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Abstract. In this paper we investigate the oscillatory character of the
second order nonlinear difference equations of the forms

∆(cn−1∆(xn−1 + pnxσn)) + qnf(xτn) = 0, n = 1, 2, . . .

and the corresponding nonhomogeneous equation

∆(cn−1∆(xn−1 + pnxσn)) + qnf(xτn) = rn, n = 1, 2, . . .

via comparison with certain second order linear difference equations
where the function f is not necessarily monotonic. The results of this
paper are essentially new and can be extended to more general equa-
tions.

1. Introduction

In this article we are concerned with nonlinear difference equations of the
forms

∆(cn−1∆(xn−1 + pnxσn)) + qnf(xτn) = 0, n = 1, 2, . . .
(1.1)
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and

∆(cn−1∆(xn−1 + pnxσn)) + qnf(xτn) = rn, n = 1, 2, . . .
(1.2)

where ∆ is the forward difference operator, i.e., ∆un = un+1 − un, {cn},
{pn}, {qn}, {rn}, {σn} and {τn} are sequences of real numbers such that
cn > 0 for n ≥ 0, {pn} and {qn} are eventually nonnegative sequences,
σn and τn are integers such that limn→∞ σn = ∞ = limn→∞ τn, and f ∈
C(R, R) such that uf(u) > 0 for u 6= 0.

By a solution of equation (1.1) (or (1.2)) we mean a sequence {xn} which
satisfies equation (1.1) (or (1.2)) for all n ≥ min{0, infs≥0 σs, infs≥0 τs}. A
nontrivial solution {xn} of any of the above equations is said to be oscillatory
if for every integer N > 0 there exists n ≥ N such that xnxn+1 ≤ 0,
otherwise it is called nonoscillatory. An equation is said to be oscillatory if
all its solutions are oscillatory.

The oscillatory behaviour of solutions of difference equations has been the
subject of intensive literature during the past few years. For example, we
refer the reader to the papers [1]–[3], [5]–[15] and the references cited therein
where several particular cases of (1.2) have been discussed. In most cases
the function f was assumed as a nondecreasing function (see [1], [6]–[7],
[11]–[15].)

Therefore our main purpose is to investigate the oscillatory behavior
of (1.1) and (1.2) via comparison with certain linear equations particularly
when f is not assumed to be a nondecreasing function. Some of the results
of this paper are the discrete analogue of some of the results which appeared
in [4].

Throughout this paper it will be assumed that f(u) = G(u)H(u) for all
u ∈ R where G : R→ (0,∞) is nondecreasing on (−∞, 0) and nonincreasing
on (0,∞) while H is nondecreasing function on R. This condition, according
to [9, Lemma 4], is equivalent to saying that the function f is of bounded
variation on every [a, b] ⊂ (−∞, 0) ∪ (0,∞). For convenience, we consider
the following notations for any real sequence {Λn}:

Λ+
n = max{Λn, 0}, Λ−n = min{Λn, 0}, n = 0, 1, . . .

and
Ia(Λ) = {n ≥ 0 : Λn − 1 > a}, a is positive integer.

Moreover, we will make use of a new sequence {Cn} defined by

Cn =
n∑

i=N

c−1
i , n ≥ N ≥ 0.
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2. The homogeneous case

This section is devoted to study equation (1.1). The following conditions
will be needed:

∞∑
i=N

c−1
i =∞, (2.1)

cn ≥ chn for all n ≥ 0, (2.2)

where

hn = min{n, τn}, ∆hn ≥ 0 for all n ≥ 0, (2.3)

0 ≤ pn < 1, n ≥ 0, (2.4)

and

σn ≤ n− 1, n ≥ 0. (2.5)

Theorem 2.1. Suppose that the conditions (2.1)–(2.5) are satisfied. If for
every d ≥ 1, k > 0 and all large N (N ≥ 0), the equation

∆(cn−1∆un−1) + qnQ
1
nun = 0, for all n ∈ IN (h) (2.6)

where

Q1
n =

G(dCτn−1)
dChn−1

H(k(1− pτn+1)),

is oscillatory, then equation (1.1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1), one can
assume that xn > 0 eventually (since the case xn < 0 eventually can be
treated similarly). So, there exists an integer N1 > 0 such that xn > 0,
xτn > 0 and xσn > 0, for all n ≥ N1. Now, define

un−1 = xn−1 + pnxσn , n ≥ N1. (2.7)

Equation (1.1) implies

∆(cn−1∆un−1) + qnf(xτn) = 0, (2.8)

then

∆(cn−1∆un−1) ≤ 0, n ≥ N1. (2.9)

Fromthe above inequality, we conclude that cn−1∆un−1 decreases monoton-
ically, for n > N1, which implies that ∆un−1 is eventually of one sign. If
∆un−1 is eventually negative, then one can find a suitable integer N2 ≥ N1
such that ∆uN2−1 < 0. Summing (2.9) from N2 to n, we obtain

cn∆un ≤ cN2−1∆uN2−1.



90 S.R. Grace and H.A. El-Morshedy

or

∆un ≤
cN2−1∆uN2−1

cn
, n ≥ N2.

Summing the preceding inequality from N2 to ∞, in view of (2.1) we get
limn→∞ un = −∞ which by (2.7) leads to a contradiction to the positivity
assumption of xn. Thus ∆un−1 is eventually positive i.e., there exists an
integer N3 ≥ N1 such that ∆un > 0 for n > N3. From (2.9), we obtain

un ≤ uN + (cN−1∆uN−1)
n−1∑
i=N

1
ci
, n > N, for all N > N3,

which yields

un ≤ d1

n−1∑
i=N

1
ci

= d1Cn−1, for all n > N, and some d1 ≥ 1. (2.10)

Using (2.7) and (2.10), we get

xn ≤ d1Cn−1 or xτn ≤ d1Cτn−1, n ∈ IN (h). (2.11)

Define the sequence {Wn} by

Wn =
cn−1∆un−1

uhn−1
, n ∈ IN (h).

Then

∆Wn =
∆(cn−1∆un−1)

uhn
− cn−1∆un−1∆uhn−1

uhn−1uhn
,

and hence,

∆Wn = −qn
G(xτn)H(xτn)

uhn
− cn−1∆un−1∆uhn−1

uhn−1uhn
, n ∈ IN (h). (2.12)

From (2.2) and (2.9), we conclude

∆uhn−1 ≥ ∆un−1, n ∈ IN (h)

which implies

cn−1∆un−1∆uhn−1

uhn−1uhn
≥ W 2

n

Wn + cn−1
, n ∈ IN (h). (2.13)

Substituting (2.11) and (2.13) into (2.12), we get

∆Wn +
W 2
n

Wn + cn−1
≤ −qnG(d1Cτn−1)

H(xτn)
uhn

, n ∈ IN (h). (2.14)

Next, choose N so large that σn > N3 for all n > N . From (2.7), we see
that un > xn or uσn > xσn , for all n > N . Thus, again, (2.7) implies

un−1 ≤ xn−1 + pnuσn , n ∈ IN (h). (2.15)
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From (2.5) and since ∆un > 0, (2.15) is reduced to

un−1(1− pn) ≤ xn−1,

which implies that

uhn(1− pτn+1) ≤ uτn(1− pτn+1) ≤ xτn , n ∈ IN (h).

Then (2.14) has the following form

∆Wn +
W 2
n

Wn + cn−1
≤ −qnG(d1Cτn−1)

H(uhn(1− pτn+1))
uhn

,

n ∈ IN (h). (2.16)

Now, by the increasing nature of un, one can find a positive number k∗ such
that un > k∗, n ∈ IN (h). Consequently, in view of (2.10), the inequality
(2.16) becomes

∆Wn+
W 2
n

Wn + cn−1
≤ −qnG(d1Cτn−1)

H(k∗(1− pτn+1))
d1Chn−1

, for all n ∈ IN (h)

which by Lemma 1.2 of [2], implies that equation (2.6) is nonoscillatory.
This contradiction completes the proof.

Theorem 2.2. Suppose that the conditions (2.1)−−(2.5) are satisfied, and

H(x) sgn x ≥ |x|λ for x 6= 0 and λ > 0. (2.17)

If for every d ≥ 1, k > 0 and all large N (N ≥ 0), the equation

∆(cn−1∆un−1) + qnQ
2
nun = 0, for all n ∈ IN (h)

(2.18)

where

Q2
n =

{
kλ−1(1− pτn+1)λG(dCτn−1), λ ≥ 1
(1− pτn+1)λG(dCτn−1)(dChn−1)λ−1, λ < 1

is oscillatory, then equation (1.1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1). As in the
proof of Theorem 2.1, we proceed to obtain (2.16). But (2.17) implies that

H(uhn(1− pτn+1))
uhn

≥ (1− pτn+1)λuλ−1
hn

, n ∈ IN (h).
(2.19)

In view of (2.10), (2.19) and the fact that un > k∗ > 0 for n > N , the
inequality (2.16) has one of the following forms

∆Wn +
W 2
n

Wn + cn−1
≤ −(k∗)λ−1qnG(d1Cτn−1)(1− pτn+1)λ, for λ ≥ 1
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or

∆Wn+
W 2
n

Wn + cn−1
≤ −qnG(d1Cτn−1)(1−pτn+1)λ(d1Chn−1)λ−1, for λ < 1,

where n ∈ IN (h) and k∗ is a constant defined as in the proof of Theorem 2.1.
By applying Lemma 1.2 of [2], we arrive at a contradiction. This completes
the proof.

As an application to our results, we consider the equation

∆2xn−1 + qne
−|xn||xn|ν sgn xn = 0, λ > 0, (2.20)

the corresponding linear equation according to Theorem 2.1 is,

∆2un−1 + qn
e−d(n−N+1)

d(n−N)
kνun = 0,

d ≥ 1, k > 0 and n > N + 1. (2.21)

Using [11] and Theorem 2.1 we get that (2.20) is oscillatory when
∞∑

n=N1

qn
e−d(n−N+1)

d(n−N)
=∞, N1 > N + 1.

This condition is satisfied, e.g., when qn = en
2
. As far as the authors know,

none of the existing criteria can examine the oscillation of (2.20).
Next, for the sake of completeness, we consider equation (1.1) with pn

does not satisfy (2.4) eventually. Sometimes, we use the notation y(n)
instead of the indexed form yn. Suppose that

σn is increasing and σn ≥ n− 1 for n > 0, (2.22)

p∗n =
1

p(σ−1(n))

[
1− 1

p(σ−1(σ−1(n)− 1))

]
, p∗n ≥ 0,

for all n > 0, (2.23)

h∗n = min{n, (σ−1 ◦ (τ − 1))(n)}, ∆h∗n ≥ 0 for all n > 0 (2.24)

and

cn ≥ ch∗n , for all n > 0. (2.25)

Theorem 2.3. Suppose that the conditions (2.1) and (2.22)–(2.25) are
satisfied. If for every d ≥ 1, k > 0 and all large N (N ≥ 0), the equation

∆(cn−1∆un−1) + qnQ
3
nun = 0, for all n ∈ IN (h∗)

(2.26)
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where

Q3
n =

G(dCτn−1)
dCh∗n−1

H(kp∗τn),

is oscillatory, then equation (1.1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1). Proceeding
as in the proof of Theorem 2.1 with hn is replaced by h∗n, one can easily see
that

∆Wn +
W 2
n

Wn + cn−1
≤ −qn

G(xτn)H(xτn)
uh∗n

, n > N ≥ 0.
(2.27)

Using (2.7), we obtain

x(n− 1) = u(n− 1)− p(n)x(σ(n))

or
x(σ−1(n)− 1) = u(σ−1(n)− 1)− p(σ−1(n))x(n), n > N

where σ−1 is the inverse function of σ. Thus, for n > N , we have

xn =
u(σ−1(n)− 1)− x(σ−1(n)− 1)

p(σ−1(n))

=
1

p(σ−1(n))

[
u(σ−1(n)− 1)−

u(σ−1(σ−1(n)− 1)− 1)− x(σ−1(σ−1(n)− 1)− 1)
p(σ−1(σ−1(n)− 1))

]
≥ 1

p(σ−1(n))

[
u(σ−1(n)− 1)− u(σ−1(σ−1(n)− 1)− 1)

p(σ−1(σ−1(n)− 1))

]
≥ 1

p(σ−1(n))

[
1− 1

p(σ−1(σ−1(n)− 1))

]
u(σ−1(n)− 1).

Then
xn ≥ p∗nu(σ−1(n)− 1), n ∈ IN (h∗)

which implies that

xτn ≥ p∗τnuh∗n , n ∈ IN (h∗). (2.28)

From (2.11), (2.27) and (2.28) we obtain

∆Wn +
W 2
n

Wn + cn−1
≤ −qnG(d1Cτn−1)

H(p∗τnuh∗n)
uh∗n

, n ∈ IN (h∗). (2.29)

Since ∆un−1 > 0 for n > N , there exists a positive real number k∗ such
that un > k∗ for all n > N . Using (2.10), we get

∆Wn +
W 2
n

Wn + cn−1
≤ −qnG(d1Cτn−1)

H(p∗τnk
∗)

d1Ch∗n−1
, n ∈ IN (h∗).
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By [2, Lemma 1.2], equation (2.26) is nonoscillatory which contradicts the
given hypothesis. This completes the proof.

Theorem 2.4. Suppose that the conditions (2.1), (2.17) and (2.22)–(2.25)
are satisfied. If for every d ≥ 1, k > 0 and all large N (N ≥ 0), the equation

∆(cn−1∆un−1) + qnQ
4
nun = 0, for all n ∈ IN (h∗)

(2.30)

where

Q4
n =

{
kλ−1(p∗τn)λG(dCτn−1), λ ≥ 1
(p∗τn)λG(dCτn−1)(dCh∗n−1)λ−1, λ < 1

is oscillatory, then equation (1.1) is oscillatory.

Proof. Using similar arguments as in the proof of Theorem 2.3, we can
proceed and obtain (2.29). Now,

H(p∗nuh∗n)
uh∗n

≥ (p∗n)λuλ−1
h∗n

. (2.31)

In view of (2.10), (2.31) and the fact that un > k∗ > 0 for n > N , the
inequality (2.29) is reduced to one of the following forms

∆Wn+
W 2
n

Wn + cn−1
≤ −(k∗)λ−1qnG(d1Cτn−1)(p∗τn)λ, n ∈ IN (h∗) for λ ≥ 1

or

∆Wn +
W 2
n

Wn + cn−1
≤ −(d1Ch∗n−1)λ−1qnG(d1Cτn−1)(p∗τn)λ, for λ < 1,

where n ∈ IN (h∗). In either case, an application of [2, Lemma 1.2] implies a
contradiction with the assumption that equation (2.30) is oscillatory, which
completes the proof.

In the previous results, our linearization process yields second order linear
difference equations of the form

∆(cn−1∆yn−1) + kanyn = 0, n ≥ 1 and k > 0,
(2.32)

where {an} is eventually nonnegative sequence of real numbers. We interest
in the oscillation of equation (2.32) for any constant k > 0. This type
of oscillation is called strong oscillation, and is equivalent to saying that
equation (2.32) is oscillatory regardless the value of k(provided that k > 0).
As an example of results concerning with the strong oscillation of (2.32), we
extract the following two results from [3] and [11].
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Theorem 2.5 ([3]). For cn ≡ 1, equation (2.32) is strongly oscillatory if

lim sup
n→∞

n

∞∑
i=n

ai =∞.

Theorem 2.6 ([11]). Equation (2.32) is strongly oscillatory if (2.1) is sat-
isfied and

∞∑
i=0

ai =∞.

Applying these criteria to our results, one can drive many oscillation
criteria regarding equation (1.1). As an example, the following corollary is
extracted from Theorem 2.1.

Corollary 2.1. Suppose that the conditions (2.1)–(2.5) are satisfied. If
either

(I)
∞∑

i=N1

qiQ
1
i =∞, N1 is sufficiently large,

or

(II) cn ≡ 1 and lim sup
n→∞

n
∞∑
i=n

qiQ
1
i =∞,

where Q1
n is defined as in Theorem 2.1, then equation (1.1) is oscillatory.

Remark 2.1. Theorems 2.1–2.4 are the discrete analogues of the continu-
ous results which have been established by [4] for the differential equation

(c(t)x′(t) + p(t)x(σ(t)))′ + q(t)f(x(τ(t))) = 0,

and its special case

(c(t)x′(t))′ + q(t)f(x(τ(t))) = 0,

particularly when hn = h∗n = n.

3. Forced equations

In this section we drive some sufficient conditions of comparison type for
the oscillation of equation (1.2). We need the following two assumptions:

There exists a sequence {Rn} of real numbers such that

∆(cn−1∆Rn) = rn eventually, and {Rn} is oscillatory. (3.1)
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And

Pn = 1− pn −
1
k∗
∣∣pnRτ∗n+1 −Rn

∣∣ ≥ 0,

for every k∗ > 0 and all large n. (3.2)

Theorem 3.1. Suppose that (2.1)–(2.3), (2.5) and (3.1)–(3.2) are satis-
fied. If for every d ≥ 1, k > 0 and all large N (N ≥ 0), the equation

∆(cn−1∆un−1) + qnQ
5
nun = 0, for all n ∈ IN (h), (3.3)

where

Q5
n =

G(dCτn−1 +Rτn+1)H(kPτn+1)
dChn−1

,

is oscillatory, then equation (1.2) is oscillatory.

Proof. Suppose, for the sake of contradiction, that equation (1.2) is non-
oscillatory. Without loss of generality, we assume that (1.2) has an eventu-
ally positive solution {xn}. Let the sequence {yn} be, eventually, defined as
follows

xn−1 + pnxσn = yn−1 +Rn. (3.4)

Substituting into (1.2),

∆(cn−1∆yn−1) + qnf(xτn) = 0. (3.5)

Then

∆(cn−1∆yn−1) ≤ 0. (3.6)

This inequality implies the nonoscillation of ∆yn−1 as well as yn. Thus yn
is either eventually positive or eventually negative. From (3.4), we get

xn−1 ≤ yn−1 +Rn, eventually.

Therefore, yn is eventually positive. Otherwise we get that 0 < xn−1 ≤ Rn
eventually which contradicts the oscillation of Rn . Now as in the proof of
Theorem 2.1, using (2.1) and (3.6), we obtain

∆yn−1 > 0, n > N for some N > 0, (3.7)

and

yn ≤ d1Cn−1, n > N. (3.8)

From (2.5), (3.4) and the increasing nature of yn, it is clear that

xn−1 + pnxσn ≤ xn−1 + pn(yσn +Rσn+1)
≤ xn−1 + pnyn−1 + pnRσn+1,

or
yn−1 +Rn ≤ xn−1 + pnyn−1 + pnRσn+1, n > N.
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Rearranging,

(1− pn)yn−1 ≤ xn−1 + pnRσn+1 −Rn, n > N. (3.9)

Let {vn} be defined by

pnRσn+1 −Rn = vnyn−1, n > N.

Substituting into (3.9),

(1− pn − vn)yn−1 ≤ xn−1, n > N. (3.10)

Using (3.7), one can find a constant k1 > 0 such that yn−1 > k1 for all
n > N . The definition of vn implies that

|pnRσn+1 −Rn| = |vn| yn−1

≥ k1 |vn| ≥ k1vn

then

vn ≤
1
k1
|pnRσn+1 −Rn| , n > N.

It follows from the above inequality and (3.10) that

Pnyn−1 ≤ xn−1

thus

Pτn+1yhn ≤ Pτn+1yτn ≤ xτn , n ∈ IN (h). (3.11)

Now, define

Wn =
∆(cn−1∆yn−1)

yhn−1
, n ∈ IN (h).

As in the proof of Theorem 2.1, it is easy to drive the following inequality
from (3.5), (3.11) and the inequality xn ≤ d1Cτn−1 +Rτn+1,

∆Wn +
W 2
n

Wn + cn−1
≤ −qn

G(d1Cτn−1 +Rτn+1)H(Pτn+1yhn)
yhn

,

n ∈ IN (h), (3.12)

but
k1 < yn ≤ d1Cn−1, for all n ∈ IN (h).

Then, in view of the increasing nature of H, (3.12) implies

∆Wn +
W 2
n

Wn + cn−1
≤ −qn

G(d1Cτn−1 +Rτn+1)H(Pτn+1k1)
d1Chn−1

, n ∈ IN (h).

Applying [2, Lemma 1.2], the above inequality implies that equation (3.3)
is nonoscillatory which contradicts our assumption. This completes the
proof.
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Theorem 3.2. Suppose that the conditions (2.1)–(2.3), (2.5), (2.17) and
(3.1)–(3.2) are satisfied. If for every d ≥ 1, k > 1 and all large N (N ≥ 0),
the equation

∆(cn−1∆un−1) + qnQ
6
nun = 0, for all n ∈ IN (h),

(3.13)

where

Q6
n =

{
kλ−1(Pτn+1)λG(dCτn−1 +Rτn+1), λ ≥ 1,
(Pτn+1)λG(dCτn−1 +Rτn+1)(dChn−1)λ−1, λ < 1

is oscillatory, then equation (1.2) is oscillatory.

Proof. Proceeding as in the proof of Theorem 3.1, we obtain (3.11). Then
the proof can be completed similarly as the proof of Theorem 2.2. We omit
the details to avoid repetition.

Remark 3.1. From the proof of Theorem 3.1, we have

0 < xn ≤ d1Cn−1 +Rn, eventually

which implies

lim inf
n→∞

Rn
d1Cn−1

≥ 0 for every d1 ≥ 1.

So if

lim inf
n→∞

Rn
d1Cn−1

= −∞ (3.14)

then we obtain a contradiction. Similarly, if xn < 0 eventually, the condition

lim sup
n→∞

Rn
d1Cn−1

=∞, (3.15)

implies a contradiction, too. Hence, the above analysis leads to the following
result which generalizes and improves Theorems 3.4 and 3.1 of [5] and [6]
respectively.

Corollary 3.1. Suppose that the conditions (3.14) and (3.15) are satisfied.
Then equation (1.2) is oscillatory.

In the following two results, we consider equation (1.2) with pn ≡ 0, i.e.,

∆(cn−1∆xn−1) + qnf(xτn) = rn. (3.16)
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Theorem 3.3. Suppose that the conditions (2.1)–(2.3), (2.5) and (3.1) are
satisfied. If for every d ≥ 1, k > 0 and all large N (N ≥ 0), the equation

∆(cn−1∆un−1) + qnQ
7
nun = 0, for all n ∈ IN (h),

(3.17)

where

Q7
n =

G(dCτn−1 +Rτn+1)
dChn−1

H(kR+
τn+1/dCτn−1),

is oscillatory, then equation (3.16) is oscillatory.

Proof. Suppose that (3.16) is nonoscillatory. Then, as usual, (3.16) has a
solution xn which can be assumed to be eventually positive. The proof is
similar to that of Theorem 3.1. But, we obtain here another estimate for
xτn in terms of yτn which is defined by (3.4) (with pn ≡ 0). For this purpose,
we define a sequence {vn} as follows

xn = vnyn, n > N for some N > 0,

then (3.4) (with pn ≡ 0) yields

vnyn = yn +Rn+1 > Rn+1

which in view of (3.8) implies

vn >
Rn+1

d1Cn−1
, n ∈ IN (h),

therefore
xn >

Rn+1

d1Cn−1
yn, n ∈ IN (h),

from this inequality, we get

xτn >
R+
τn+1

d1Cτn−1
yτn ≥

R+
τn+1

d1Cτn−1
yhn , n ∈ IN (h).

Using the above estimate of xτn , similarly as in the proof of Theorem 3.1,
one can prove that

∆Wn +
W 2
n

Wn + cn−1
≤ −qn

G(d1Cτn−1 +Rτn+1)H(
R+
τn+1

d1Cτn−1
yhn)

yhn
,

n ∈ IN (h). (3.18)

But k1 < yhn < d1Chn−1, n ∈ IN (h). Then

∆Wn+
W 2
n

Wn + cn−1
≤ −qn

G(d1Cτn−1 +Rτn+1)H(
R+
τn+1

d1Cτn−1
k1)

d1Chn−1
, n ∈ IN (h).

which, in view of [2, Lemma 1.2], implies that equation (3.17) is nonoscilla-
tory. This contradiction implies the proof.
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When condition (2.17) holds, one can easily prove the following result
which is of the same type as Theorems 2.2, 2.4 and 3.2.

Theorem 3.4. Suppose that the conditions (2.1)–(2.3), (2.5), (2.17) and
(3.1) are satisfied. If for every d ≥ 1, k > 0 and all large N (N ≥ 0), the
equation

∆(cn−1∆un−1) + qnQ
8
nun = 0, for all n ∈ IN (h),

where

Q8
n =

{
kλ−1G(dCτn−1 +Rτn+1)(R+

τn+1/dCτn−1)λ, λ ≥ 1,
G(dCτn−1 +Rτn+1)(R+

τn+1/dCτn−1)λ(dChn−1)λ−1, λ < 1

is oscillatory, then equation (3.13) is oscillatory.

As in the preceding section, our results can be combined with any known
strong oscillation criteria to obtain several new oscillation criteria regarding
equation (1.2). The following result is derived from Theorem 3.1 using The-
orem 2.5 and Theorem 2.6. The result is considered as the nonhomogeneous
version of Corollary 2.1.

Corollary 3.2. Suppose that the conditions (2.1)–(2.3), (2.5) and (3.1)–
(3.2) are satisfied. If either

(I)
∞∑

i=N1

qiQ
5
i =∞, N1 is sufficiently large,

or

(II) cn ≡ 1 and lim sup
n→∞

n
∞∑
i=n

qiQ
5
i =∞,

where Q5
n is defined as in Theorem 3.1, then equation (1.2) is oscillatory.

A prototype of equation (3.16), namely

∆(cn−1∆xn−1) + qnxn = rn (3.19)

has been studied by [10] and recently by [5]. Most of the results obtained
there depend essentially on the oscillatory character of the associated ho-
mogeneous equation

∆(cn−1∆xn−1) + qnxn = 0.

So that, those results of [5], [10] should be compared with our results re-
garding equation (3.19) particularly the following two results which are im-
mediate consequences of Theorems 3.2 and 3.4 respectively.
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Corollary 3.3. In addition to the conditions (2.1) and (3.1)–(3.2) (with
pn ≡ 0), suppose that the equation

∆(cn−1∆un−1) + qn(1− |Rn+1|/k)un = 0, for all k > 0

is oscillatory, then equation (3.19) is oscillatory.

Corollary 3.4. Suppose that the conditions (2.1) and (3.1) are satisfied.
If for every d ≥ 1 and all large N such that n− 1 > N , the equation

∆(cn−1∆un−1) +
R+
n+1

dCn−1
qnun = 0,

is oscillatory, then equation (3.19) is oscillatory.

General remarks:
1. When Rn ≡ 0, it is clear that Theorems 3.1 and 3.2 are reduced to

Theorems 2.1 and 2.2, respectively. But Theorems 3.3 and 3.4 do not
satisfy this property.

2. It is observed that any of our results does not require whether τn < n
or not. This, of course, gives our results the ability of testing many
types of equations, i.e., delay or advance or mixed type, by the same
test.

3. It is of special importance to obtain similar results as ours when pn
assumes eventually negative values and/or qn is oscillatory.
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