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Abstract. We show a connection between the polynomials whose in-
flection points coincide with their interior roots (let us write shorter
PIPCIR), Legendre polynomials, and Jacobi polynomials, and study
some properties of PIPCIRs (Part I). In addition, we give new formulas
for some classical orthogonal polynomials. Then we use PIPCIRs to
solve some partial differential equations (Part II).

1. Part I. Properties of PIPCIRs

1.1. Relation to classical polynomials.

Since translating all the roots an equal amount or multiplying a polyno-
mial by a constant will not affect the position of the roots relative to any
critical or inflection points, we restricted our attention to a polynomial with
the first and last roots at x = ±1, given by

Qn(x) = (1 − x2)qn−2(x), n ≥ 2. (1)
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Let us call a polynomial whose inflection points coincide with their interior
roots in a shorter way: PIPCIR. It will be shown that the zeros of these
polynomials are all real, distinct, and they lie in the interval [−1, 1].

The requirement all inflection points to coincide with all roots of Qn(x)
except ±1 yields:

Q′′

n(x) = −n(n − 1)qn−2(x), or

(1 − x2)Q′′

n(x) + n(n − 1)Qn(x) = 0. (2)

If n = 2, the function does not have neither inflection points, nor interior
roots between 1 and -1, but it equals zero at 1 and -1. We may include
Q2(x) into the family of PIPCIRs.

Let us differentiate the equation (2) with respect to x:

−2xQ′′

n + (1 − x2)Q′′′

n + n(n − 1)Q′

n = 0,

and denote yn−1 = Q′

n:

(1 − x2)y′′n−1 − 2xy′n−1 + n(n − 1)yn−1 = 0. (3)

We have now well-known Legendre’s differential equation whose bounded
on [−1, 1] solutions are known as Legendre polynomials: yn−1 = Ln−1(x),
n ≥ 1. One can find properties of these polynomials in [1] or [2]. They are
normalized so that Ln(1) = 1 for all n. If

Qn(x) = −
∫ 1

x
Ln−1(x)dx, (4)

then Q′

n(x) = Ln−1(x) and Q′′

n = L′

n−1(x).
We see that polynomials Qn(x) defined by (4) satisfy the equation (2),

and Qn(1) = 0 for all n ≥ 1. Moreover, Qn(−1) = 0 for n ≥ 2, since∫ 1
−1 Ln−1(x)dx = 0, because Ln−1(x) is orthogonal to L0(x) = 1. Thus,

Qn(1) = Qn(−1) = 0, n ≥ 2. (5)

Using (4), we get an explicit expression for Qn(x) from the formula for
Legendre polynomials ([1, p. 120]):

Qn(x) =
N∑

k=0

(−1)k(2n − 2k − 3)!!

(2k)!!(n − 2k)!
xn−2k, n ≥ 2, (6)

and Qn(0) =
(−1)(n−2)/2(n − 3)!!

n!!

where N = n/2 or (n − 1)/2 according as n is even or odd, or N = [n/2].
The PIPCIR Qn(x) is even for even n and odd for odd n.

Remind that n!! = n(n−2)(n−4)(n−6) . . . , 0!! = 1, (−1)!! = 1.



INTEGRALS OF LEGENDRE POLYNOMIALS 261

If n = 1, we evaluate the integral immediately: −
∫ 1
t 1dx = −(1− t) = t−1.

This function cannot be included in the family of PIPCIRs since it is not
an odd function and has only one root.

Explicit formula for qn(x) is the following

qn(x) =
1

(n + 1)(n + 2)

N∑

k=0

(−1)k+1(2n − 2k + 1)!!

(2k)!!(n − 2k)!
xn−2k, (7)

where N = [n/2] and

qn(1) = −1

2
, qn(−1) =

(−1)n+1

2
. (8)

You may see examples of polynomials Qn(x) and qn(x):

Q2(x) =
x2 − 1

2
, Q3(x) =

x3 − x

2
,

Q4(x) =
5x4 − 6x2 + 1

8
, Q5(x) =

7x5 − 10x3 + 3x

8
,

Q6(x) =
21x6 − 35x4 + 15x2 − 1

16
,

q0(x) = −1

2
, q1(x) = −x

2
,

q2(x) =
−5x2 + 1

8
, q3(x) =

−7x3 + 3x

8
,

q4(x) =
−21x4 + 14x2 − 1

16
, q5(x) =

−33x5 + 30x3 − 5x

16
.

If we substitute the formula (1) into the equation (2), we determine that
the polynomial qn(x) of degree n satisfies the differential equation

(1 − x2)q′′n − 4xq′n + n(n + 3)qn = 0. (9)

The bounded solution of this equation is the Jacobi polynomial P
(1,1)
n (x),

or ultraspherical polynomial P
(3/2)
n (x). One can find properties of these

polynomials in [2]. In particular, the zeros of these polynomials are all real,
distinct, and lie in the interior of the interval [−1, 1]. Hence, we have

Theorem 1. The polynomial Qn(x) = (1 − x2)qn−2(x), n ≥ 2, has (n − 2)
distinct real zeros in the interior of the interval [−1, 1] and two zeros at its

ends.

The equation (2) may be considered as a particular case of the equation

for Jacobi polynomials P
(α,β)
n (x) with α = −1, β = −1 ([2, p. 59]). But
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polynomials P
(α,β)
n (x) belong to the family of classical orthogonal polyno-

mials only for α > −1, β > −1 (see [2, pp. 28, 57]). That is why these
polynomials were not under investigation.

The normalization of Jacobi polynomials is P
(1,1)
n (1) = n + 1 (see

[2, p. 57]). Since qn(1) = −1/2 (see (8)), we have:

P (1,1)
n (x) = −2(n + 1)qn(x). (10)

There are many important properties and recurrence formulas for Le-
gendre and Jacobi polynomials (see [1], [2]). All of them may be transferred
into formulas for PIPCIRs. We shall consider some of them.

1.2. Rodrigues formula and corollaries.

Rodrigues formula holds for arbitrary α and β (see [2, p. 66]); for α = β
we have:

(x2 − 1)αP (α,α)
n (x) =

1

2nn!

dn

dxn

[
(x2 − 1)n+α

]
. (11)

If α = β = −1, it becomes

P (−1,−1)
n (x) =

x2 − 1

2nn!

dn

dxn

[
(x2 − 1)n−1

]
, n > 1.

Wishing to find P
(−1,−1)
n (0), we determine the coefficient of xn in the bino-

mial (x2 − 1)n−1, then evaluate

P (−1,−1)
n (0) =

(−1)(n−2)/2(n − 1)!!

2n!!
.

Hence, comparing this equality with (6), we have for PIPCIRs

P (−1,−1)
n (x) =

n − 1

2
Qn(x), n > 1 (12)

and

Qn(x) =
x2 − 1

2n−1n!(n − 1)

dn

dxn

[
(x2 − 1)n−1

]
, n > 1. (13)

Now formulas (1), (10) and (12) yield

(x2 − 1)P (1,1)
n (x) = 4P

(−1,−1)
n+2 (x).

Combining the formulas (1), (4) and (12), we obtain relation between Le-

gendre polynomials Ln(x) = P
(0,0)
n (x) and Jacobi polynomials P

(1,1)
n (x) and
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P
(−1,−1)
n (x) :

1 − x2

2n
P

(1,1)
n−1 (x) =

∫ 1

x
P (0,0)

n (x)dx

2

n
P

(−1,−1)
n+1 (x) = −

∫ 1

x
P (0,0)

n (x)dx.

For Legendre polynomials (α = β = 0) we have:

Ln(x) =
1

2nn!

dn

dxn

[
(x2 − 1)n

]
.

Taking into account (4) and the fact that since x = ±1 are zeros of multi-
plicity n− 1 for the function (x2 − 1)n−1, they are zeros of multiplicity 1 for

the (n − 2) derivative, we can write (note:
d0

dx0
f(x) = f(x)):

Qn(x) =
1

2n−1(n − 1)!

dn−2

dxn−2

[
(x2 − 1)n−1

]
, n > 1. (14)

Now we have two expressions for Qn(x); equating them, we obtain the
formula

(x2−1)
dn

dxn

[
(x2−1)n−1

]
=n(n−1)

dn−2

dxn−2

[
(x2−1)n−1

]
. (15)

Theorem 2. Each function (n > 1) in (15) is a polynomial of degree n,

that has n real distinct roots in the interval [−1, 1], two of them are x = −1,
and x = 1. Other roots coincide with inflection points of this polynomial.

This statement is an obvious corollary from (13) and (14) and from The-
orem 1.

1.3. Orthogonality property.

Theorem 3. The functions Qn(x) and Qm(x) (n 6= m) are orthogonal with

respect to the weight function w(x) = 1/(1 − x2):
∫ 1

−1

Qn(x)Qm(x)

1 − x2
dx = 0 (n 6= m) (16)

and

||Qn||2 =

∫ 1

−1

(Qn(x))2

1 − x2
dx =

2

n(n − 1)(2n − 1)
. (17)

Since w(x) is not continuous on [−1, 1], PIPCIRs do not belong to classical

orthogonal polynomials, but because Qn(−1) = Qn(1) = 0, all integrals (16),
(17) are proper.
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The functions qn(x) and qm(x) (n 6= m) are orthogonal with respect to
the weight function (1 − x2) and

||qn||2 =

∫ 1

−1
(qn(x))2(1 − x2)dx =

2

(n + 2)(n + 1)(2n + 3)
. (18)

These statements are immediate corollary from orthogonality of Legendre
polynomials and from the formula

∫ 1

−1
[Ln(x)]2dx =

2

2n + 1
.

1.4. Generating functions.

It is known that the function W (h, x) = (1− 2xh + h2)−1/2 is the gener-
ating function for the Legendre polynomials; that is

W (h, x) = (1 − 2xh + h2)−1/2 =

∞∑

n=0

Ln(x)hn,

and this series converges for |h| < 1 when |x| ≤ 1 .
The PIPCIRs are integrals of the Legendre polynomials, but the integral

of L0(x) = 1 is not included into the family of PIPCIRs. Therefore we
denote as

U(h, x) = −h

∫ 1

x
(W (h, t) − 1)dt = 1 − xh −

√
1 − 2xh + h2

and it can be shown in a standard way that U(h, x) is the generating function
for the PIPCIRs:

U(h, x) = 1 − xh −
√

1 − 2xh + h2 =

∞∑

n=2

Qn(x)hn. (19)

The function U(h, x) satisfies the equation

h2 ∂2U

∂h2
+ (1 − x2)

∂2U

∂x2
= 0 (20)

that can be verified by direct substitution.
The generating function for the family of polynomials qn(x) is

V (h, x) =
U(h, x)

h2(1 − x2)
=

1

h2(1 − x2)
(1 − xh −

√
1 − 2xh + h2)

= − 1

1 − xh +
√

1 − 2xh + h2
=

∞∑

n=0

qn(x)hn. (21)
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The function V (h, x) satisfies the equation

1

h2

∂

∂h

(
h4 ∂V

∂h

)
+

1

1 − x2

∂

∂x

(
(1 − x2)2

∂V

∂x

)
= 0

that can be verified by direct substitution.
In [2, p. 68], we can find the generating function for Jacobi polynomials

P
(1,1)
n (x):

∞∑

n=0

P (1,1)
n (x)hn =

4√
1 − 2xh + h2(1 − h +

√
1 − 2xh + h2)2

or, p. 82, for ultraspherical polynomials P
(3/2)
n (x) = [(n + 2)/2]P

(1,1)
n (x):

∞∑

n=0

P (3/2)
n (x)hn =

1

(1 − 2xh + h2)3/2
.

Using (21) and (10), we can write:

1

2

∞∑

n=0

1

n + 1
P (1,1)

n (x)hn =
1

1 − xh +
√

1 − 2xh + h2
,

∞∑

n=0

1

(n + 1)(n + 2)
P (3/2)

n (x)hn =
1

1 − xh +
√

1 − 2xh + h2
.

1.5. Estimation of the functions Qn(x) and qn(x).

If we take x = cos θ = (eiθ + e−iθ)/2, where i2 = −1, we can get in a
standard way, using (19), for odd n

Qn(cos θ)=
2(2n − 3)!!

(2n)!!
cos nθ−2

(n−1)/2∑

k=1

(2n − 2k − 3)!!(2k − 3)!!

(2n − 2k)!!(2k)!!
cos(n−2k)θ,

and for even n:

Qn(cos θ) =
2(2n − 3)!!

(2n)!!
cos nθ

− 2

n/2−1∑

k=1

(2n − 2k − 3)!!(2k − 3)!!

(2n − 2k)!!(2k)!!
cos(n − 2k)θ −

(
(n − 3)!!

n!!

)2

.

Using this, we can show that for −1 ≤ x ≤ 1 the following estimations hold:

(a) |Qn(x)| <
4(2n − 3)!!

(2n)!!
;

(b) |Qn(x)| ≤ |Qn(0)| =
(n − 3)!!

n!!
for even n ;

(c) |qn(x)| ≤ 1

2
.
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1.6. Asymptotic property.

The asymptotic behavior of polynomials P
(α,β)
n for α > −1/2, α − β >

−2m and α + β ≥ −1 is described in [3]. We shall use it for α = β = 1:

P (1,1)
n (cos θ) =(n + 1)

(
sin

θ

2
cos

θ

2

)
−1( θ

sin θ

)1/2

×
[

m−1∑

k=0

Ak(θ)
Jk+1((n + 3/2)θ)

(n + 3/2)k+1
+ θ O((n + 3/2)−m)

]

where Jk(x) is the Bessel function of the first kind of order k, the coefficients
Ak(θ) are analytic functions for 0 ≤ θ < π. The O-term is uniform with
respect to 0 ≤ θ ≤ π − ε, where ε is an arbitrary positive number.

As a corollary, this gives

P (1,1)
n (cos θ) =2(n + 1)(sin θ)−1

(
θ

sin θ

)1/2

×
[
J1((n + 3/2)θ)

n + 3/2
+ A1(θ)

J2((n + 3/2)θ)

(n + 3/2)2
+ σ2

]
,

where

A1(θ) =
3(1 − θ cot θ)

8θ
and |σ2| ≤

E

n + 3/2
θ3, 0 ≤ θ ≤ π

2
,

and E is constant.
Rewrite the leading term in terms of x = cos θ

P (1,1)
n (x) =

2(n + 1)√
1 − x2

(
arccos x√

1 − x2

)1/2

×
[m−1∑

k=0

Ak(arccos x)
Jk+1((n + 3/2) arccos x)

(n + 3/2)k+1

+ arccos x O((n + 3/2)−m)

]
.

Using (10), we obtain:

qn(x) = −
√

arccos x

(1 − x2)3/4

[
m−1∑

k=0

Ak(arccos x)
Jk+1((n + 3/2) arccos x)

(n + 3/2)k+1

+ arccos x O((n + 3/2)−m)
]
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and for PIPCIR we have:

Qn+2(x) = − (1 − x2)1/4√arccos x

[m−1∑

k=0

Ak(arccos x)
Jk+1((n + 3/2) arccos x)

(n + 3/2)k+1

+ arccos x O((n + 3/2)−m)

]

or,

Qn(x) = − (1 − x2)1/4√arccos x

[m−1∑

k=0

Ak(arccos x)
Jk+1((n − 1/2) arccos x)

(n − 1/2)k+1

+ arccos x O((n − 1/2)−m)

]
.

Corollary.

Qn(x) = − (1 − x2)1/4√arccos x

[
J1((n − 1/2) arccos x)

n − 1/2

+ A1(θ)
J2((n − 1/2)θ)

(n − 1/2)2
+ σ2

]

where

A1(arccos x) =
3(1 −

√
1 + x2 arccos x)

8 arccos x

and |σ2| ≤
E

n − 1/2
(arccos x)3, 0 ≤ x ≤ 1.

2. Part II. Applications of PIPCIRs

The set of PIPCIRs is a family of orthogonal polynomials with respect
to weight 1/(1 − x2) (see (16), (17)).

Theorem 4. If f(x) is continuous on the interval I : −1 ≤ x ≤ 1, its

derivative is piecewise continuous, the curve y = f ′(x) is rectifiable, and

f(−1) = f(1) = 0, then there exists a series of PIPCIRs with constant

coefficients

B2Q2(x) + . . . + BnQn(x) + . . . ,

where

Bn =
n(n − 1)(2n − 1)

2

∫ 1

−1

f(x)Qn(x)

1 − x2
dx (22)

=
n(n − 1)(2n − 1)

2

∫ 1

−1
f(x)qn−2(x)dx
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which:

(a) converges everywhere on I,
(b) converges to f(x) at each point on I,
(c) is such that the series after multiplication by an arbitrary Qk(x) is

termwise integrable on I and converges to the integral of f(x)Qk(x).

Proof. This theorem is corollary from the similar statement about Legendre
polynomials. We differentiate the given function f(x) and find the series of
Legendre polynomials that converges to f ′(x):

f ′(x) = A0L0(x) + A1L1(x) + . . . + AnLn(x) + . . .

where

An =
2n + 1

2

∫ 1

−1
f ′(x)Ln(x)dx.

Then we integrate this series termwise from x to 1 and use (4):

−
∫ 1

x
f ′(t)dt = f(x) = A0(x − 1) + A1Q2(x) + . . . + AnQn+1(x) + . . . .

Since f(−1) = f(1) = 0 and Qn(−1) = Qn(1) = 0 for n ≥ 2, we must have
A0 = 0. The coefficients An may be evaluated in terms of polynomials Qn

(use (2)):

An =
2n + 1

2

∫ 1

−1
f ′(x)Ln(x)dx =

2n + 1

2

(
f(x)Ln(x)

∣∣∣
1

−1
−
∫ 1

−1
f(x)L′

n(x)dx

)

= −2n + 1

2

∫ 1

−1
f(x)Q′′

n+1(x)dx =
(2n + 1)n(n + 1)

2

∫ 1

−1

f(x)Qn+1(x)

1 − x2
dx

and we set for n ≥ 2 :

Bn = An−1 =
n(n − 1)(2n − 1)

2

∫ 1

−1

f(x)Qn(x)

1 − x2
dx

=
n(n − 1)(2n − 1)

2

∫ 1

−1
f(x)qn−2(x)dx.

The last integral shows that we do not have an improper integral.

Requirement f(−1) = f(1) = 0 makes certain restrictions for applica-
tion of this series. But this obstacle can be overcome. For an arbitrary
continuous function f(x) we define

g(x) = f(x) − f(1) + f(−1)

2
− f(1) − f(−1)

2
x.
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Since g(1) = g(−1) = 0, we can find a representation

g(x) =
∞∑

n=2

BnQn(x)

where

Bn =
n(n − 1)(2n − 1)

2

∫ 1

−1
g(x)qn−2(x)dx.

Thus

f(x) =
f(1) + f(−1)

2
+

f(1) − f(−1)

2
x +

∞∑

n=2

BnQn(x).

Examples.

f1(x) =

{
x + 2 if − 1 ≤ x ≤ 0

2 − x if 0 ≤ x ≤ 1
≈ 1 − 1.5Q2(x) + 0.875Q4(x)

(see Fig. 1)

f2(x) =

{
0 if − 1 ≤ x ≤ 0

x if 0 ≤ x ≤ 1
≈ 1 + x

2
+ 0.75Q2(x) − 0.4375Q4(x)

(see Fig. 2)

f3(x) =

{
x + 1 if − 1 ≤ x ≤ 0

1 − x2 if 0 ≤ x ≤ 1
≈ −1.75Q2(x) − 0.625Q3(x)

+ 0.4375Q4(x) (see Fig. 3)

sin(πx) ≈ −4.7765Q3(x) + 1.82981Q5(x) (see Fig. 4)

cos(πx) ≈ −1 − 3Q2(x) + 3.63872Q4(x) (see Fig. 5)

ex ≈ cosh(1) + x sinh(1) + 1.10364Q2(x) + 0.357814Q3(x) (see Fig. 6).

Figures 4, 5, 6 show graphs of PIPCIR expansion in comparison with
Taylor polynomial expansion of the same degree.

The set of PIPCIRs is a family of orthogonal polynomials with respect to
weight 1/(1 − x2) (see (16), (17)). Sometimes it is convenient to normalize
polynomials, so that its norm would be 1. Then we shall have family of
orthonormal polynomials:

Q̂n(x) =

√
n(n − 1)(2n − 1)

2
Qn(x), (23)

||Q̂n|| =

∫ 1

−1

(Q̂n(x))2

1 − x2
dx = 1.
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Theorem 5. Let f(x) be continuous on the interval I = [−1, 1], f(−1) =
f(1) = 0, and its expansion in series of normalized PIPCIRs

f(x) =

∞∑

n=2

B̂nQ̂n(x) (24)

converges uniformly on I. Then
∫ 1

−1

(f(x))2

1 − x2
dx =

∞∑

n=2

B̂2
n.

Proof. Multiply the series (24) by f(x)/(1 − x2) and integrate over I:
∫ 1

−1

(f(x))2

1 − x2
dx =

∞∑

n=2

B̂n

∫ 1

−1

f(x)Q̂n(x)

1 − x2
dx =

∞∑

n=2

B̂2
n.

2.1. Intervals different from [−1, 1].

If a function f(x) is continuous on the interval [a, b], we may represent it
as a sum of series of PIPCIRs by substitution a new variable
x = (1/2)[(b − a)t + b + a]. When x varies from a to b, we have t vary-
ing from −1 to 1. As a result, we shall have:

f(x) =

∞∑

n=2

BnQn

(
2x − b − a

b − a

)
,

where

Bn =
n(n − 1)(2n − 1)

2

∫ 1

−1
f

(
(b − a)t + b + a

2

)
qn−2(t)dt

=
n(n − 1)(2n − 1)

b − a

∫ b

a
f(x)qn−2

(
2x − b − a

b − a

)
dx.

If an interval is [−b, b] then

f(x) =

∞∑

n=0

BnQn

(x

b

)
, Bn =

n(n − 1)(2n − 1)

2b

∫ b

−b
f(x)qn−2

(x

b

)
dx.

If a function is continuous on the interval [0, 1] (or [0, b]), we can extend it
on the interval [−1, 0] (or [−b, 0]), making it even. Then we can find series

f(x) =
∞∑

k=0

B2kQ2k(x) where

B2k =2k(2k − 1)(4k − 1)

∫ 1

0
f(x)q2k−2(x)dx



INTEGRALS OF LEGENDRE POLYNOMIALS 271

(make corresponding correction for the interval [0, b]).
If f(0) = 0, we have choice to extend the function f(x) on the interval

[−1, 0] by making an extension odd or even (the extended function must be
continuous). If we choose the odd extension then

f(x) =

∞∑

k=0

B2k+1Q2k+1(x) where

B2k+1 = 2k(2k + 1)(4k + 1)

∫ 1

0
f(x)q2k−1(x)dx.

2.2. The distance formula and corollary.

Let R denote the distance from the origin O of the fixed point M0. Let
r be the spherical coordinate denoting the distance from the origin of a
variable point M . Let D be the distance M0M . We shall show that

D = R − r cos θ − R
∞∑

n=2

( r

R

)n
Qn(cos θ) for r < R

and

D = r − R cos θ − r
∞∑

n=2

(
R

r

)n

Qn(cos θ) for r > R,

where x = cos θ, and θ being the angle of intersection of vectors OM0 and
OM , and Qn(x) is the PIPCIR of degree n.

From the triangle OM0M we can find (using Law of Cosines):

D =
√

r2 + R2 − 2Rr cos θ. (25)

Using the generating function and its series representation (19),

U(h, x) = 1 − xh −
√

1 − 2xh + h2 =

∞∑

n=2

hnQn(x),

we shall get, setting h = r/R for r < R and x = cos θ:

U
( r

R
, cos θ

)
=1 − r

R
cos θ −

√
1 − 2

r

R
cos θ +

r2

R2

=1 − r

R
cos θ − D

R
=

∞∑

n=2

( r

R

)n
Qn(cos θ).

Hence we obtain:

D = R − r cos θ − R

∞∑

n=2

( r

R

)n
Qn(cos θ) for r < R.

If r > R, we set h = R/r and obtain the second equality.
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This formula is of special interest, if we recall that reciprocal of distance
D is represented as a series of Legendre polynomials ([1, p. 207]):

1

D
=

1

R

∞∑

n=0

( r

R

)n
Ln(cos θ) for r < R,

and

1

D
=

1

r

∞∑

n=0

(
R

r

)n

Ln(cos θ) for r > R.

Using this, we may find an interesting connection between PIPCIRs and
Legendre polynomials:
(

R − r cos θ − R
∞∑

n=2

( r

R

)n
Qn(cos θ)

)(
1

R

∞∑

n=0

( r

R

)n
Ln(cos θ)

)
= 1.

If we temporary set: Q1(x) = x, cos θ = x, r/R = t, then

R

(
1 −

∞∑

n=1

tnQn(x)

)(
1

R

∞∑

n=0

tnLn(x)

)
= 1.

Multiply series and equate coefficients of tn (n > 0) to 0:

n∑

k=1

Qk(x)Ln−k(x) = Ln(x).

Here are some particular cases:

L1(x) = Q1(x) = x

L2(x) = Q1(x)L1(x) + Q2(x)

L3(x) = Q1(x)L2(x) + Q2(x)L1(x) + Q3(x)

L4(x) = Q1(x)L3(x) + Q2(x)L2(x) + Q3(x)L3(x) + Q4(x).

Using this system of equations, we may express Legendre polynomials as a
sum of products of PIPCIRs, or PIPCIRs as a sum of products of Legendre
polynomials.

For a small value of n we can do it immediately:

L1(x) = Q1(x)

L2(x) = Q2
1(x) + Q2(x)

L3(x) = Q3
1(x) + 2Q1(x)Q2(x) + Q3(x)

L4(x) = Q4
1(x) + 3Q2

1(x)Q2(x) + 2Q1(x)Q3(x) + Q2
2(x) + Q4(x)
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or

Q1(x) = L1(x)

Q2(x) = L2(x) − L2
1(x)

Q3(x) = L3(x) − 2L1(x)L2(x) + L3
1(x)

Q4(x) = L4(x) − 2L1(x)L3(x) + 3L2
1(x)L2(x) − L2

2(x) − L4
1(x)

and so on.
Recall the relation between a PIPCIR and a Jacobi polynomial:

Qn(x) = (1 − x2)qn−2(x) = − (1 − x2)

2(n − 1)
P

(1,1)
n−2 (x).

Using this, we can obtain new formulas for Jacobi polynomials:

1 − x2

2

n∑

k=0

1

k + 1
P

(1,1)
k (x)Ln−k(x) = xLn+1(x) − Ln+2(x),

and

P
(1,1)
0 (x) =

−2

1 − x2

(
L2(x) − L2

1(x)
)

P
(1,1)
1 (x) =

−4

1 − x2

(
L3(x) − 2L1(x)L2(x) + L3

1(x)
)

P
(1,1)
2 (x) =

−6

1 − x2

(
L4(x) − 2L1(x)L3(x) + 3L2

1(x)L2(x) − L2
2(x) − L4

1(x)
)
,

and so on.

2.3. Solution of some partial differential equations.

Recall that PIPCIRs are solutions of the equation (2). If we set x = cos θ
then these polynomials will satisfy equations

d2Qn

dθ2
− cot θ

dQn

dθ
+ n(n − 1)Qn = 0. (26)

Theorem 6. The equations

(a) (1 − x2)y′′ − c2y = 0, y(−1) = y(1) = 0

(b)
d2y

dθ2
− cot θ

dy

dθ
− c2y = 0, y(0) = y(π) = 0

have only trivial solution on the interval [−1, 1] for any c.

The proof is standard.

If we change the conditions to y(0) = y(1) = 0 or y′(0) = y(1) = 0, the
conclusion will be the same.
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Example 1. Consider the equation

(1 − x2)
∂2w

∂x2
=

1

k

∂w

∂t
, 0 ≤ x ≤ 1, t ≥ 0, (27)

with initial condition w(x, 0) = f(x) for all 0 ≤ x ≤ 1 and boundary
conditions w(0, t) = 0, w(1, t) = 0 for t ≥ 0. This requires that f(0) = 0,
f(1) = 0.

We shall seek a solution of this problem by separation of variables. First
we shall find a solution of (27) of the form w(x, t) = F (x)G(t). Standard
operations will give the following equations for F and G:

(1 − x2)F ′′ + λF = 0 and G′ + λkG = 0. (28)

We rewrite boundary conditions w(0, t) = 0, w(1, t) = 0 in terms of the
functions F and G: F (0)G(t) = 0 and F (1)G(t) = 0 for all t. This means
that F (0) = 0 and F (1) = 0.

Since f(0) = 0, we may extend the function f(x) to entire interval [−1, 1]
making it odd and the extended function is continuous. Then we shall look
for solution using PIPCIRs of odd order only. As it was stated in Theorem 6,
the first of the equations (28) has a nontrivial solution only if λ > 0. If we set
λ = 2n(2n+1), n > 0, we find a solution of this equation F (x) = Q2n+1(x).
After that we determine a particular solution of the second equation (28)
with λ = 2n(2n + 1):

G(t) = e−2n(2n+1)kt.

Let

w(x, t) =

∞∑

n=1

B2n+1Q2n+1(x)e−2n(2n+1)kt. (29)

For any coefficients B2n+1 this function satisfies the equation (27) and
boundary condition w(0, t) = 0, w(1, t) = 0. For t = 0 we must have

f(x) =

∞∑

n=1

B2n+1Q2n+1(x),

and we find coefficients B2n+1, using formulas (22):

B2n+1 =2n(2n + 1)(4n + 1)

∫ 1

0

f(x)Q2n+1(x)

1 − x2
dx

=2n(2n + 1)(4n + 1)

∫ 1

0
f(x)q2n−1(x).

The function (29) with defined coefficients Bn is the solution of the prob-
lem (27).
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Example 2. If we have the equation

(1 − x2)
∂2w

∂x2
=

1

k

∂w

∂t
, 0 ≤ x ≤ 1, t ≥ 0, (30)

with initial condition w(x, 0) = f(x) and boundary conditions
∂w

∂x
(0, t) = 0,

w(1, t) = 0 (that requires f(1) = 0), then after the same procedure, we
may extend the function f(x) from the interval [0, 1] to the interval [−1, 1]
making it even. Since a function Qn(x) for even n satisfies both boundary

conditions Qn(1) = 0 and
∂Qn

∂x
(0) = 0, the function

w(x, t) =

∞∑

n=1

B2nQ2n(x)e−2n(2n−1)kt (31)

satisfies this conditions for any coefficients B2n. For t = 0 we must have

f(x) =
∞∑

n=1

B2nQ2n(x)

and we find coefficients B2n using formulas (22):

B2n =2n(2n − 1)(4n − 1)

∫ 1

0

f(x)Q2n(x)

1 − x2
dx

=2n(2n − 1)(4n − 1)

∫ 1

0
f(x)q2n−2(x)dx.

The function (31) with defined coefficients Bn is a solution of the problem
(30).

Example 3. Consider the equation

(1 − x2)
∂2w

∂x2
=

1

k

∂2w

∂t2
, k > 0, 0 ≤ x ≤ 1, t ≥ 0, (32)

with initial conditions w(x, 0) = f(x),
∂w

∂t
(x, 0) = g(x) for all 0 ≤ x ≤ 1

and boundary conditions w(0, t) = 0, w(1, t) = 0 for t ≥ 0. This requires
that f(0) = 0, g(0) = 0, f(1) = 0, g(1) = 0.

As in Example 1, we shall find first a solution of (32) in the form w(x, t) =
F (x)G(t), separate variables, and we shall get two equations:

(1 − x2)F ′′ + λF = 0 and G′′ + λkG = 0. (33)

Since f(0) = 0 and g(0) = 0, we may extend the functions f(x) and g(x)
to entire interval [−1, 1] making them odd and the extended functions are
continuous. Then we shall look for a solution using PIPCIRs of odd order
only. As it was stated in Theorem 6, the first of the equations (33) has
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nontrivial solution only if λ > 0. If we set λ = 2n(2n + 1), n > 0, we find
a solution of this equation F (x) = Q2n+1(x). After that we determine a
particular solution of the second equation (33) with λ = 2n(2n + 1):

Gn(t) =An sin(
√

λk t) + Bn cos(
√

λk t)

=An sin(
√

2n(2n + 1)k t) + Bn cos(
√

2n(2n + 1)k t).

Let

w(x, t) =
∞∑

n=1

Q2n+1(x)
[
A2n+1 sin(

√
λk t) (34)

+ B2n+1 cos(
√

λk t)
]
.

Then

∂w

∂t
(x, t) =

∞∑

n=1

Q2n+1(x)
[
A2n+1

√
λk cos(

√
λk t) − B2n+1

√
λk sin(

√
λk t)

]
.

For any coefficients A2n+1, B2n+1 the function w(x, t) satisfies the equation
(32) and boundary condition w(0, t) = 0, w(1, t) = 0. For t = 0 we must
have

f(x) =

∞∑

n=1

B2n+1Q2n+1(x),

g(x) =
∞∑

n=1

A2n+1

√
λk Q2n+1(x),

and we find coefficients Bn and An using formulas (22):

B2n+1 = 2n(2n + 1)(4n + 1)

∫ 1

0

f(x)Q2n+1(x)

1 − x2
dx

= 2n(2n + 1)(4n + 1)

∫ 1

0
f(x)q2n−1(x)

A2n+1 =
2n(2n + 1)(4n + 1)√

λk

∫ 1

0

g(x)Q2n+1(x)

1 − x2
dx

=
2n(2n + 1)(4n + 1)√

λk

∫ 1

0
g(x)q2n−1(x).

The function (34) with defined coefficients An, Bn is the solution of the
problem (32).

If we have the equation

(1 − x2)
∂2w

∂x2
=

1

k

∂2w

∂t2
, 0 ≤ x ≤ 1, t ≥ 0,
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with initial conditions w(x, 0) = f(x),
∂w

∂t
(x, 0) = g(x) for all 0 ≤ x ≤ 1,

and boundary conditions
∂w

∂x
(0, t) = 0, w(1, t) = 0, then after the same

procedure, we may extend the function f(x) from the interval [0, 1] to the
interval [−1, 1] making it even, and we shall find the answer in the same
way as in Example 2.

Example 4. Let w(r, ϕ, θ) be a function defined on spherical solid of radius
R with center at the origin, (r, ϕ, θ) are spherical coordinates of a point
where r is the distance from origin, θ is colatitude from the positive z-axis
(cone angle), ϕ is the angle of sweep about the z-axis. We assume that the
function w depends only on two variables, r and θ, and satisfies the partial
differential equation

∂

∂r

(
r2 ∂w

∂r

)
+ sin θ

∂

∂θ

(
1

sin θ

∂w

∂θ

)
= 0 (35)

and boundary condition w(R, θ) = f(θ), where f(θ), 0 ≤ θ ≤ π, is continu-
ous function. We shall seek a solution of this problem by separation of vari-
ables. First we shall find a solution of (35) of the form w(r, θ) = F (r)G(θ),
and standard operations will give the following equations for F and G:

sin θ
d

dθ

(
1

sin θ

dG

dθ

)
+ λG = 0,

d

dr

(
r2 dF

dr

)
− λF = 0.

These equations can be rewritten as

d2G

dθ2
− cot θ

dG

dθ
+ λG = 0, r2F ′′ + 2rF ′ − λF = 0. (36)

By Theorem 6, we conclude that λ must be positive, and we set λ =
n(n−1). The PIPCIR Qn(cos θ) is a particular solution of the first equation
(36). A general solution of the second equation (36) is equal to the function

F (r) = Anrn +
Bn

rn+1
, (37)

where An and Bn are arbitrary constants. The second term on the right in
equation (37) becomes infinite at r = 0 and is thus unsuitable. Hence we
let Bn = 0.

Now we can construct the function

wn(r, θ) = F (r)G(θ) =
An

Rn
rnQn(cos θ)

and then

w(r, θ) =
∞∑

n=0

An

( r

R

)n
Qn(cos θ).
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This function satisfies the equation (35) and w(r, 0) = w(r, π) = 0 for
any coefficients An. If the function f(θ) does not satisfy the condition
f(0) = f(π) = 0, then we set

g(θ) = f(θ)− f(0) + f(π)

2
− f(0) − f(π)

2
cos θ.

Since g(0) = g(π) = 0, we can find a representation

g(θ) =

∞∑

n=2

AnQn(cos θ)

where

An =
n(n − 1)(2n − 1)

2

∫ π

0
g(θ)qn−2(cos θ) sin θ dθ.

Thus

f(θ) =
f(0) + f(π)

2
+

f(0) − f(π)

2
cos θ +

∞∑

n=2

AnQn(cos θ).

The function

ŵ(x, t) =
f(0) + f(π)

2
+

f(0) − f(π)

2
cos θ +

∞∑

n=0

An

( r

R

)n
Qn(cos θ)

with defined coefficients An is a solution of the problem (35).

Note. The function S(r, θ) = D/r, where D is a distance (25), is one of
the particular solutions of the equation (35) with the boundary condition
f(θ) = 2 sin(θ/2).

Example 5. In the situation described in Example 4 we consider spherical
shell solid with the radius of the inner surface R1 and the radius of the outer
surface R2, R1 < R2. The common center of these surfaces is at the origin.
We shall determine the function w(R, θ) that satisfies the equation (35) and
given boundary conditions

w(R1, θ) = f1(θ), w(R2, θ) = f2(θ),

where f1(θ) and f1(θ) are continuous functions, 0 ≤ θ ≤ π. As in Example 4,
we find the equations (36) and the function (37), but now we cannot reject
the second term of it. So, we construct a function

wn(r, θ) = F (r)G(θ) =

(
Anrn +

Bn

rn+1

)
Qn(cos θ)

and

w(r, θ) =
∞∑

n=0

(
Anrn +

Bn

rn+1

)
Qn(cos θ).
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For r = R1 and r = R2 we must have:

w(R1, θ) = f1(θ) =
f1(0) + f1(π)

2
+

f1(0) − f1(π)

2
cos θ

+

∞∑

n=0

(
AnRn

1 +
Bn

Rn+1
1

)
Qn(cos θ)

w(R2, θ) = f2(θ) =
f2(0) + f2(π)

2
+

f2(0) − f2(π)

2
cos θ

+

∞∑

n=0

(
AnRn

2 +
Bn

Rn+1
2

)
Qn(cos θ)

Hence, if

g1(θ) = f1(θ) − f1(0) + f1(π)

2
− f1(0) − f1(π)

2
cos θ

and

g2(θ) = f2(θ) − f2(0) + f2(π)

2
− f2(0) − f2(π)

2
cos θ,

then

AnRn
1 +

Bn

Rn+1
1

=
n(n − 1)(2n − 1)

2

∫ π

0
g1(θ)qn−2(cosθ) sin θ dθ,

AnRn
2 +

Bn

Rn+1
2

=
n(n − 1)(2n − 1)

2

∫ π

0
g2(θ)qn−2(cos θ) sin θ dθ.

To define coefficients An and Bn, we have to solve the linear system of two
equations. It has the unique solution for R1 6= R2.
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Fig. 1. Graphs of f1(x) and s1(x) = 1 − 1.5Q2(x) + 0.875Q4(x)

Fig. 2. Graphs of f2(x) and s2(x) = (1 + x)/2 + 0.75Q2(x) − 0.4375Q4(x)
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Fig. 3. Graphs of f3(x) and s3(x) = −1.75Q2(x)− 0.625Q3(x) + 0.4375Q4(x)

Fig. 4. Graphs of f(x) = sin(πx), s(x) = −4.7765Q3(x) + 1.82981Q5(x) and
T (x) = πx− (1/6)π3x3 + (1/120)π5x5 (dashed curve represents T (x))
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Fig. 5. Graphs of f(x) = cos(πx), s(x) = −1 − 3Q2(x) + 3.63872Q4(x) and
T (x) = 1 − (1/2)π2x2 + (1/24)π4x4 (dashed curve represents T (x))

Fig. 6. Graphs of f(x) = ex, s(x) = cosh(1) + x sin(1) + 1.10364Q2(x) +
0.357814Q3(x) and T (x) = 1 + x + (1/2)x2 + (1/6)x3 (dashed curve
represents T (x))


