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ON YJ-INJECTIVITY AND ANNIHILATORS

ROGER YUE CHI MING

Abstract. This note contains the following results for a ring A: (1) A is a
quasi-Frobenius ring iff A is a left and right YJ-injective, left Noetherian ring
whose prime factor rings are right YJ-injective iff every non-zero one-sided
ideal of A is the annihilator of a finite subset of elements of A; (2) if A is a
right YJ-injective ring such that any finitely generated right ideal is either a
maximal right annihilator or a projective right annihilator, then A is either
quasi-Frobenius or a right p.p. ring such that every non-zero left ideal of A
contains a non-zero idempotent; (3) a commutative YJ-injective Goldie ring
is quasi-Frobenius; (4) if the Jacobson radical of A is reduced, every simple
left A-module is either YJ-injective or flat and every maximal left ideal of A
is either injective or a two-sided ideal of A, then A is either strongly regular
or left self-injective regular with non-zero socle.
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Introduction

Quasi-Frobenius rings introduced by T. Nakayama (1939) have since been
extensively studied (cf. [8], [10], [11], [17], [20], [22]). We here consider quasi-
Frobenius rings in terms of certain special annihilators. In [25] p-injective mod-
ules were introduced to study von Neumann regular rings, V -rings, self-injective
rings and associated rings, have drawn the attention of various authors (cf. for
example [2], [3], [9], [11], [15], [16], [21], [24]).

Throughout the paper, A denotes an associative ring with identity and A-
modules are unital. J , Y will always stand respectively for the Jacobson radical
and the right singular ideal of A. Recall that a right A-module M is p-injective
if, for every principal right ideal P of A, any right A-homomorphism of P into
M extends to one of A into M (cf. [11, p. 122], [20, p. 340], [21], [24], [25]).
It is well known that A is von Neumann regular iff every right (left) A-module
is flat (M. Harada (1956); M. Auslander (1957)). This remains true if “flat”
is replaced by “p-injective” (cf. [2], [15], [21], [24], [25]). The generalization
of p-injectivity to YJ-injectivity is performed as follows: a right A-module M
is called YJ-injective if, for every 0 6= a ∈ A, there exist a positive integer n
such that an 6= 0 and any right A-homomorphism of anA into M extends to
one of A into M ([7], [21], [28], [29]). A is called a right p-injective (resp. YJ-
injective) ring if AA is p-injective (resp. YJ-injective). Similarly, p-injectivity
and YJ-injectivity are defined on the left side.
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An ideal of A will always mean a two-sided ideal of A. As usual, a right (resp.
left) ideal I of A is called a right (resp. left) annihilator if I = r(S) (resp. 1(S))
for some subset S of elements of A. In [29, Lemma 3], it is proved that A is a
right YJ-injective ring iff for every 0 6= a ∈ A, there exist a positive integer n
such that Aan is a non-zero left annihilator. Also, if A is right YJ-injective, then
J = Y (cf. [27, p. 222] and [28, p. 103]) (where this notation was introduced).

It is well known that quasi-Frobenius rings are left and right self-injective,
left and right Artinian rings whose one-sided ideals are annihilators. Note that
certain special annihilators will impose the chain conditions on rings (cf. [29],
[33]).

Rings whose one-sided ideals are annihilators of an element are studied by C.
R. Yohe [23]. The next result is motivated by the remark at the end of Yohe’s
paper. The proof of [33, Theorem 16] shows that if every non-zero one-sided
ideal of A is the annihilator of an element of A, then A is a principal ideal ring.
By a theorem of M. Ikeda and T. Nakayama, A is left and right self-injective.
Consequently, [10, Theorem 24.20] yields

Theorem 1. The following conditions are equivalent:

(1) Every factor ring of A is quasi-Frobenius;
(2) A is a principal left and right ideal ring which is quasi-Frobenius;
(3) Every non-zero one-sided ideal of A is the annihilator of an element

of A.

We here give an example of a commutative principal ideal quasi-Frobenius
ring.

Example (Q). Set A = Z/4Z. Then M = {0, 2} is the unique non-trivial
ideal of A. Every non-zero ideal of A is the annihilator of an element of A (M
is the annihilator of 2). A is a principal ideal ring (M is generated by 2). A
is therefore Artinian, self-injective, and M2 = 0. Consequently, M is not an
injective A-module and A is not semi-prime. Note that every factor ring of A
is quasi-Frobenius (A/M being a field).

Following [11], we say that “A is VNR” if A is a von Neumann regular ring.
Since 1979 K. R. Goodearl’s classic [14] has motivated numerous papers on
VNR and associated rings. Following C. Faith, A is called a right (resp. left)
V -ring if every simple right (resp. left) A-module is injective. A theorem of I.
Kaplansky asserts that a commutative ring is a V -ring iff it is VNR. In the non-
commutative case, there is no implication between these two classes of rings. A
vast amount of work on injective modules over non semi-simple Artinian rings
and on flat modules over non-VNR rings motivate the study of p-injectivity and
YJ-injectivity over rings which are not necessarily VNR (cf. for example, [3],
[11], [15], [16], [22]).

A result of P. Menal and P. Vamos asserts that any arbitrary ring can be em-
bedded in a FP-injective ring [11, p. 308]. (This does not hold if “FP-injective”
is replaced by “self-injective”.) Consequently, any ring can be embedded in a
p-injective or YJ-injective ring. We are thus motivated to study YJ-injective
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rings. A is called a right CF-ring if every cyclic right A-module embeds in
a free module (cf. [21]). A semi-perfect, right CF, right YJ-injective ring is
quasi-Frobenius [21, Corollary 8].

Theorem 2. The following conditions are equivalent:

(1) A is quasi-Frobenius;
(2) A is a right CF, right YJ-injective ring satisfying the maximum condition

on left annihilators of elements of A;
(3) A is a left and right YJ-injective, left Noetherian ring whose prime factor

rings are right YJ-injective;
(4) Every non-zero one-sided ideal of A is the annihilator of a finite subset

of elements of A.

Proof. (1) Clearly implies (2), (3) and (4).
Assume (2). Since A is right CF, then it is left p-injective and therefore every

principal right ideal of A is a right annihilator. Now A satisfies the descending
chain condition on principal right ideals which means that A is left perfect. By
[17, Corollary 11.6.2], and [21, Corollary 8], A is quasi-Frobenius and therefore,
(2) implies (1).

Assume (3). Let B be a prime factor ring of A. Then B is left Noetherian
and since B is right YJ-injective, every non-zero-divisor of B is invertible in B
which implies that B coincides with a classical left (and right) quotient ring.
By Goldie’s theorem, B is simple Artinian. If A is prime, then A is Artinian as
just seen. If not, then every proper prime factor ring of A is simple Artinian
and by [10, Lemma 18.34B], A is left Artinian. In any case, A is left Artinian.
Since A is right YJ-injective, for any minimal left ideal U of A, U = Au, u ∈ A,
there exist a positive integer n such that Aun is a non-zero left annihilator [28,
Lemma 3]. If U2 = 0, then u2 = 0 which implies that Au is a left annihilator.
If U = Ae, e = e2 ∈ A, then U is again a left annihilator. Similarly, every
minimal right ideal of A is a right annihilator. A is therefore quasi-Frobenius
by a result of H. H. Storrer [19]. Thus (3) implies (1).

Finally, assume (4). Let L be a non-zero proper left ideal of A. If L = l(F ),

where F = {x1, . . . , xm}, xi ∈ A, with R =
m∑

i=1

xiA, L = l(R) and by hypothesis,

R = r(G), where G = {y1, . . . , yn} is a finite subset of elements of A. With

K =
n∑

i=1

Ayi, R = r(K) and K is also a left annihilator which implies that

L = l(R) = l(r(K)) = K is a finitely generated left ideal of A. Therefore A
is left Noetherian. Since every principal one-sided ideal of A is an annihilator,
then A is quasi-Frobenius (a left Noetherian, left or right perfect ring is left
Artinian ([10, Proposition 18.12])). Thus (4) implies (1). ¤

Remark 1. It follows from Theorem 2 that if every factor ring of A is a left
and right YJ-injective, left Noetherian ring, then A is quasi-Frobenius.

This remark, together with [28, Proposition 3.1(3)] motivate the following



576 ROGER YUE CHI MING

Question 1. Is a left and right YJ-injective, left Noetherian ring quasi-
Frobenius? (It is known that if A is a left Noetherian ring whose minimal
one-sided ideals are annihilators, then A needs not be left Artinian.)

Remark 2. If A is left p-injective with maximum condition on left annihilators
of elements of A and A contains no nilpotent minimal right ideal, then A is
semi-simple Artinian.

The singular submodule of a module is a fundamental concept in ring theory
(a standard reference is K.R. Goodearl [13]). Recall that for a right A-module
M , the right singular submodule of M is Z(M) = {y ∈ M \ r(y) is an essential
right ideal of A} and M is called right non-singular if Z(M) = 0. In this note,
we write Y = Z(AA) and Y is called the right singular ideal of A.

A well-known result asserts that A is right non-singular (i.e. Y = 0) iff A has
VNR maximal right quotient ring Q. In that case, QA is the injective hull of AA

and Q is a right self-injective VNR ring. Another result on non-singular rings is
due to Y . Utumi [13, Theorem 2.38]: If A is right and left non-singular, then the
maximal right and left quotient rings of A coincide iff every complement one-
sided ideal of A is an annihilator (the terms “complement” and “annihilator”
in [11, p. 181] should be permuted).

The next result is motivated by Example (Q) and depends mainly on the
right singular ideal of A.

Proposition 3. Let A be a right YJ-injective ring such that any finitely
generated right ideal is either a maximal right annihilator or a projective right
annihilator. Then A is either quasi-Frobenius or a right p.p. ring such that
every non-zero left ideal contains a non-zero idempotent.

Proof. Suppose that Y , the right singular ideal of A, is non-zero. For any
0 6= y ∈ Y , yAA is not projective which implies that yA is a maximal right
annihilator. If w 6= yA, then yA + wA = A. This proves that Y = yA.
Therefore Y is a minimal right ideal of A. But Y is also a maximal right ideal
of A. Since Y contains no non-zero idempotent, then Y is an essential right
ideal of A. For any proper non-zero right ideal R of A, R∩Y 6= 0, which implies
that R ∩ Y = Y by the minimality of Y . Then Y ⊆ R which yields Y = R
by the maximality of Y . We have proved that Y is the unique non-zero proper
right ideal of A. A is therefore right Artinian local ring. Since A is right YJ-
injective, then every minimal left ideal of A is a left annihilator as in the proof
of Theorem 2. Also, every minimal right ideal of A is a right annihilator by
hypothesis, which proves that A is quasi-Frobenius. Now suppose that Y = 0.
If 0 6= a ∈ A such that aA is a maximal right annihilator, then aA is not an
essential right ideal (in as much as Y = 0). If 0 6= b ∈ A such that aA∩ bA = 0,
then A = aA + bA since aA is a maximal right annihilator. This proves that
every principal right ideal of A is projective and A is therefore a right p.p. ring.
For any 0 6= c ∈ A, by [28, Lemma 3], there exists a positive integer n such that
Acn is a non-zero left annihilator. Since r(cn) is a direct summand of AA, then
Acn = l(r(Acn)) is a direct summand of AA. Therefore Ac contains a non-zero
idempotent, which completes the proof. ¤
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The next proposition is motivated by [12, Proposition 3.3(ii)].

Proposition 4. The following conditions are equivalent for a left YJ-injective
ring A:

(1) A is right Artinian;
(2) A is a semi-perfect ring with maximum condition on left annihilators

and finite right Goldie dimension.

Proof. It is clear that (1) implies (2).
Assume (2). Since A satisfies the maximum conditions on left annihilators,

then Z, the left singular of A, is nilpotent [13, Proposition 3.31]. From [28,
p. 103], J = Z is nilpotent. Since A is semi-perfect, A/J is semi-simple Artinian
which implies that A is semi-primary. Since A is left YJ-injective, every minimal
right ideal of A is a right annihilator (cf. the proof of Theorem 2). Since A
has finite right Goldie dimension, Soc(AA), the right socle of A, is a finitely
generated right ideal. Also Soc(AA) is an essential right ideal of A (because A
is left perfect). Then, Soc(AA) coincides with Soc(AA), the left socle of A, by
[4, Theorem 3.1]. Now A, being semi-primary with maximum condition on left
annihilators such that Soc(AA) = Soc(AA) is finite-dimensional as a right A-
module must imply that A is right Artinian by [5, Lemma 6]. Thus (2) implies
(1). ¤

Since there exist left and right Artinian rings whose right ideals are annihila-
tors which are not quasi-Frobenius, the ring considered in Proposition 4 needs
not be quasi-Frobenius (not even right YJ-injective).

Corollary 5. A is quasi-Frobenius iff A is a semi-perfect, left and right
YJ-injective, left and right Goldie ring.

Corollary 6. If A is a left and right YJ-injective, left and right Noetherian
ring, then A is quasi-Frobenius iff A/J is a right YJ-injective ring.

Theorem 2(3) motivates the next remark.

Remark 3. The following conditions are equivalent: (a) Every factor ring of
A is quasi-Frobenius, (b) Every factor ring of A is left and right YJ-injective,
left Noetherian.

Remark 4. If A is a left YJ-injective ring with maximum condition on left
annihilators, then idempotents can be lifted mod J .

Remark 5. A commutative YJ-injective ring with maximum condition on
annihilators is semi-primary (cf. [11, Theorem 16.31] and [28, Remark 11]).

A is called a right (resp. left) FPF ring (finite pseudo-Frobenius) if every
finitely generated faithful right (resp. left) A-module generates mod -A (resp.
A-mod). Such rings are closely connected with self-injective rings.

Remark 6. A commutative YJ-injective FPF ring is self-injective (cf. [11,
Theorem 5.42]).
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Remark 7. If A is left Noetherian, then A is left Artinian iff every prime factor
ring of A is left-injective iff every prime factor ring of A is right YJ-injective.

Applying [11, Theorem 12.4D] and [31, Corollary 7], we get

Remark 8. If A is right Noetherian with J2 = 0 and every essential right
ideal of A is an idempotent ideal of A, then A is right Artinian. (Such rings
need not be right duo.)

A theorem of S. Page [11, Theorem 5.49] yields the following characterization.

Remark 9. A is right and left self-injective regular ring of a bounded index
iff A is a right YJ-injective, right non-singular, right FPF ring.

Remark 10. A is a right pseudo-Frobeniusean ring iff A is a semi-perfect,
right YJ-injective, right FPF ring with essential right socle.

We now characterize commutative quasi-Frobenius rings in terms of Goldie
rings ([28, Corollary 3.2] is improved).

Theorem 7. The following conditions are equivalent for a commutative
ring A:

(1) A is quasi-Frobenius;
(2) A is YJ-injective Goldie ring.

Proof. It is obvious that (1) implies (2).
Assume (2). Then Y , the singular ideal of A, is nilpotent. Since A is YJ-

injective, Y = J , the Jacobson radical of A [28, p. 103]. Therefore J is nilpotent.
Again, since A is YJ-injective, A coincides with its classical quotient ring. By
[11, Theorem 9.4], A is Artinian. Every minimal ideal of A is an annihilator (in
as much as A is YJ-injective). A is therefore quasi-Frobenius and (2) implies
(1). ¤

The study of rings whose simple modules are injective or projective is initi-
ated in [1]. Such rings are called GV-rings by V. S. Ramamurthy and K. M.
Rangaswamy (cf. [2], [18]).

The next example motivates our last propositions.

Example (GV). If A denotes the 2 × 2 upper triangular matrix ring over
a field, A is a P.I. left and right Artinian, left and right hereditary, left and
right quasi-duo ring whose singular left and right modules are injective but A is
not semi-prime (indeed, the Jacobson radical J is non-zero with J2 = 0). Also,
all non-singular left and right modules are projective and the maximal left and
right quotient rings of A coincide (cf. [13, Theorems 5.21 and 5.23] and [34]).
Note that A is neither left nor right p-injective.

As usual, a left (right) ideal of A is called reduced if it contains no non-zero
nilpotent element. Kaplansky’s theorem on commutative V -rings has motivated
several generalizations of non-commutative V -rings. In [7, Lemma 1], it is
proved that if every simple left A-module is YJ-injective, then the Jacobson
radical J is reduced.
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Proposition 8. Let A be a ring with reduced Jacobson radical J such that
every simple left A-module is either YJ-injective or flat. Then J = 0.

Proof. Suppose there exist 0 6= u ∈ J . For any positive integer m, l(um) =
l(u) = r(u) = r(um) (because J is reduced). If AuA + l(u) 6= A, let M be
a maximal left ideal of A containing AuA + l(u). Then AA/M is simple and
therefore either YJ-injective or flat. First suppose that AA/M is YJ-injective.
There exist a positive integer n such that any left A-homomorphism of Aun →
AA/M extends to one of AA into AA/M . Define a left A-homomorphism f :
Aun → A/M by f(aun) = a + M for all a ∈ A (f is well-defined because
l(un) = l(u)). Then 1 + M = f(un) = uny + M for some y ∈ A. Now
1 − uny ∈ M and since uny ∈ AuA ⊆ M , then 1 ∈ M , which contradicts
M 6= A. Now suppose that AA/M is flat. Then u ∈ M implies that u = uw
for some w ∈ M (cf. [6, p. 458]). Therefore 1 − w ∈ r(u) = l(u) ⊆ M , which
implies that 1 ∈ M , again a contradiction! We thus have AuA + l(u) = A. If
1 = b + c, b ∈ AuA, c ∈ l(u), then u = bu + cu = bu and (1 − b)u = 0. Since
b ∈ AuA ⊆ J , 1 − b is left invertible in A which yield u = 0, contradicting
u 6= 0. We have proved that J = 0. ¤

Corollary 9. If every simple left A-module is YJ-injective, then J = 0.
(Apply [7, Lemma 1].)

Corollary 10. The following conditions are equivalent for a right self-
injective ring A: (1) A is VNR; (2) Every simple right A-module is either
YJ-injective or projective; (3) Every simple left A-module is YJ-injective.

Question 2. If A is a right self-injective ring whose simple left modules are
either YJ-injective or projective, is A VNR?

The next proposition is again motivated by Example (GV).

Proposition 11. Let A be a ring with reduced Jacobson radical J such that
every simple left A-module is either YJ-injective or flat and every maximal left
ideal of A is either injective or an ideal of A. Then A is either strongly regular
or left self-injective regular with non-zero socle.

Proof. By proposition 8, J = 0.
First suppose that each maximal left ideal of A is an ideal of A. Then A is

semi-primitive, left quasi-duo which is therefore reduced (cf. the proof of “(2)
implies (3)” in [26, Theorem 2.1]). Following the proof of Proposition 8, we see
that for any 0 6= a ∈ A, any positive integer m, l(am) = l(a) = r(a) = r(am).
Since every simple left A-module is either YJ-injective or flat, we must have
AaA + l(a) = AaA + r(a) = A which implies that A is fully left and right
idempotent. Since A is left quasi-duo, by [3, Proposition 9], A is VNR and is
therefore strongly regular. Now suppose that there exist a maximal left ideal
M of A which is not an ideal of A. Then AM is injective by [3, Lemma 4], A is
left self-injective and since J = 0, A is VNR with non-zero socle. ¤

Note that Proposition 11 remains valid if we replace “every simple left A-
module” by “every simple right A-module”.
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Our last result is motivated by a question raised in [32] (cf. U.Q.1(c)).

Proposition 12. If every principal left ideal of A is the flat left annihilator
of an element of A, then A is VNR.

Proof. Let 0 6= a ∈ A. Then Aa = l(c) for some c ∈ A. Since A/l(c) ≈ Ac is a
flat left A-module and l(c) = Aa, A/Aa is a finitely related flat left A-module
which implies that AA/Aa is projective. It follows that Aa is a direct summand
of AA, which proves that A is VNR. ¤

Question 3. Is A VNR if every principal left ideal of A is a flat complement
left ideal of A? (The answer is positive if A is commutative.)
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