ON THE EXISTENCE AND UNIQUENESS OF A SOLUTION TO A STOCHASTIC DIFFERENTIAL EQUATION IN A BANACH SPACE

B. MAMPORIA

Abstarct. A sufficient condition is given for the existence of a solution to a stochastic differential equation in an arbitrary Banach space. The method is based on the concept of covariance operator and a special construction of the Itô stochastic integral in an arbitrary Banach space.

2000 Mathematics Subject Classification: 60B11, 60H10, 60H05. **Key Words and Phrases:** Covariance operators, Wiener processes, Itô stochastic integrals and stochastic differential equations in Banach space.

Let X be a real separable Banach space, X^* its dual, (Ω, \mathcal{B}, P) a probability space, $\mathcal{B}(X)$ the Borel σ -algebra of X. A random element $\xi:\Omega\to X$ is called a Gaussian random element if $\langle \xi, x^* \rangle$ is a Gaussian random variable for all $x^* \in X^*$. The distribution of ξ , $\mu_{\xi}(B) = P\{\xi \in B\}$, $B \in \mathcal{B}(X)$ is uniquely determined by the mean $E\xi = \int_{\Omega} \xi(\omega) dP(\omega)$ and the covariance operator $R: X^* \to X$, $\langle Rx^*, y^* \rangle = E\langle \xi - E\xi, x^* \rangle \langle \xi - E\xi, y^* \rangle$, which is symmetric and positive $(\langle Rx^*, x^* \rangle \geq 0$ for all $x^* \in X^*$ linear operator. Symmetric and positive linear operators, which are covariance operators of Gaussian measures, are called Gaussian covariances. By the factorization lemma (see [1], [10], Lemmas 3.1.1, 3.1.2) the symmetric and positive linear operator $R: X^* \to X$ can be factorized through a separable Hilbert space $H, R = AA^*$, where $A: H \to X$ is a continuous linear operator.

A family of random elements $(W_t)_{t\in[0,1]}$, $W_t:\Omega\to X$, is called a Wiener process if

- 1) $W_0 = 0$ almost surely (a.s.);
- 2) $W_{t_{i+1}} W_{t_i}$ $(i = 0, 1, \dots, n-1)$ are independent random elements for every $0 \le t_0 < t_1 < \dots < t_n \le 1$;
- 3) for every $t \in [0,1]$, W(t) is a Gaussian random element with mean zero and covariance operator tR, where $R: X^* \to X$ is a fixed Gaussian covariance.

If X is a finite-dimensional Hilbert space and R is the identity operator, then our definition of a Wiener process coincides with the usual definition of a finite-dimensional Wiener process. Our definition is a direct extension of the definition of a Wiener process for the Hilbert space case ([1], p. 113). It is known that for any Gaussian covariance R and an arbitrary Banach space X there exists a Wiener process and it has a.s. continuous sample paths (see [2]–[4]).

Let $(F_t)_{t\in[0,1]}$, $F_t\subset\mathcal{B}$ be an increasing family of σ -algebras such that

a) W_t is F_t -measurable for all $t \in [0, 1]$;

b) $W_s - W_t$ is independent of F_t for $0 \le t < s \le 1$. F_0 contains all P-null sets in \mathcal{B} .

The main problem in studying a stochastic differential equation for the Banach space case is the definition of the stochastic integral of an operator-valued random function with respect to a Wiener process in a Banach space. The original definition of the Itô stochastic integral in the finite-dimensional case can be naturally extended to the Hilbert space case (see [1], [5]). Subsequently, by isolating the inequalities needed to construct Itô stochastic integrals in a Banach space it proved possible to extend the theory to special classes of Banach spaces with geometrical properties similar to those of a Hilbert space (see [6]–[8]).

We will define the stochastic integral of an operator-valued random function in an arbitrary Banach space. To this end, as the first step we define the Itô stochastic integral of a random function with values in a dual space. In what follows we fix a Wiener process $(W_t)_{t\in[0,1]}$ with values in a Banach space X associated with a given Gaussian covariance.

Definition 1 ([9]). A function $\varphi : [0,1] \times \Omega \to X^*$ is called nonanticipating with respect to $(F_t)_{t \in [0,1]}$ if the function $(t,\Omega) \to \langle \varphi(t,\omega), x \rangle$ from ([0,1] $\times \Omega, \mathcal{B}$ [0,1] $\times \mathcal{B}$) into $(R^1, \mathcal{B}(R^1))$ is measurable for all $x \in X$, and the function $\omega \to \langle \varphi(t,\omega), x \rangle$ from (Ω, \mathcal{B}) into $(R^1, \mathcal{B}(R'))$ is F_t -measurable for all $t \in [0,1]$ and $x \in X$.

We denote by $G_R(X^*)$ the class of nonanticipating functions φ for which

$$P_R(\varphi) = \left(\int_0^1 \int_\Omega \langle R\varphi(t,\omega), \varphi(t,\omega) \rangle dt \, dP \right)^{1/2} < \infty,$$

where $R: X^* \to X$ is a covariance operator of W_1 , $G_R(X^*)$ is a linear space and P_R is a pseudonorm.

If $\varphi \in G_R(X^*)$ is a step-function, $\varphi(t,\omega) = \sum_{j=0}^{n-1} \varphi_{t_i}(\omega) \chi_{[t_i,t_{i+1}]}(t)$, $0 = t_0 < \cdots < t_n = 1, \ \varphi_{t_i} : \Omega \to X^*, \ i = 0, \ldots, n-1$, then the stochastic integral of φ with respect to $(W_t)_{t \in [0,1]}$ is naturally defined by the equality

$$\int_{0}^{1} \varphi(t,\omega)dW_{t} = \sum_{i=0}^{n-1} \langle \varphi_{t_{i}}(\omega), W_{t_{i+1}}(\omega) - W_{t_{i}}(\omega) \rangle.$$

The following lemma is true.

Lemma 1 ([9]). For an arbitrary $\varphi \in G_R(X^*)$, there exists a sequence of step-functions $(\varphi_n)_{n\in\mathbb{N}}\subset G_R(X^*)$ such that $\varphi_n\overset{P_R}{\longrightarrow}\varphi$, and $\int_0^1\varphi_ndW_t$ converges in $L_2(\Omega,\mathcal{B},P)$ as $n\to\infty$.

The limit of the sequence $\int_0^1 \varphi_n dW_t$ is called the stochastic integral of φ with respect to $(W_t)_{t \in [0,1]}$ and is denoted by $\int_0^1 \varphi dW_t$. It is easy to see that the above

definition of the stochastic integral is correct and

$$E\left(\int_{0}^{1} \varphi \, dW_{t}\right)^{2} = \int_{0}^{1} \int_{\Omega} \langle R\varphi, \, \varphi \rangle dt \, dP = P_{R}^{2}(\varphi).$$

Let L(X, X) $(L(X^*, X^*))$ be the space of linear bounded operators from X to X (from X^* to X^*).

Definition 2. A function $\varphi:[0,1]\times\Omega\to L(X,X)$ is called nonanticipating with respect to $(\mathcal{F}_t)_{t\in[0,1]}$ if for all $x\in X$ and $x^*\in X^*$ the real-valued function $(t,\omega)\to\langle\varphi(t,\omega)x,x^*\rangle$ is measurable, and for all $t\in[0,1]$ the function $\omega\to\langle\varphi(t,\omega)x,x^*\rangle$ is F_t -measurable. By $G_R(L(X,X))$ we denote the class of all nonanticipating functions $\varphi:[0,1]\times\Omega\to L(X,X)$ such that

$$\int_{0}^{1} \int_{\Omega} \langle \varphi(t,\omega) R \varphi^{*}(t,\omega) x^{*}, x^{*} \rangle dt dP < \infty \quad \text{for all} \quad x^{*} \in X^{*},$$

where $\varphi^*(t,\omega)$ is the dual of $\varphi(t,\omega)$ and $R:X^*\to X$ is the covariance operator of W_1 .

Let $\varphi \in G_R(L(X,X))$ and $x^* \in X^*$, φ^*x^* map $[0,1] \times \Omega$ into X^* and $\varphi^*x^* \in G_R(X^*)$. Then we can define the stochastic integral $\int_0^1 \varphi^*x^*dW_t$. Consider the map $T_{\varphi}: X^* \to L_2(\Omega, \mathcal{B}, P)$, $T_{\varphi}x^* = \int_0^1 \varphi^*x^*dW_t$.

Proposition 1. T_{φ} is a continuous linear operator, i.e., it is a random linear function (RLF).

Proof. Let $R = AA^*$, $A: H \to X$ be a factorization of R. For any $x^* \in X^*$

$$\int_{0}^{1} \int_{\Omega} \langle \varphi(t,\omega) R \varphi^{*}(t,\omega) x^{*}, x^{*} \rangle dP dt = \int_{0}^{1} \int_{\Omega} \langle \varphi(t,\omega) A A^{*} \varphi^{*}(t,\omega) x^{*}, x^{*} \rangle dP dt,$$

$$\int_{0}^{1} \int_{\Omega} \left(A^{*} \varphi^{*}(t,\omega) x^{*}, A^{*} \varphi^{*}(t,\omega) x^{*} \right)_{H} dP dt = \int_{0}^{1} \int_{\Omega} \left\| A^{*} \varphi^{*}(t,\omega) x^{*} \right\|_{H}^{2} dP dt < \infty.$$

Therefore we have an operator $L: X^* \to L_2(\Omega \times [0,1], H)$, $Lx^* = A^*\varphi^*(t,\omega)x^*$. The closed graph theorem easily shows that L is continuous. Therefore

$$\sup_{\|x^*\| \le 1} \|T_{\varphi}x^*\|^2 = \sup_{\|x^*\| \le 1} \int_0^1 \int_{\Omega} \langle \varphi(t,\omega) R \varphi^*(t,\omega) x^*, x^* \rangle dP dt = \sup_{\|x^*\| \le 1} \|Lx^*\|^2 < \infty,$$

i.e., T_{φ} is continuous.

Definition 3 ([9]). Let $\varphi \in G_R(L(X,X))$. The linear continuous map (RLF) $T_{\varphi}: X^* \to L_2(\Omega, \mathcal{B}, P), T_{\varphi}x^* = \int_0^1 \varphi^* x^* dW_t, x^* \in X^*$ is called a generalized stochastic integral of an operator-valued random function φ with respect to $(W_t)_{t \in [0,1]}$.

Definition 4 ([9]). We say that a random element $\xi: \Omega \to X$ is the stochastic integral of φ (if such an element exists) if $\langle \xi, x^* \rangle = T_{\varphi}x^*$, and write $\xi = \int_0^1 \varphi \, dW_t$.

Therefore for all $\varphi \in G_R(L(X,X))$ the generalized stochastic integral $T_{\varphi}x^*$ exists, but the stochastic integral $\int_0^1 \varphi(t,\omega) dW_t$ does not always exist. The generalized stochastic integral as an RLF induces a cylindrical measure on X which cannot always be extended to a countably additive measure on the Borel σ -algebra $\mathcal{B}(X)$. Or there is no random element $\xi:\Omega\to X$ such that $T_{\varphi}x^*=\langle \xi,x^*\rangle$. Thus, the question of existence of a stochastic integral is reduced to the problem of extending a cylindrical measure to a countably additive measure or, equivalently, to the problem of decomposability of an RLF.

We need a notion of a positive symmetric linear operator $T: X^* \to X$ with a special property.

Definition 5. We say that a positive symmetric linear operator $T: X^* \to X$ belongs to $\mathcal{R}_2(X)$ if there exists c > 0 such that for all $n \in N$ and x_1^*, \ldots, x_n^* from X^*

$$\left(\sum_{i=1}^{n} \|Tx_i^*\|^2\right)^{1/2} \le c \sup_{\langle Tx^*, x^* \rangle \le 1} \left(\sum_{i=1}^{n} \left| \langle Tx_i^*, x^* \rangle \right|^2\right)^{1/2}.$$

We denote by $\Pi_2(T)$ the minimal c for which this inequality holds.

Operator $A: H \to X$ is called 2-absolutely summing if there is a constant $c \geq 0$ such that for all $n \in N$ and h_1, \ldots, h_n from H, $\left(\sum_{i=1}^n ||Ah_i||^2\right)^{1/2} \leq$

 $c\sup_{\|h\|\leq 1}\left(\sum_{i=1}^n\langle h_i,h\rangle^2\right)^{1/2}$. The minimal c for which this inequality is true is denoted by $\pi_2(A)$. By the factorization lemma it is easy to prove the following assertion.

Proposition 2. A positive symmetric linear operator $T: X^* \to X$ belongs to $\mathcal{R}_2(X)$ if and only if in the factorization $T = AA^*$, $A: H \to X$ is a 2-absolutely summing operator and $\Pi_2(T) = \pi_2(A)$.

From the properties of 2-absolutely summing operators follows

Proposition 3. If $T \in \mathcal{R}_2(X)$ and $\langle T_1 x^*, x^* \rangle \leq \langle T x^*, x^* \rangle$ for all $x^* \in X^*$, then $T_1 \in \mathcal{R}_2(X)$ and $\Pi_2(T_1) \leq \Pi_2(T)$. And if A_1, A_2 are linear bounded operators from X to X and $T_1, T_2 \in \mathcal{R}_2(X)$, then $A_1 T_1 A_1^* + A_2 T_2 A_2^* \in \mathcal{R}_2(X)$ and $\Pi_2(A_1 T_1 A_1^* + A_2 T_2 A_2^*) \leq ||A_1|| \cdot \Pi_2(T_1) + ||A_2|| \cdot \Pi_2(T_2)$.

We need the following

Lemma 2. Let $\xi: \Omega \to X$ be a weak second order random element such that the correlation operator $R_{\xi}x^* := E\langle \xi, x^* \rangle \xi$ belongs to $\mathcal{R}_2(X)$. Then $E\|\xi\|^2 \leq \Pi_2^2(R_{\xi})$.

Proof. By the factorization lemma, there exists $(x_k^*)_{k\in\mathbb{N}}\subset X^*$ such that $\langle R_{\xi}x_k^*, x_j^*\rangle = \delta_{kj}, \ x_k := Rx_k^*, \ k=1,\ldots,n,\ldots$ $R_{\xi}x^* = \sum_{k=1}^{\infty} \langle x^*, x_k\rangle x_k$. Let $R_{\xi} = AA^*, \ A: H \to X, \ (e_k)_{k\in\mathbb{N}}, \ e_k = A^*x_k^*, \ k=1,2,\ldots$, be an orthonormal basis in $H, \ \eta_n := \sum_{k=1}^n e_k \langle \xi, x_k^* \rangle; \ \eta_n \in H$ and for all $h \in H$

$$E\langle \eta_n, h \rangle^2 = E\left(\sum_{k=1}^n (h, e_k) \langle \xi(\omega), x_k^* \rangle\right)^2 = \sum_{k=1}^n (h, e_k)^2$$

since

$$E\langle \xi(\omega), x_k^* \rangle \langle \xi(\omega), x_i^* \rangle = \langle R_{\xi} x_k^*, x_i^* \rangle = \delta_{kj}.$$

Thus $\eta_n:\Omega\to H$ is a weak second order random element and for all $h\in H$

$$E\langle \eta_n, h \rangle^2 \to \sum_{k=1}^{\infty} \langle h, e_k \rangle^2, \quad n \to \infty.$$

Then by Lemma 5.2 of [10] $A\eta_n = \sum_{k=1}^n Ae_k \langle \xi(\omega), x_k^* \rangle$ converges in $L_2(\Omega, X)$. For all $x^* \in X^*$

$$E(\langle \xi(\omega), x^* \rangle - \sum_{k=1}^n \langle Ae_k, x^* \rangle \langle \xi(\omega), x_k^* \rangle)^2$$

$$= \langle R_{\xi} x^*, x^* \rangle - 2 \sum_{k=1}^n \langle Ae_k, x^* \rangle \langle R_{\xi} x_k^*, x^* \rangle + \sum_{k=1}^n \langle Ae_k, x^* \rangle^2$$

$$= \sum_{k=n+1}^\infty \langle Ae_k, x^* \rangle^2 \to 0 \quad \text{as} \quad n \to \infty.$$

Thus $\sum_{k=1}^{\infty} Ae_k \langle \xi(\omega), x_k^* \rangle = \xi(\omega)$ a.s. Since $\eta \in H$ and $A: H \to X$ is 2-absolutely summing, by the Pietsch theorem (see [10], Theorem 2.2.2) there exists a probability measure ν on $B_H = \{h: ||h|| \leq 1\}$ such that

$$||A\eta_n(\omega)||^2 \le \pi_2^2(A) \int_{\|h\| \le 1} |(\eta_n(\omega), h)|^2 d\nu(h) \le \pi_2^2(A) \int_{\|h\| \le 1} \|h\|^2 d\nu(h) \le \pi_2^2(A)$$

and
$$E\|\xi\|^2 = \lim_{n \to \infty} E\|A\eta_n(\omega)\|^2 \le \pi_2^2(A)$$
.

Let us state the following sufficient condition for the existence of a stochastic integral.

Theorem 1. Let $\varphi \in G_R(L(X,X))$ and $L_{\varphi}: X^* \to X$ $L_{\varphi}x^* = \int_0^1 \int_{\Omega} \varphi(t,\omega) R$ $\varphi^*(t,\omega)x^* dt dP$ belong to $\mathcal{R}_2(X)$, where $\varphi^*(t,\omega): X^* \to X$ is a dual operator of $\varphi(t,\omega)$ and R is the covariance operator of W_1 . Then there exists

the stochastic integral $\int_0^1 \varphi(t,\omega)dW_t$ and $E \| \int_0^1 \varphi(t,\omega)dW_t \|^2 < \infty$; the process $\xi_t = \int_0^t \varphi(s,\omega)dW_s$ has a.s. continuous sample paths.

Proof. Let, as in the proof of Lemma 2, $(x_k^*)_{k\in N}\subset X^*$ be such that $\langle R_\varphi x_k^*, x_j^*\rangle = \delta_{kj}, \ R_\varphi = AA^*, \ A: H\to X, \ A^*x_k^*=e_k, \ k=1,2,\ldots$, be an orthonormal basis in $H, \ x_k:=Rx_k^*, \ k=1,2,\ldots$. Then, as in the proof of Lemma 2, we can prove that $I_t(\omega):=\int_0^t \varphi(s,\omega)dW_s=\sum_{k=1}^\infty x_k \int_0^t \varphi^*(s,\omega)x_k^*dW_s$ and convergence is understanding in the sense of $L_2(\Omega,X)$. Let

$$\zeta_n(t) := \sum_{k=1}^n x_k \int_0^t \varphi^*(s, \omega) x_k^* dW_s.$$

By Lemma 2.2 of [9], for any k, there exists a sequence of step-functions $(\psi_n^*)_{n\in N}\subset G_R(X^*)$ such that $\psi_n^{*P_R}\varphi^*x_k^*$ and $\int_0^1\psi_n^*(t,\omega)dW_t\to\int_0^1\varphi^*(t,\omega)x_k^*dW_t$ in $L_2(\Omega,\mathcal{B},P)$ as $n\to\infty$. Therefore, using the one-dimensional technique, it is easy to prove that the process $\int_0^t\varphi^*(s,\omega)x_k^*dW_s$ has a.s. continuous sample paths. Now we use the method applied in [11] (Theorem 2.1.6). Let $(y_n^*)_{n\in N}\subset X^*$ be a total subset in X^* . There exists $\Omega_0\subset\Omega$, $P(\Omega_0)=1$ such that $\langle I_t(\omega),y_n\rangle$ and $\zeta_n(t,\omega)$, $n=1,2,\ldots$, are continuous for all $\omega\in\Omega_0$. For $t_m\to t$, $m\to\infty$, and $\omega\in\Omega_0$, $\liminf_{t_m\to t}\langle I_{t_m}(\omega)-\zeta_n(t_m,\omega),y_k^*\rangle|\geq |\langle I_t(\omega)-\zeta_n(t,\omega),y_k^*\rangle|$. Hence we have $\liminf_{t_m\to t}\langle I_{t_m}(\omega)-\zeta_n(t_m,\omega)\rangle|\geq ||\langle I_t(\omega)-\zeta_n(t,\omega)\rangle|$. Then $\sup_{t\in[0,1]}\|I_t(\omega)-\zeta_n(t,\omega)\|=\sup_{t\in Q}\|I_t(\omega)-\zeta_n(t,\omega)\|$, $\omega\in\Omega_0$, where Q is a set of rational numbers in [0,1]. Since $\|I_t-\zeta_n(t)\|$ is a submartingale, for all $\varepsilon>0$, $P\{\sup_{t\in Q}\|I_t-\zeta_n(t)\|>\varepsilon\}\leq\varepsilon^{-1}E\|I_1-\zeta_n(1)\|\to 0$, $n\to\infty$. There exists $(n_k)_{k\in N}$ such that $\lim_{n_k\to\infty}\sup_{t\in[0,1]}\|I_t-\zeta_{n_k}(t)\|=0$ a.s. Therefore I_t has a.s. continuous sample paths.

Let us state now a theorem on the existence and uniqueness of a strong solution to a stochastic differential equation in a Banach space.

Theorem 2. Consider the stochastic differential equation

$$d\xi(t) = a(t,\xi(t))dt + B(t,\xi(t))dW_t, \tag{1}$$

where $a:[0,1]\times X\to X$ and $B:[0,1]\times X\to L(X,X)$ are such that

- 1) for all $x \in X$, $B(\cdot, \cdot)x$ and $a(\cdot, \cdot)x$ are measurable with respect to the σ -algebra $\mathcal{B}[0, 1] \times \mathcal{B}(X)$.
- 2) There exist K > 0, $\overline{R} \in \mathcal{R}_2(X)$ and bounded linear operators $A_i : X \to X$, $i = 1, 2, \ldots$, such that $\sum_{i=1}^{\infty} ||A_i|| < \infty$ and for all $t \in [0, 1]$, $x, y \in X$, $x^* \in X^*$,

$$\langle a(t,x), x^* \rangle^2 + \langle B(t,x)RB^*(t,x)x^*, x^* \rangle \le K^2 \left(\langle \overline{R}x^*, x^* \rangle + \sum_{i=1}^{\infty} \langle A_i x, x^* \rangle^2 \right),$$

$$\langle a(t,x) - a(t,y), x^* \rangle^2 + \langle ((B(t,x) - B(t,y))R(B^*(t,x) - B^*(t,y))x^*, x^* \rangle$$

$$\leq K^2 \left(\sum_{i=1}^{\infty} \langle A_i(x-y), x^* \rangle^2 \right).$$

3) There is a \mathcal{F}_0 -measurable random element $\xi_0: \Omega \to X$ with $\langle R_0 x^*, x^* \rangle := E\langle \xi_0, x^* \rangle^2$, $R_0: X^* \to X$ belonging to $\mathcal{R}_2(X)$.

Then there exists a strong solution $(\xi_t)_{t\in[0,1]}$ to (1) with continuous sample paths, $\xi(0) = \xi_0$, $\sup_{0 \le t \le 1} E \|\xi_t\|^2 < \infty$, and if $\xi_1(t)$ and $\xi_2(t)$ are two solutions, $\xi_1(0) = \xi_2(0) = \xi_0$, then $P\{\sup_t \|\xi_1(t) - \xi_2(t)\| = 0\} = 1$.

Proof. Let $\xi_0(t) = \xi_0$ and

$$\langle \xi_n(t), x^* \rangle = \langle \xi_0, x^* \rangle + \int_0^t \langle a(s, \xi_{n-1}(s)), x^* \rangle ds + \int_0^t B^*(s, \xi_{n-1}(s)) x^* dW(s).$$
 (2)

We have

$$E\langle \xi_{n}(t), x^{*} \rangle^{2} \leq 3E\langle \xi_{0}, x^{*} \rangle^{2} + 3tE\left(\int_{0}^{t} \langle a(s, \xi_{n-1}(s)), x^{*} \rangle^{2} ds$$

$$+ 3E\int_{0}^{t} \langle B(s, \xi_{n-1}(s))RB^{*}(s, \xi_{n-1}(s))x^{*}, x^{*} \rangle ds \leq 3E\langle \xi_{0}, x^{*} \rangle^{2}$$

$$+ 3K^{2}E\int_{0}^{t} (\langle \overline{R}x^{*}, x^{*} \rangle + \sum_{i=1}^{\infty} \langle A_{i}\xi_{n-1}(s), x^{*} \rangle^{2}) ds$$

$$+ 3E\langle \xi_{0}, x^{*} \rangle^{2} + 3 \cdot tK^{2}\langle \overline{R}x^{*}, x^{*} \rangle + 3K^{2}E\int_{0}^{t} \sum_{i=1}^{\infty} \langle A_{i}\xi_{n-1}(s), x^{*} \rangle^{2} ds$$

When n=1,

$$E\langle \xi_1(t), x^* \rangle^2 \le 3\langle R_0 x^*, x^* \rangle + 3K^2 t \langle \overline{R} x^*, x^* \rangle + 3K^2 t \sum_{i=1}^{\infty} \langle A_i R_0 A_i^* x^*, x^* \rangle.$$

When n=2,

$$E\langle \xi_{2}(t), x^{*} \rangle^{2} \leq 3\langle R_{0}x^{*}, x^{*} \rangle + 3K^{2}t\langle \overline{R}x^{*}, x^{*} \rangle + 3K^{2}E\int_{0}^{t} \sum_{i=1}^{\infty} \langle \xi_{1}(s), A_{i}^{*}x^{*} \rangle^{2} ds$$

$$\leq 3\langle R_{0}x^{*}, x^{*} \rangle + 3K^{2}t\langle \overline{R}x^{*}, x^{*} \rangle + 3K^{2}\int_{0}^{t} \sum_{i=1}^{\infty} (3\langle R_{0}A_{i_{2}}^{*}x^{*}, A_{i_{2}}^{*}x^{*} \rangle + 3K^{2}s\langle \overline{R}A_{i_{2}}^{*}x^{*}, A_{i_{2}}^{*}x^{*} \rangle + 3K^{2}s\sum_{i=1}^{\infty} \langle A_{i_{1}}R_{0}A_{i_{1}}^{*}A_{i_{2}}x^{*}, A_{i_{2}}x^{*} \rangle)ds$$

$$= 3\langle R_0 x^*, x^* \rangle + 3^2 K^2 t \sum_{i_2=1}^{\infty} \langle A_{i_2} R_0 A_{i_2}^* x^*, x^* \rangle$$

$$+ (3K^2)^2 \cdot \frac{t^2}{2} \sum_{i_2=1}^{\infty} \sum_{i_1=1}^{\infty} \langle A_{i_2} A_{i_1} R_0 A_{i_1}^* A_{i_2}^* x^*, x^* \rangle$$

$$+ 3K^2 t \langle \overline{R} x^*, x^* \rangle + (3K^2)^2 \cdot \frac{t^2}{2} \sum_{i_2=1}^{\infty} \langle A_{i_2} \overline{R} A_{i_2}^* x^*, x^* \rangle.$$

It is obvious that

$$E\langle \xi_{n}(t), x^{*} \rangle^{2} \leq 3 \sum_{m=0}^{n} \frac{(3K^{2}t)^{m}}{m!} \sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{m}=1}^{\infty} \langle A_{i_{m}} \cdots A_{i_{1}} R_{0} A_{i_{1}}^{*} \cdots A_{i_{m}}^{*} x^{*} x^{*} \rangle$$
$$+ \sum_{m=1}^{n} \frac{(3K^{2}t)^{m}}{m!} \leq \sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{m-1}=1}^{\infty} \langle A_{i_{m-1}} \cdots A_{i_{1}} \overline{R} A_{i_{1}}^{*} \cdots A_{i_{m-1}}^{*} x^{*}, x^{*} \rangle.$$

We will show that random element ξ_n exists for all $n \in N$. To this end, we have to prove that $\langle R_n x^*, x^* \rangle := E \langle \xi_n, x^* \rangle^2$, $x^* \in X^*$ belongs to $\mathcal{R}_2(X)$ (see [10], Theorem VI.5.3). It is enough to show that $\sum_{i_1=1}^{\infty} \cdots \sum_{i_m=1}^{\infty} \langle A_{i_m} \cdots A_{i_1} R_0 A_{i_1}^* \cdots A_{i_m}^*$ and, analogously, we obtain $\sum_{i_1=1}^{\infty} \cdots \sum_{i_{m-1}=1}^{\infty} \langle A_{i_{m-1}} \cdots A_{i_1} \overline{R} A_{i_1}^* \cdots A_{i_{m-1}}^*$ belongs to $\mathcal{R}_2(X)$.

$$\Pi_{2} \left(\sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{m}=1}^{\infty} A_{i_{1}} \cdots A_{i_{m}} R_{0} A_{i_{1}}^{*} \cdots A_{i_{m}}^{*} \right) \\
\leq \sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{m}=1}^{\infty} \Pi(A_{i_{1}} \cdots A_{i_{m}} R_{0} A_{i_{1}}^{*} \cdots A_{i_{m}}^{*}) \\
\leq \sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{m}=1}^{\infty} \|A_{i_{1}}\| \cdot \|A_{i_{2}}\| \cdots \|A_{i_{m}}\| \Pi_{2}(R_{0}) = \left(\sum_{i=1}^{\infty} \|A_{i}\|\right)^{m} \Pi_{2}(R_{0}).$$

Obviously,

$$\Pi_{2}(R_{n}) \leq 3^{\frac{1}{2}} \sum_{m=0}^{n} \left(\frac{(3k^{2} \cdot t)^{m}}{m!} \right)^{\frac{1}{2}} \left(\sum_{i=1}^{\infty} \|A_{i}\| \right)^{m} \Pi_{2}(R_{0}) \\
+ \sum_{m=1}^{n} \left(\frac{(3k^{2} \cdot t)^{m}}{m!} \right)^{\frac{1}{2}} \left(\sum_{i=1}^{\infty} \|A_{i}\|^{2} \right)^{m-1} \cdot \Pi_{2}(\overline{R}) < \infty.$$

Thus, equality (2) makes sense.

Analogously, for any $x^* \in X^*$

$$E\langle \xi_{n+1}(t) - \xi_n(t), x^* \rangle^2 \le 2tE \int_0^t \langle a(s, \xi_n(s)) - a(s, \xi_{n-1}(s)), x^* \rangle^2 ds$$

$$+2E\int_{0}^{t} \langle [B(s,\xi_{n}(s)) - B(s,\xi_{n-1}(s))]R[B^{*}(s,\xi_{n}(s)) - B^{*}(s,\xi_{n-1}(s))]x^{*},x^{*} \rangle$$

$$\leq 2K^{2}E\int_{0}^{t}\sum_{i=1}^{\infty} \langle A_{i}(\xi_{n}(s) - \xi_{n-1}(s)),x^{*} \rangle^{2}ds;$$

$$E(\langle \xi_{1}(t),x^{*} \rangle - \langle \xi_{0}(t),x^{*} \rangle)^{2} = E\left(\int_{0}^{t} \langle a(s,\xi_{0}(s)),x^{*} \rangle ds + \int_{0}^{t} B^{*}(s,\xi_{0}(s))x^{*}dW_{s}\right)^{2}$$

$$\leq 2\left(E\int_{0}^{t} (\langle a(s,\xi_{0}(s),x^{*} \rangle^{2} + B(s,\xi_{0}(s))RB^{*}(s,\xi_{0}(s))x^{*},x^{*} \rangle\right) ds$$

$$\leq 2K^{2}t\left(\langle \overline{R}x^{*},x^{*} \rangle + \sum_{i=1}^{\infty} \langle A_{i}R_{0}A_{i}^{*}x^{*},x^{*} \rangle\right);$$

$$E\langle \xi_{2}(t) - \xi_{1}(t),x^{*} \rangle^{2} \leq 2K^{2}E\int_{0}^{t}\left(\sum_{i_{2}=1}^{\infty} \langle \xi_{1}(s) - \xi_{0}(s),A_{i_{2}}^{*}x^{*} \rangle^{2}\right) ds$$

$$\leq \frac{(2K^{2}t)^{2}}{2}\left(\sum_{i_{2}=1}^{\infty} \langle A_{i_{2}}\overline{R}A_{i_{2}}^{*}x^{*},x^{*} \rangle + \sum_{i_{2}=1}^{\infty}\sum_{i_{1}=1}^{\infty} \langle A_{i_{2}}A_{i_{1}}R_{0}A_{i_{1}}^{*}A_{i_{2}}^{*}x^{*},x^{*} \rangle\right).$$

It is easy to prove that

$$E(\langle \xi_{n}(t) - \xi_{n-1}(t), x^{*} \rangle^{2} \leq \frac{(2K^{2}t)^{n}}{n!} \left(\sum_{i_{n}=1}^{\infty} \cdots \sum_{i_{2}=1}^{\infty} \langle A_{i_{n}} \cdots A_{i_{2}} \overline{R} A_{i_{2}}^{*} \cdots A_{i_{n}}^{*} x^{*}, x^{*} \rangle + \sum_{i_{n}=1}^{\infty} \cdots \sum_{i_{1}=1}^{\infty} \langle A_{i_{n}} \cdots A_{i_{1}} R_{0} A_{i_{1}}^{*} \cdots A_{i_{n}}^{*} x^{*}, x^{*} \rangle \right).$$

Denote the correlation operator of a random element $\xi_n(t) - \xi_{n-1}(t)$ by R(n,t). It is easy to show that

$$\Pi_2(R(n,t)) \le \left(\frac{(2k^2t)^n}{n!}\right)^{\frac{1}{2}} \left[\left(\sum_{i=1}^{\infty} \|A_i\|\right)^{n-1} \Pi_2(\overline{R}) + \left(\sum_{i=1}^{\infty} \|A_i\|\right)^n \cdot \Pi_2(R_0) \right].$$

According to Lemma 2, we have

$$E\|\xi_n(t) - \xi_{n-1}(t)\|^2 \le \Pi_2^2(R(n,t))$$

$$\leq \frac{(2k^2t)^n \cdot \left(\sum_{i=1}^{\infty} \|A_i\|\right)^{2(n-1)}}{n!} \left(2\Pi_2^2(\overline{R}) + 2\left(\sum_{i=1}^{\infty} \|A_i\|\right)^2 \times \Pi_2^2(R_0)\right) = C_1 \cdot \frac{C^{n-1}}{n!}.$$

We also have that for all $x^* \in X^*$

$$E\langle a(s,\xi_n) - a(s,\xi_{n-1}), x^* \rangle^2 \le K^2 E \sum_{i=1}^{\infty} \langle \xi_n - \xi_{n-1}, A_i^* x^* \rangle^2.$$

Therefore $E||a(s,\xi_n)-a(s,\xi_{n-1})||^2 \leq C_2 \cdot \frac{C^{n-1}}{n!}$. Since $\int_0^t (B(s,\xi_n(s))-B(s,\xi_{n-1}(s)))\,dW_s$ is a martingale with a.s. continuous sample paths, we have

$$E \sup_{t} \left\| \int_{0}^{t} \left(B\left(s, \xi_{n}(s) \right) - B\left(s, \xi_{n-1}(s) \right) \right) dW_{S} \right\|^{2}$$

$$\leq 4E \left\| \int_{0}^{1} \left(B\left(s, \xi_{n}(s) \right) - B\left(s, \xi_{n-1}(s) \right) \right) dW_{S} \right\|^{2} \leq 4C_{2} \cdot \frac{C^{n-1}}{n!}.$$

Therefore

$$E \sup_{t} \|\xi_{n+1}(t) - \xi_{n}(t)\|^{2} \leq 2 \int_{0}^{1} E \|a(s, \xi_{n}(s)) - a(s, \xi_{n-1}(s))\|^{2} ds$$

$$+2E \sup_{0 \leq t \leq 1} \|\int_{0}^{1} (B(s, \xi_{n}(s)) - B(s, \xi_{n-1}(s))) dW_{s}\|^{2}$$

$$\leq 2C_{2} \cdot \frac{C^{n-1}}{n!} + 8C_{2} \cdot \frac{C^{n-1}}{n!} = 10C_{2} \cdot \frac{C^{n-1}}{n!}.$$

That is,

$$\sum_{n=1}^{\infty} P\left\{\sup_{t} \|\xi_{n+1}(t) - \xi_n(t)\| > \frac{1}{n^2}\right\} \le \sum_{n=1}^{\infty} \frac{10C_2 \cdot C^{n-1}}{n!} \cdot n^4 < \infty.$$

By the Borell–Cantelli lemma, the sum $\xi_0 + \sum_{n=0}^{\infty} (\xi_{n+1}(t) - \xi_n(t))$ converges a.s. uniformly in t to a random element which we denote by $(\xi_t)_{t \in [0,1]}$. From (2), as $n \to \infty$, we have

$$\langle \xi(t), x^* \rangle = \langle \xi_0, x^* \rangle + \int_0^t \langle a(s, \xi(s)), x^* \rangle ds + \int_0^t B^*(s, \xi(s)) x^* dW_S$$

a.s. for all $x^* \in X^*$. Therefore $(\xi_t)_{t \in [0,1]}$ is a solution to the stochastic differential equation (1). Obviously, we have $\xi_n(t) \to \xi(t)$ in $L_2(\Omega, X)$ as $n \to \infty$ and $\sup E \|\xi_t\|^2 < \infty$.

Now let $\xi_1(t)$ and $\xi_2(t)$ be two solutions to (1) with $\xi_1(0) = \xi_2(0) = \xi_0$. Then we have

$$E\langle \xi_{1}(t) - \xi_{2}(t), x^{*} \rangle^{2}$$

$$\leq (2K^{2})^{n} E \sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{n}=1}^{\infty} \int_{0}^{t} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{n-1}} \langle \xi_{1}(s) - \xi_{2}(s), A_{i_{1}}^{*} \cdots A_{i_{n}}^{*} x^{*} \rangle^{2} ds \, dt_{n-1} \cdots dt_{1}$$

$$\leq \frac{(2k^2t)^n}{n!} \left(\sum_{i=1}^{\infty} ||A_i||^2 \right)^n \cdot ||x^*||^2 \cdot \sup_t E||\xi_1(t) - \xi_2(t)||^2.$$

Since n is arbitrary, we have $E\langle \xi_1(t) - \xi_2(t), x^* \rangle^2 = 0$ for all $x^* \in X^*$. We can choose a countable total set $\{x_n^*, n \in N\}$. Therefore $\xi_1(t) = \xi_2(t)$ a.s. for all t, and since $\xi_1(t)$ and $\xi_2(t)$ have continuous sample paths, we get $P\{\sup_t \|\xi_1(t) - \xi_2(t)\| \|\xi_1(t)\| \|\xi_2(t)\| \|\xi_2(t)\|$

$$\xi_2(t) \| = 0 \} = 1.$$

Remark. Since $P\{W_t \in \overline{RX^*}, t \in [0,1]\} = 1$ (see [12]), we can consider the operators $B(t,x), t \in [0,1], x \in X$, mapping from $\overline{RX^*}$ to X.

Finally we give a simple example: let $A_{0i}: X \to X$, i = 1, 2, ... be linear operators such that $\sum_{i=1}^{\infty} ||A_{0i}|| < \infty$, and $\alpha_{0i}(\cdot): [0,1] \to R$ be such that

$$\sum_{i=1}^{\infty} \alpha_{0i}^2(t) \leq c \text{ for any } c > 0. \text{ Let } a(t,x) = \sum_{i=1}^{\infty} \alpha_{0i}(t) A_{0i}x. \text{ Then for all } x^* \in X^*,$$
$$\langle a(t,x), x^* \rangle^2 \leq \left(\sum_{i=0}^{\infty} \alpha_{0i}(t) \langle A_{0i}x, x^* \rangle\right)^2 \leq c \sum_{i=1}^{\infty} \langle A_{0i}x, x^* \rangle^2.$$

Consider now $\langle B(t,x)RB^*(t,x)x^*,x^*\rangle$, $x^*\in X^*$. By the factorization lemma we can choose $(a_k)_{k\in N}\subset X$, $(a_k^*)_{k\in N}\subset X^*$ such that $\langle a_k,a_j^*\rangle=\delta_{kj}$, $Rx^*=\sum_{k=1}^{\infty}\langle a_k,x^*\rangle a_k$ and $\overline{RX^*}=\overline{X_0}$, where $X_0=\Big\{\sum_{k=1}^{\infty}\lambda_k a_k,\sum_{k=1}^{\infty}\lambda_k^2<\infty\Big\}$. Then

$$\langle B(t,x)RB^*(t,x)x^*,x^*\rangle = \sum_{k=1}^{\infty} \langle a_k, B^*(t,x)x^*\rangle^2 = \sum_{k=1}^{\infty} \langle B(t,x)a_k,x^*\rangle^2.$$

Let $A_{ki}: X \to X$ k = 1, 2, ..., i = 1, 2, ..., be linear operators such that $\sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \|A_{ki}\| < \infty$, and $\alpha_{ki}(\cdot): [0,1] \to R$, k = 1, 2, ..., i = 1, 2, ..., be such that $\sum_{i=1}^{\infty} \alpha_{ki}^2 < c$. Let $B(t,x)a_k = \sum_{i=1}^{\infty} \alpha_{ki}(t)A_{ki}x$, k = 1, 2, It is easy to see that B(t,x) can be extended as a bounded linear operator in \overline{RX}^* . For all $x^* \in X^*$ we have

$$\langle B(t,x)RB^*(t,x)x^*,x^*\rangle = \sum_{k=1}^{\infty} \left(\langle \sum_{i=1}^{\infty} \alpha_{ki}(t)A_{ki}x,x^*\rangle \right)^2 \le c \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \langle A_{ki}x,x^*\rangle^2.$$

Therefore, for operators A_{ki} , k = 1, 2, ..., i = 1, 2, ..., a(t, x) and B(t, x) satisfy the conditions of Theorem 2.

ACKNOWLEDGEMENT

The author is grateful to the referee for his valuable remarks and advice. This work was partially supported by the grant of the Georgian Academy of Sciences No. 1.16.02.

References

- 1. N. N. VAKHANIA, Probability distributions on linear spaces. (Translated from the Russian) North-Holland Series in Probability and Applied Mathematics. North-Holland Publishing Co., New York-Amsterdam, 1981; Russian original: Metsniereba, Tbilisi 1971.
- 2. L. Gross, Potential theory on Hilbert space. J. Functional Analysis 1(1967), 123-181.
- 3. S. Chevet, Séries de variables aléatoires gaussiennes á valeurs dans $E \hat{\otimes}_{\varepsilon} F$. Application aux produits d'espaces de Wiener abstraits. Séminaire sur la Géométrie des Espaces de Banach (1977–1978), Exp. No. 19, 15 pp., École Polytech., Palaiseau, 1978.
- 4. B. I. Mamporia, The Wiener process in a Fréchet space. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 87(1977), No. 3, 549–552.
- 5. Yu. L. Daleckii, Infinite-dimensional elliptic operators and the corresponding parabolic equations. (Russian) *Uspekhi Mat. Nauk* **22**(1967), No. 4(136), 3–54.
- 6. I. I. Belopol'skaja and Yu. L. Daleckiĭ, Diffusion processes in smooth Banach spaces and manifolds. I. (Russian) *Trudy Moskov. Mat. Obshch.* **37**(1978), 107–141.
- 7. A. L. Neidhardt, Stochastic integral in 2-uniformly smooth Banach spaces. *University of Wisconsin*, 1978.
- 8. G. Dettweiler, Stochastic Integration relative to Brownian motion on a general Banach space. *Boga Tr. J. of Mathematics* **15**(1991), 6–44.
- 9. B. I. Mamporia, Wiener processes and stochastic integrals in a Banach space. *Probab. Math. Statist.* **7**(1986), No. 1, 59–75.
- 10. N. N. VAKHANIA, V. I. TARIELADZE and S. A. CHOBANIAN, Probability distributions on Banach spaces. Translated from the Russian and with a preface by Wojbor A. Woyczynski. *Mathematics and its Applications (Soviet Series)*, 14. D. Reidel Publishing Co., Dordrecht, 1987; Russian original: Nauka, Moscow, 1985.
- 11. B. L. ROZOVSKI, Stochastic evolution systems. Linear theory and applications to nonlinear filtering. (Translated from the Russian) *Mathematics and its Applications* (Soviet Series), 35. Kluwer Academic Publishers Group, Dordrecht, 1990; Russian original: Nauka, Moscow, 1983.
- 12. N. N. Vakhania, The topological support of Gaussian measure in Banach space. *Nagoya Math. J.* **57**(1975), 59–63.

(Received 14.02.2003; revised 19.02.2004)

Author's address:

N. Muskhelishvili Institute of Computational Mathematics Georgian Academy of Sciences8, Akuri St., Tbilisi 0193 Georgia