, v) 7→ x · v such that

[x, y] · v = x · (y · v)− y · (x · v).

If additionally V =M is also a Lie algebra and

x · [m,n] = [x ·m,n] + [m,x · n]

holds for all x ∈ L and m,n ∈ M , then we say that L acts on the Lie algebra M
by derivations.
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Definition 2.1. A precrossed module of Lie algebras consists of a homomorphism
of Lie algebras ∂ : L1 → L0 together with an action of the Lie algebra L0 on L1 ,
denoted by (x, a) 7→ x · a , x ∈ L0 , a ∈ L1 . One requires that the following identity
holds:

∂(x · a) = [x, ∂a] (2)
for all a ∈ L1 and x ∈ L0 . If additionally we have the identity

∂(a) · b = [a, b] (3)

then ∂ : L0 → L0 is called a crossed module. If additionally the Lie algebra structure
on L0 is trivial and the action of L0 on L1 is also trivial, then L∗ is called an abelian
crossed module.

If L∗ is a precrossed module of Lie algebras, then both Im(∂) and Ker(∂) are ideals
of L0 and L1 respectively. Thus π0(L∗) and π1(L∗) are Lie algebras. If additionally
L∗ is a crossed module, then π1 is a central ideal of L1 and hence π1(L∗) is an
abelian Lie algebra and the action of L0 on L1 induces a π0(L∗)-module structure
on π1(L∗) .

Definition 2.2. [2, Proposition 6.20] A braided crossed module (BCM) of Lie
algebras L∗ consists of a homomorphism of Lie algebras ∂ : L1 → L0 together with
a bilinear map L0 × L0 → L1, (x, y) 7→ {x, y},
such that the following identities hold:

∂{x, y} = [x, y], (4)
{∂a, ∂b} = [a, b], (5)

0 = {∂a, x}+ {x, ∂a}, (6)
0 = {x, [y, z]}+ {z, [x, y]}+ {y, [z, x]}. (7)

Lemma 2.3. Let L∗ be a BCM of Lie algebras.
(i) Define the action of L0 on L1 by x · a := {x, ∂(a)}.

Then L∗ is a crossed module of Lie algebras.
(ii) The Lie algebra π0(L∗) is abelian and the action of π0(L∗) on π1(L1) is trivial.

Proof. (i) First let us show that we really obtain an action of L0 on the Lie
algebra L1 . This requires checking the following two identities:

[u, v] · a = u · (v · a)− v · (u · a) (8)
and x · [a, b] = [x · a, b] + [a, x · b]. (9)
In fact, we have [u, v] · a = {[u, v], ∂(a)}. (10)

On the other hand, we also have

u · (v · a) = {u, ∂(v · a)} = {u, ∂{v, ∂(a)}} = {u, [v, ∂(a)]}.

Similarly v · (u · a) = {v, [u, ∂(a)]} = −{v, [∂(a), u]} .
Now we can use (7) to write
u · (v · a)− v · (u · a)− [u, v] · a = {u, [v, ∂(a)]}+ {v, [∂(a), u] + {∂(a), [u, v]}} = 0

and the identity (8) follows.
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For the identity (9), observe that we have

x · [a, b] = {x, ∂[a, b]} = {x, [∂(a), ∂(b)]}.

We also have

[x · a, b] = {∂(x · a), ∂(b)} = {∂{x, ∂(a)}, ∂(b)} = −{∂(b), [x, ∂(a)]}.

Similarly, [a, x · b] = −{∂(a), [∂(b), x]}
and the identity (9) also follows from (7).
We still need to check the relations (2) and (3) in our case. We have

∂(x · a) = ∂{x, ∂(a)} = [x, ∂(a)]

and (2) is proved. Finally we have

∂(a) · b = {∂(a), ∂(b)} = [a, b]

and (3) is proved.
(ii) By (4), the Lie algebra π0(L∗) is abelian and by part (i) the action of L0 on
π1(L∗) = Ker(∂) is trivial.

2.2. Alternative definitions

Lemma 2.4. A crossed module of Lie algebras can equivalently be defined as a
linear map ∂ : L1 → L0 , where L0 is a Lie algebra, L1 is a L0 -module and ∂ is a
homomorphism of L0 -modules (that is, the equality (2) holds) satisfying additionally
the following identity for all a, b ∈ L1 :

∂(a) · b+ ∂(b) · a = 0. (11)

Proof. By forgetting the Lie algebra structure on L1 , we see that any crossed
module gives rise to a structure as described in the Lemma. Conversely, we can
uniquely reconstruct the bracket on L1 from such a structure by [a, b] := ∂(a) · b .
Our first claim is that ∂ respects the bracket:

∂([a, b]) = ∂(∂(a) · b) = [∂(a), ∂(b)].

Here we used the identity (2) for x = ∂(a) . Our second claim is that L1 is a Lie
algebra. In fact, we have

[a, b] + [b, a] = ∂(a) · b+ ∂(b) · a = 0,

showing that the bracket is anticommutative. For the Jacobi identity we have

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = [a, [b, c]]− [[a, b], c]− [b, [a, c]]

= ∂(a) · (∂(b) · c)− ∂([a, b]) · c− ∂(b) · (∂(a) · c).
Since

∂([a, b]) · c = ∂(∂a · b) · c = [∂(a), ∂(b)] · c = ∂(a) · (∂(b) · c)− ∂(b) · (∂(a) · c),
we see that [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0 . Thus, L1 is also a Lie algebra and
the second claim is proved.
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It remains to show that L0 acts on L1 as a Lie algebra. Indeed, we have
x · [a, b]− [x · a, b]− [a, x · b] = x · (∂(a) · b)− (∂(x · a)) · b− ∂(a) · (x · b).

Now we can observe that
(∂(x · a)) · b = [x, ∂(a)] · b = x · (∂(a) · b)− ∂(a)(x · b).

Comparing these expressions we see that x · [a, b] = [x · a, b] + [a, x · b] and the result
follows.

Proposition 2.5. A braided crossed module of Lie algebras can equivalently be
defined as a linear map of vector spaces ∂ : L1 → L0 together with a bilinear map

L0 × L0 → L1, (x, y) 7→ {x, y}
satisfying the identity (6) and also the following identities

∂{x, x} = 0, (12)
{u, ∂{v, w}}+ {w, ∂{u, v}}+ {v, ∂{w, u}} = 0, (13)

where a ∈ L1 and x, u, v, w ∈ L0 .

Proof. By forgetting the Lie algebra structures on L0 and L1 , we obtain a
structure as described in the Proposition. In fact, we only need to check that the
identities (12) and (13) hold. The identity (12) follows from the fact that [x, x] = 0
as in any Lie algebra and the identity (4). Quite similarly, (13) follows from (7) and
the identity (4).
Conversely, assume ∂ : L1 → L0 is equipped with a structure as described in the
Proposition. Then we can define brackets on L0 and L1 based on the identities
(4) and (5). In this way one obtains Lie algebras L0 and L1 . In fact the Jacobi
identity in both cases is a consequence of (13). The antisymmetry of the bracket for
L0 follows from (12). The antisymmetry for L1 follows from (6) by taking x = ∂a .
Next, we have ∂[a, b] = ∂{∂(b), ∂(a)} by the definition of the bracket on L1 . The
last expression is the same as [∂(a), ∂(b)] by the definition of the bracket on L0 .
Thus, ∂[a, b] = [∂(a), ∂(b)] . Hence, ∂ is a homomorphism of Lie algebras. By our
constructions and assumptions, the identities (4), (5) and (6) hold. Finally, the
identity (7) follows from (13).

3. The centre of a crossed module of Lie algebras

3.1. Definition and the first properties
The following is an analogue of the corresponding notion from [10].

Definition 3.1. Let ∂ : L1 → L0 be a crossed module of Lie algebras. Denote
by Z0(L∗) the set of all pairs (x, ξ) , where x ∈ L0 and ξ : L0 → L1 is a linear map
satisfying the following identities

∂ξ(t) = [x, t], (14)
ξ(∂a) = x · a, (15)

ξ([s, t]) = s · ξ(t)− t · ξ(s). (16)
Here x, s, t ∈ L0 and a ∈ L1 .
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Proposition 3.2. (i) Let c∈L1 . Then the pair (∂(c), ξc) belongs to Z0(L∗), where
ξc(t) = −t · c.

(ii) The linear map δ : L1 → Z0(L∗) given by δ(c) = (∂(c), ξc), together with
the bilinear map Z0(L∗)× Z0(L∗) → L1 given by {(x, ξ), (y, η)} = ξ(y), is
a braided crossed module of Lie algebras.

Proof. (i) According to (2) we have

∂ξc(t) = ∂(−t · c) = −[t, ∂c] = [∂c, t]

and the equality (14) holds. Next, we have

ξc(∂(a)) = −∂(a) · c = ∂(c) · a

and (15) follows. Here we used the equality (11). Finally, we have

ξc([s, t]) = −[s, t] · c = −(s · (t · c)) + (t · (s · c)) = s · ξc(t)− t · ξc(s).

(ii) We will use the characterisation of a BCM given in Proposition 2.5. Thus we
only need to check the three identities listed in Proposition 2.5. By definition we
have

∂({(x, ξ), (x, ξ)}) = ∂(ξ(x)) = [x, x] = 0.

Here we used the identity (14). Hence the identity (12) holds. We also have

{(x, ξ), δ(a)}+ {δ(a), (x, ξ)} = ξ(∂(a)) + ξa(x) = x · a− x · a = 0.

This shows that the identity (6) holds. Now we will prove the validity of the identity
(13). To this end, we take three elements in Z0(L∗) :

u = (x, ξ), v = (y, η), w = (z, ζ).

We have {v, w} = {(y, η), (z, ζ)} = η(z).

Hence δ({v, w}) = (∂(η(z)), t 7→ −t · η(z)) = ([y, z], t 7→ −t · η(z)).
Thus, {u, δ{v, w}} = ξ([y, z]). (17)

Now we use the identity (16) to obtain

{u, δ{v, w}} = y · ξ(z)− z · ξ(y).

Using the identity (15), we can rewrite y·ξ(z) as η(∂(ξ(z))) and z·ξ(y) as ζ(∂(ξ(y))) .

Thus, {u, δ{v, w}} = η(∂(ξ(z)))− ζ(∂(ξ(y))).

Then using the identity (14), we can rewrite this as

{u, δ{v, w}} = η(∂(ξ(z)))− ζ(∂(ξ(y))) = η([x, z])− ζ([x, y]).

Observe that by cyclically permuting the variables in equation (17), we obtain

{w, δ{u, v}} = ζ([x, y]) and {v, δ{w, u}} = η([z, x]).

Thus we proved that

{u, δ{v, w}} = −{v, δ{w, u}} − {w, δ{u, v}}

and (13) follows.
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Definition 3.3. Let L∗ be a crossed module of Lie algebras. The BCM of Lie
algebras

Z∗(L∗) = (L1
δ−→ Z0(L∗))

constructed in Theorem 3.2 is called the centre of L∗ .

3.2. The Lie algebra structure on Z0(L∗)

Corollary 3.4. Let L∗ be a crossed module of Lie algebras. Then the Lie algebra
structures obtained by Proposition 2.5 on Z0(L∗) and L1 are given by

[(x, ξ), (y, η)] = ([x, y], θ) and [a, b] = ∂(a) · b,
where θ(t) = −t · ξ(y). The map ∂ : L1 → L0 is a homomorphism of Lie algebras.

Proof. According to Proposition 2.5, we obtain Lie algebra structures on L1 and
Z0(L∗) by putting

[a, b]new := {δ(a), δ(b)} and [(x, ξ), (y, η)] := δ{(x, ξ), (y, η)}.
Here we used [a, b]new to denote the Lie algebra structure obtained from the bracket
{−,−} . Now we prove that the two Lie algebra structures on L1 coincide. In fact,
we have

[a, b]new = {(∂(a), ξa), (∂(b), ξb)} = ξa(∂(b)) = −∂(b) · a = −[b, a] = [a, b].

Now we identify the bracket on Z0(L∗) . We have
[(x, ξ), (y, η)] = δ(ξ(y)) = (∂ξ(y), ξξ(y)).

Since ∂ξ(y) = [x, y] and ξξ(y)(t) = −t · ξ(y) , the result follows.

The following lemma shows that the same Lie algebra structure can be written in a
slightly different form.

Lemma 3.5. If (x, ξ) and (y, η) are elements of Z0(L∗), then
−t · ξ(y) = ξ([y, t])− η([x, t]) = t · η(x).

Proof. We have
ξ([y, t])− η([x, t]) = y · ξ(t)− t · ξ(y)− η([x, t])

= η(∂(ξ(t)))− t · ξ(y)− η([x, t]) = −t · ξ(y).
Here we first used the equality (16), then (15) and finally (14). Quite similarly, we
finish the proof by

ξ([y, t])− η([x, t]) = ξ([y, t])− x · η(t) + t · η(x)
= ξ([y, t])− ξ(∂(η(t))) + t · η(x) = t · η(x).

3.3. The crossed module L∗//Z∗(L∗)

Proposition 3.6. (i) Let y ∈ L0 and (x, ξ) ∈ Z0(L∗). Then ([y, x], ψ) ∈ Z0(L∗),
where ψ(t) = t · ξ(y).

(ii) The rule y · (x, ξ) := ([y, x], ψ) defines an action of L0 on Z0(L∗). With this
action, the map

Z0(L∗) → L0; (x, ξ) 7→ x

is a crossed module of Lie algebras.
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Proof. (i) We need to check that the pair ([y, x], ψ) satisfies the relations (14)–
(16). We have

∂ψ(t) = ∂(t · ξ(y)) = [t, ∂(ξ(y))] = [t, [x, y]] = [[y, x], t]

and the relation (14) holds. Next, we have

ψ(∂(a)) = ∂(a) · ξ(y) = ξ([∂(a), y]) + y · ξ(∂(a)) = −ξ(∂(y · a)) + y · (x · a)
= −x · (y · a) + y · (x · a) = [y, x] · a

and the relation (15) holds. Finally, we have

ψ([s, t]) = [s, t] · ξ(y) = s · (t · ξ(y))− t · (s · ξ(y)) = s · ψ(t)− t · ψ(s)

and (16) holds.
(ii) Let us first check that the above formula defines an action. This requires
checking of two identities. We have

u · (v · (x, ξ)) = u · ([v, x], t 7→ t · ξ(v)) = ([u, [v, x]], t 7→ t · (u · ξ(v))).

Similarly, v · (u · (x, ξ)) = ([v, [u, x]] , t 7→ t · (v · ξ(u))) . Hence, we obtain

u · (v · (x, ξ))− v · (u · (x, ξ))
= ([u, [v, x]], t 7→ t · (u · ξ(v)))− ([v, [u, x]], t 7→ t · (v · ξ(u)))
= ([u, [v, x]]− [v, [u, x]], t 7→ (t · (u · ξ(v))− t · (v · ξ(u)))
= ([[u, v], x], t 7→ t · ξ([u, v]))

and thus [u, v] · (x, ξ) = u · (v · (x, ξ))− v · (u · (x, ξ)) .
For the second identity, observe that

y · [(x, ξ), (x′, ξ′)] = y · ([x, x′], t 7→ −t · ξ(x′))
= ([y, [x, x′]], t 7→ −t · (y · ξ(x′))).

On the other hand, [y · (x, ξ), (x′, ξ′)] + [(x, ξ), y · (x′, ξ′)] is equal to

([[y, x], x′], t 7→ −t · (x′ · ξ(y))) + ([x, [y, x′]], t 7→ −t · ξ([y, x′])).

The first coordinate of this expression is

[[y, x], x′]− [[y, x′], x] = [y, [x, x′]],

while the second coordinate is equal to

t 7→ −t · (x′ · ξ(y))− t · ξ([y, x′]))
= −t · (x′ · ξ(y))− t · (y · ξ(x′)) + t · (x′ · ξ(y)) = −t · (y · ξ(x′)).

Comparing these expressions, we see that

y · [(x, ξ), (x′, ξ′)] = [y · (x, ξ), (x′, ξ′)] + [(x, ξ), y · (x′, ξ′)].

Hence L0 acts on Z0(L∗) .
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In order to show that δ : Z0(L∗) → L0 is a crossed module, it suffices to check the
identities (2) and (11) thanks to Lemma 2.4. Since the image of y ·(x, ξ) = ([y, x], ψ)
in L0 is [y, x] , the identity (2) holds for Z0(L∗) → L0 . Finally for A = (x, ξ) ,
A′ = (x′, ξ′) we have

x · A′ + x′ · A = ([x, x′], t 7→ t · ξ′(x)) + ([x′, x], t 7→ t · ξ(x′)) = 0

thanks to Lemma 3.5. So the identity (11) also holds for Z0(L∗) → L0 and hence
the result.

3.4. On homotopy groups of Z∗(L∗)

Let L∗ be a crossed module. In this section we investigate πi of the crossed module
Z∗(L∗) , i = 0, 1 . The case i = 1 is easy and the answer is given by the following
lemma.

Lemma 3.7. Let L∗ be a crossed module. Then

π1(Z∗(L∗)) ∼= H0(π0(L∗), π1(L∗)).

Proof. By definition a ∈ π1(Z∗(L∗)) iff δ(a) = (0, 0) , thus when ∂(a) = 0 and
ξa(t) = 0 for all t ∈ L0 . These conditions are equivalent to the conditions a ∈ π1(L∗)
and t · a = 0 for all t ∈ L0 and hence the result.

To state our result on π0(Z∗(L∗)) we need to fix some notation.
For a Lie algebra L , we let Z(L) denote the centre of L , which is the set of elements
c ∈ L for which [c, x] = 0 for all x ∈ L . Moreover, if K is a Lie algebra on which
L acts, we set

AnnK(L) = {x ∈ L|x · k = 0 for all k ∈ K}.
The intersection of Z(L) and AnnK(L) is denoted by ZK(L) . Thus c ∈ ZK(L) if
and only if c · k = 0 and [x, c] = 0 for all x ∈ L and k ∈ K .
Let L∗ be a crossed module. In this case we have defined

Zπ1(L∗)(π0(L∗)) and ZL1(L0).

We come back to the second one in the next section. Now we relate Zπ1(L∗)(π0(L∗))
to π0(Z∗(L∗)) . To this end denote the class of x ∈ L0 in π0(L∗) by cl(x) . Take
now an element (x, ξ) ∈ Z0(L∗) . Accordingly, cl(x, ξ) denotes the class of (x, ξ) in
π0(Z∗(L∗)) .

Lemma 3.8. (i) Let (x, ξ) ∈ Z0(L∗). Then the class cl(x) ∈ π0(L∗) belongs to

Zπ1(L∗)(π0(L∗)).

Thus one has the well defined homomorphism Z0(L∗)
ω′
−→ Zπ1(L∗)(π0(L∗))

given by ω′(x, ξ) := cl(x).

(ii) The composite map L1
δ−→ Z0(L∗)

ω′
−→ Zπ1(L∗)(π0(L∗)) is trivial. Hence the

map ω′ induces a homomorphism

ω : π0(Z∗(L∗)) → Zπ1(L∗)(π0(L∗)).
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(iii) For a 1-cocycle φ : π0(L∗) → π1(L∗), the pair (0, φ̃) ∈ Z0(L∗), where
φ̃ : L0 → L1 is the composite map

L0 → π0(L∗)
ϕ−→ π1(L∗) ↪→ L1.

Moreover, the assignment φ 7→ cl(0, φ̃) induces a homomorphism

f : H1(π0(L∗), π1(L∗)) → π0(Z∗(L∗)).

(iv) These maps fit in an exact sequence

0 → H1(π0(L∗), π1(L∗))
f−→ π0(Z∗(L∗))

ω−→ Zπ1(L∗)(π0(L∗)).

Proof. (i) In fact, according to the equation (14) of Definition 3.1, [x, y] = ∂ξ(y)
and hence cl([x, y]) = 0 in π0(L∗) . It follows that cl(x) is central in π0(L∗) .
Moreover, the equation (15) of Definition 3.1 tells us that ξ(∂a) = x·a . In particular,
if a ∈ π1(L∗) (i.e. ∂(a) = 0) then x · a = 0 and the result follows.
(ii) Take a ∈ L1 . By construction δ(a) = (∂(a), ξa) . Hence ω′δ(a) = cl(∂(a)) = 0 .
(iii) Since φ is a 1-cocycle, φ̃ satisfies the condition (16) of Definition 3.1. Next,
the values of φ̃ belong to π1(L∗) , so ∂φ̃ = 0 and the condition (14) follows. Finally,
φ̃(∂a) = φ(cl(∂a)) = φ(0) = 0 and (15) also holds. It remains to show that
B1(π0(L∗), π1(L∗)) is sent to zero, i.e. that if φ(t) = t · b , for an element b ∈ π1(L∗) ,
then cl(0, φ̃) = 0 , but this follows from the fact that δ(b) = (0, φ̃) .
(iv) Exactness at H1(π0(L∗), π1(L∗)) : Assume φ : π0(L∗) → π1(L∗) is a 1-cocycle
such that cl(0, φ̃) is the trivial element in π0(Z∗(L∗)) . That is, there exists a c ∈ L1

such that δ(c) = (0, φ̃) . Thus ∂(c) = 0 and φ̃(t) = −t · c .
So c ∈ π1(L∗) and the second equality implies that the class of φ is zero in
H1(π0(L∗), π1(L∗)) , proving that f is a monomorphism.
Exactness at π0(Z∗(L∗)) : First take a cocycle φ : π0(L∗) → π1(L∗) . Then

ω ◦ f(cl(φ)) = ω(cl(0, φ̃)) = cl(0) = 0.

Take now an element (x, ξ) ∈ Z0(L∗) such that cl(x, ξ) ∈ ker(ω) . Thus x = ∂(a)
for a ∈ L1 . Then cl(x, ξ) = cl(y, η) , where

(y, η) = (x, ξ)− δ(a) = (x, ξ)− (∂(a), t 7→ −t · a) = (x− ∂(a), t 7→ ξ(t) + t · a).

Since y = x− ∂(a) = 0 , we see that ∂η(t) = [y, t] = [0, t] = 0 and

η(∂c) = ξ(∂(c)) + ∂(c) · a = x · c+ ∂(c) · a = 0

as x = ∂(a) . So η = φ̃ , where φ : π0(L∗) → π1(L∗) is a 1-cocycle. Thus
f(cl(φ)) = cl(0, η) = cl(x, ξ) and exactness at π0(Z∗(L∗)) follows.

The map ω is not surjective in general. That is, for an element x ∈ L0 such that
cl(x) ∈ Zπ1(L∗)(π0(L∗)) , there is in general no linear map ψ : L0 → L1 satisfying the
conditions (14)-(16) of the Definition 3.1. However, there is a function satisfying
(14) and (15), see the following Proposition. We will use this observation to extend
the exact sequence constructed in Lemma 3.8.
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Proposition 3.9. (i) Take an element x ∈ L0 such that cl(x) ∈ Zπ1(L∗)(π0(L∗)).
Then there exists a linear map ψ : L0 → L1 such that ∂ψ(t) = [x, t] and
ψ(∂a) = x · a for all t ∈ L0 and a ∈ L1 .

(ii) The expression θ̄(s, t) := s · ψ(t) − t · ψ(s) − ψ([s, t]) is skew-symmetric,
belongs to π1(L∗) and vanishes if s = ∂(a) or t = ∂(a) for some a ∈ L1 .
Hence, θ̄ defines a map Λ2π0(L∗)

θ̃−→ π1(L∗).
(iii) The map θ̃ is a 2-cocycle. That is, it satisfies the relation

s · θ̃(t, r)− t · θ̃(s, r) + r · θ̃(s, t) = θ̃([s, t], r)− θ̃([s, r], t) + θ̃([t, r], s).

(iv) The class θ ∈ H2(π0(L∗), π1(L∗)) is independent of the choice of ψ . The
assignment x 7→ θ defines a group homomorphism

g : Zπ1(L∗)(π0(L∗)) → H2(π0(L∗), π1(L∗)).

Proof. (i) Since cl(x) is central in π0(L∗) , for each t ∈ L0 there exists an element
at ∈ L1 such that ∂(at) = [x, t] . We choose a linear splitting L0 = Im(∂) ⊕ T and
a linear basis (ti) of T . The assignment ti 7→ ati can be extended as a linear map
ψ : T → L1 for which ∂(ψ(t)) = [x, t] holds for all t ∈ T . To define ψ on whole
L0 , we first take x ∈ Im(∂) . In this case x = ∂a and we can set ψ(x) = x · a . This
is well-defined since if ∂a = ∂b we will have a = b + c , where ∂c = 0 . It follows
that c ∈ π1(L∗) . By our assumption on x we also have x · c = 0 . It follows that
x · a = x · b . This shows that ψ is well defined on Im(∂) .
Since L0 is the direct sum of T and Im(d) we can extend ψ uniquely on L0 . It
remains to check that ∂(ψ(t)) = [x, t] holds for all t ∈ L0 . The required identity is
linear on t and since it holds when t ∈ T , we can assume that t = ∂(a) . The result
follows in this case from

∂(ψ(t)) = ∂(ψ(∂(a)) = ∂(x · a) = [x, ∂(a)] = [x, t].

(ii) We have θ̄(t, s) = t · ψ(s)− s · ψ(t)− ψ([t, s])

= −(s · ψ(t)− t · ψ(s)− ψ([s, t]) = −θ̄(s, t).

We also have ∂(θ̄(s, t)) = ∂(s · ψ(t)− t · ψ(s)− ψ([s, t]))

= [s, [x, t]]− [t, [x, s]]− [x, [s, t]] = 0.

Finally, let t = ∂(a) for some a ∈ L1 . Then

θ̄(s, ∂(a)) = s · ψ(∂(a))− ∂(a) · ψ(s)− ψ([s, ∂(a)]).

We have ψ(∂(a)) = x · a because ψ satisfies equation (15). Then by equation (11)
and because ψ satisfies equation (14), we have −∂(a) ·ψ(s) = ∂(ψ(s)) ·a = [x, s] ·a .
Finally, −ψ([s, ∂(a)]) = −ψ(∂(s · a)) = −x · (s · a) because ∂ is a Lie module
homomorphism and ψ satisfies equation (15). Thus,

θ̄(s, ∂(a)) = s · (x · a) + [x, s] · a− x · (s · a) = 0.

Hence, θ̃ : Λ2π0(L∗) → π1(L∗) is a well-defined map.

(iii) The 2-cocycle condition follows from direct computation.
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(iv) If ψ and ψ′ both satisfy the conditions in (i), then ψ − ψ′ vanishes on Im(∂)
and takes values in ker(∂) = π1(L∗) . In this way we obtain a well-defined map
h : π0(L∗) → π1(L∗) such that ψ − ψ′ is equal to the composite map

L0 � π0(L∗)
h−→ π1(L∗) ↪→ L1 .

From this the result follows, because θ̄ − θ̄′ = d(h) , where θ′ is the function
corresponding to ψ′ as in (ii) and

d : hom(π0(L∗), π1(L∗)) → hom(Λ2π0(L∗), π1(L∗))

is the coboundary map in the standard complex computing the Lie algebra coho-
mology.

Corollary 3.10. Let L∗ be a crossed module of Lie algebras. Then one has an
exact sequence
0 → H1(π0(L0), π1(L∗))

f−→ π0(Z∗(L∗))
ω−→ Zπ1(L∗)(π0(L∗))

g−→ H2(π0(L∗), π1(L∗)).

Proof. According to Lemma 3.8 we only need to show exactness at Zπ1(L∗)(π0(L∗)) .
To this end, take (x, ξ) ∈ Z0(L∗) . Since ω′(x, ξ) = cl(x) , we can choose ψ = ξ for
g(cl(x)) . Clearly θ̄ = 0 for this ψ and hence g ◦ ω = 0 .
Take now x ∈ L0 such that cl(x) ∈ Zπ1(L∗)(π0(L∗)) . Assume g(cl(x)) = 0 . We have
to show that there exists a map ξ : L0 → L1 such that (x, ξ) ∈ Z0(L∗) . According
to part (i) of Proposition 3.9, we can choose a map ψ : L0 → L1 such that the pair
(x, ψ) satisfies all requirements in Definition 3.1 except perhaps the relation (16). By
construction, g(x) is the class of the 2-cocycle θ̄ in H2(π0(L∗), π1(L∗)) . As this class
is zero, θ̄ is a coboundary and therefore there exists a function φ : π0(L∗) → π1(L∗)
for which θ̄(s, t) = s · φ(t)− t · φ(s)− φ([s, t]) .
Since φ takes values in π1(L∗) , the map ψ′(t) = ψ(t) − φ(t) also satisfies the
conditions in (iii), thus we can replace ψ by ψ′ . The above equation shows that
the corresponding 2-cocycle θ̄′ vanishes, meaning that ψ′ is a 1-cocycle. Thus
(x, ψ′) ∈ Z0(L∗) and exactness follows.

3.5. Relation to nonabelian cohomology
In this section we relate our centre to the non-abelian cohomology of Lie algebras
developed by D. Guin [4].
Let L∗ be a crossed module. The group H0(L0, L∗) is defined by

H0(L0, L∗) = {a ∈ L1| ∂a = 0 and x · a = 0 for all x ∈ L0}.

Clearly, H0(L0, L∗) = H0(π0(L∗), π1(L∗)) . It is a central subgroup of L1 .
In order to define the first cohomology group H1(L0, L∗) , we first introduce the
group DerL0(L0, L1) . Elements of DerL0(L0, L1) are pairs (g, γ) (see [4, Definition
2.2.]), where g ∈ L0 and γ : L0 → L1 is a function for which two conditions hold:

γ([s, t]) = s · γ(t)− t · γ(s) and ∂γ(t) = [g, t].

Here g, s, t ∈ L0 . Comparing with Definition 3.1, we see that these are exactly the
conditions 14 and 16 of Definition 3.1. Hence Z0(L∗) ⊂ DerL0(L0, L1) .
We define a Lie algebra structure on DerL0(L0, L1) as follows.
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If (g, γ), (g′, γ′) ∈ DerL0(L0, L1) , then ([g, g′], γ ∗ γ′) ∈ DerG0(G0,G1) (see [4,
Lemme 2.3.1]), where γ ∗ γ′ is defined by

(γ ∗ γ′)(t) = γ(g′ · t)− γ′(g · t).

Then Z0(L∗) is a subalgebra of DerL0(L0, L1) .
The group H1(L0, L∗) is defined as the quotient DerL0(L0, L1)/I , where

I = {(∂(a) + c, ηa)}

Here c is a central element of L0 , a ∈ L1 and ηa : L0 → L1 is defined by

ηa(t) = t · a.

The fact that I is an ideal is proved in [4, Lemma 2.4]. The following fact is a direct
consequence of the definition.

Lemma 3.11. One has a commutative diagram with exact rows

0 // H0(L0, L∗) // L1
δ // DerL0(L0, L1) // H1(L0, L∗) // 1

0 // π1(Z∗(L∗))

∼=

OO

// L1

Id

OO

δ // Z0(L∗) //
?�

OO

π0(Z∗(L∗))
?�

OO

// 1

Remark 3.12. Guin’s definition [4, Lemme 2.3.1] of the Lie algebra structure
on DerL0(L0, L1) agrees with our definition of the Lie algebra structure on Z0(L∗) .
Guin’s definition directly translates to

[(x, ξ), (y, η)] = ξ([y, t])− η([x, t]),

while from Proposition 3.2 we have

{(x, ξ), (y, η)} = ξ(y),

which lifts to [(x, ξ), (y, η)] = −t · ξ(y).

However, ξ([y, t])− η([x, t]) = −t · ξ(y),

according to Lemma 3.5 and so the definitions agree.

Addendum
In [10] we proved that the centre of a crossed module is intimately related to the
Drinfeld centre of a monoidal category [7]. Here we introduce the notion of a centre
for Lie 2-algebras. We consider strict Lie 2-algebras according to Definition 40 in
[1], which are the Lie analogues of categorical groups. By definition a (strict) Lie
2-algebra is a Lie algebra object in the category of all small categories. Thus a Lie
2-algebra is a category L whose set of objects is denoted by L0 and whose set of
arrows is denoted by L1 . Two bifunctors are given: the addition + : L × L → L
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and bracket [−, ] : L × L → L . Also, for any k ∈ K an endofunctor λk : L → L
(the multiplication by a scalar) is given such that the all axioms of a Lie algebra
hold strictly. For example, the distributivity law k(x + y) = kx + ky implies the
commutativity of the diagram

L× L
+ //

λk×λk

��

L

λk

��
L× L

+ // L.

It is well-known that the category of Lie 2-algebras and the category of crossed
modules are equivalent, see Proposition 48 in [1]. We recall how to obtain Lie
2-algebras from crossed modules.
Let ∂ : X1 → X0 be a linear map. Then one has the category Cat(X∗) . Objects
are elements of X0 and a morphism from x to y is given by the diagram x

a−→ y ,
where a ∈ X1 satisfies the condition ∂(a)+x = y . Sometimes this morphism is also
denoted by (x, a) . Thus (x, a) : x → ∂(a) + x . The composition law in Cat(X∗) is
induced by the addition in L1 . The identity morphism idx of an object x is x 0−→ x .
So idx = (x, 0) . For any k ∈ K we have an endofunctor λk : Cat(X∗) → Cat(X∗)
which on objects is given by λk(x) = kx and on morphisms it is given by

λk(x
a−→ y) = kx

ka−→ ky.

We also have the bifunctor

+ : Cat(X∗)× Cat(X∗) → Cat(X∗)

which on objects is given by (x, y) 7→ x+ y and on morphisms by

(x
a−→ y) + (x′

a′−→ y)′ = x+ x′
a+a′−−→ y + y′.

In this way we obtain a strict K -vector space object in the category of small
categories.
In the case when instead of a linear map ∂ : X1 → X0 , a crossed module of Lie
algebras is given, there is a bifunctor [−,−] : Cat(L∗)× Cat(L∗) → Cat(L∗) , which
on objects is given by the Lie algebra structure on L0 and on morphisms it assigns
to x

a−→ y and x′
a′−→ y′ the morphism

[x, x′]
∂(a)·a′−x′·a+x·a′ // [y, y′] .

In particular, we have the morphism [x, x′]
x·a′−−→ [x, y′] , which is also denoted by

[x, x′]
[idx,a′]−−−−→ [x, y′] . In other words

[(x, a), (x′, a′)] = ([x, x′], ∂(a) · a′ − x′ · a+ x · a′).

For any (x, ξ) ∈ Z0(L∗) and y ∈ L0 one puts τy = −2ξ(y) . Then τy defines a
morphism τy : [x, y] → [y, x] .
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In fact, the collection (τy)y∈L0 defines a natural transformation of endofunctors

τ : [x,−] → [−, x]

for which additionally the following equality holds

τ[y,z] = y · τz − z · τy.

This equality can be rewritten as

τ[y,z] = [idy, τz]− [idz, τy]. (18)

This suggests that we can define the centre of a Lie 2-algebra L to be the category
whose objects are pairs (x, τ) , where x∈L0 is an object of L and τ is a natural trans-
formation τ : [x,−] → [−, x] , i.e., the collection of morphisms (τy : [x, y] → [y, x])y∈L0

such that for any morphism a : y → z one has a commutative diagram

[x, y]
τy //

[idx,a]
��

[y, x]

[a,idx]
��

[x, z] τz
// [z, x]

.

One requires that additionally the equality (18) holds. A morphism (x, τ) → (x′, τ ′)
is given by a morphism a : x→ x′ for which the following diagram commutes

[x, y]
τy //

[a,idy ]
��

[y, x]

[idy ,a]
��

[x′, y]
τ ′y

// [y, x′].

Denote this category by Z(L) and call it the centre of the Lie 2-algebra L . The
bifunctor

[−,−] : Z(L)×Z(L) → Z(L)

is defined by [(x, τ), (y, η)] = ([x, y], θ)

where θz : [[x, y], z] → [z, [x, y]]

is given by θz = τ[y,z] − η[x,z].

Here we used the facts that

[[x, y], z] = [x, [y, z]]− [y, [x, z]] and [z, [x, y]] = [[y, z], x]− [[x, z], y].

Our computations show that Z(L) is again a Lie 2-algebra and in fact there is also
braiding (see [11],[3] for braided Lie 2-algebras) given by

τ[(x′,τ ′),(x′′,τ ′′)] = τ ′y.
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