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Abstract. The present paper gives characterizations of radially
u.s.c. convex and pseudoconvex functions f : X → R defined on a con-
vex subset X of a real linear space E in terms of first and second-order
upper Dini-directional derivatives. Observing that the property f ra-
dially u.s.c. does not require a topological structure of E, we draw the
possibility to state our results for arbitrary real linear spaces. For con-
vex functions we extend a theorem of Huang, Ng [10]. For pseudoconvex
functions we generalize results of Diewert, Avriel, Zang [6] and Crouzeix
[4]. While some known results on pseudoconvex functions are stated in
global concepts (e.g. Komlosi [11]), we succeeded in realizing the task
to confine to local concepts only.

1. Introduction

In this paper E denotes a real linear space and f : X → R is a finite-
valued real function defined on the set X ⊂ E. Here R is the set of the reals
and R = R∪{−∞}∪{+∞}. Let f̄ : E→ R be the extension of f such that
f̄(x) = +∞ for x ∈ E \X.
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The upper Dini-directional derivative of f at x ∈ X = domf̄ in direction
u ∈ E is defined as an element of R by

f ′+(x;u) = lim sup
t↓0

t−1(f̄(x+ tu)− f(x)).

We introduce the second-order upper Dini-directional derivative of f at
x ∈ X in direction u ∈ E for which f ′+(x;u) is finite by

f ′′+(x;u) = lim sup
t↓0

2t−2(f̄(x+ tu)− f(x)− tf ′+(x;u)).

In the case of an infinite f ′+(x;u) the derivative f ′′+(x;u) will not be consid-
ered.

We recall that a function f : X → R is radially upper semicontinuous
(radially u.s.c. for short) on the convex set X if the function ϕ(t) = f(x +
t(y − x)), t ∈ [0, 1], is upper semicontinuous for every x, y ∈ X.

While the upper semicontinuity is a topological concept, let us turn at-
tention that the property of f being radially u.s.c. does not require a topo-
logical structure on E. In fact, we use the function ϕ : [0, 1] → R applying
only the topology on R. Similarly, the Dini-directional derivatives are de-
fined through restrictions of f on linearly parameterized rays and also do
not require a topology on E. Neither do the definitions of convexity and
pseudoconvexity. Hence, arbitrary real linear space is the most natural envi-
ronment for the considered concepts, which is in consistency with our point
of view.

Further we use to say “local concepts”, which in the framework of lack of
topology on E needs some explanation. Actually, speaking for “local con-
cepts” (such as Dini derivatives) we face the situation, when some segment
or ray is given, which is linearly parameterized by some parameter t. A
concept related to this segment or ray is called “local”, if it is determined
by an arbitrary small interval of variation of t.

It is well-known that a twice continuously differentiable function f of n
variables defined on an open convex set X is convex if and only if its Hessian
∇2f(x) is positively semidefinite for all x ∈ X. Various generalizations are
due to Chaney [1], Cominetti, Correa [3], Huang, Ng [10], Yang, Jeyakumar
[14], and Yang [15]. The present paper is related to these results. It gives
characterization of radially u.s.c. convex and pseudoconvex functions in Dini
derivatives (and partially in other local concepts). For convex functions
we extend a theorem of Huang, Ng [10]. For pseudoconvex functions we
generalize results of Diewert, Avriel, Zang [6] and Crouzeix [4].
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2. Second-order characterization of convex functions

Let X ⊂ E be a convex set. The function f : X → R is said to be strongly
convex if there exists a constant κ > 0 such that for all x, y ∈ X, λ ∈ [0, 1]
it holds

f (λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x)− κλ(1− λ)‖y − x‖2.
Consider the following conditions:

(C1) f ′+(x;u) + f ′+(x;−u) ≥ 0 if the expression in the left hand
side has sense;

(C2) f ′+(x;u) + f ′+(x;−u) = 0 implies f ′′+(x;u) ≥ 0;
(C3) f ′+(x;u) + f ′+(x;−u) = 0 implies f ′′+(x;u) ≥ 2κ‖u‖2;
(C4) f ′+(x;u) + f ′+(x;−u) = 0 implies f ′′+(x;u) > 0.

We add the following comments to these conditions. Concerning (C1)
recall that the upper Dini-directional derivatives f ′+(x;u) and f ′+(x;−u) are
elements of R and if the left hand side of (C1) is the sum (+∞) + (−∞) or
(−∞)+(+∞) we consider this expression as having no sense. All other sums
involving infinities have sense: (+∞) + (+∞) = +∞, (−∞) + (−∞) = −∞
and for a finite (+∞) + a = a+ (+∞) = +∞ and (−∞) + a = a+ (−∞) =
−∞. Concerning (C2), (C3), (C4) we see with the regard to the definition of
the summation in R the equality f ′+(x;u) + f ′+(x;−u) = 0 could have place
only if f ′+(x;u) and f ′+(x;−u) are finite, whence the second-order upper
Dini-directional derivative f ′′+(x;u) does exist.

The following theorem gives characterizations of different kinds of convex
functions.

Theorem 2.1. Let f : X → R be radially u.s.c. on the convex set X ⊂ E.
Then

(i) f is convex on X if and only if Conditions (C1) and (C2) hold for each
x ∈ X and u ∈ E;

(ii) f is strongly convex on X with a constant κ > 0 if and only if Condi-
tions (C1) and (C3) hold for each x ∈ X and u ∈ E;

(iii) If Conditions (C1) and (C4) hold for each x ∈ X and u ∈ E\{0}, then
f is strictly convex on X.

Proof. (i) Suppose that f is convex. Then the extended function f̄ is also
convex, whence for x ∈ X it holds

f̄(x+ tu) + f̄(x− tu) ≥ 2f(x).

Consequently, if the expression f ′+(x;u) + f ′+(x;−u) has sense we have

0 ≤ lim sup
t↓0

t−1(f̄(x+ tu)− f(x) + f̄(x− tu)− f(x)) ≤ f ′+(x;u) + f ′+(x;−u),



264 I. GINCHEV and V. I. IVANOV

which proves (C1). We check now Condition (C2). If f ′+(x;u) is finite, then
for all sufficiently small t > 0 it holds x + tu ∈ X and f ′+(x;u) coincides
with the usual directional derivative f ′(x;u). From the inequality f(x +
tu)− f(x)− tf ′(x;u) ≥ 0 it follows that f ′′+(x;u) ≥ 0. If f ′+(x;u) is infinite,
then f ′+(x;u) + f ′+(x;−u) cannot be 0.

Conversely, assume that Conditions (C1) and (C2) hold for each x ∈ X
and u ∈ E. Let us fix x, y ∈ X and ε > 0. Define the function ψ : [0, 1]→ R
putting

ψ(t) = f(x+ t(y − x))− εt(1− t)− f(x)(1− t)− f(y)t, 0 ≤ t ≤ 1.

Obviously ψ is finite and ψ(0) = ψ(1) = 0. Since also ψ is u.s.c., then by
the generalized Weierstrass Theorem, it attains its largest value over [0, 1]
at some point ξ. We show that ξ ∈ {0, 1}. Assume in the contrary that
0 < ξ < 1. An easy calculation accounting the maximality property of ξ
gives

ψ′+(ξ; 1) =f ′+(x+ ξ(y − x); y − x)− ε(1− 2ξ) + f(x)− f(y) ≤ 0,

ψ′+(ξ;−1) =f ′+(x+ ξ(y − x);x− y) + ε(1− 2ξ)− f(x) + f(y) ≤ 0.

These inequalities show that if f ′+(x+ξ(y−x); y−x) or f ′+(x+ξ(y−x);x−
y) take eventually infinite value, these values could be only −∞, whence
f ′+(x+ ξ(y − x); y − x) + f ′+(x+ ξ(y − x);x− y) has sense and with regard
to Condition (C1) we have

ψ′+(ξ; 1) +ψ′+(ξ;−1) = f ′+(x+ ξ(y−x); y−x) + f ′+(x+ ξ(y−x);x− y) ≥ 0.

The obtained inequality together with the inequalities ψ′+(ξ; 1) ≤ 0 and
ψ′+(ξ;−1) ≤ 0 gives ψ′+(ξ; 1) = ψ′+(ξ;−1) = 0. Consequently,

f ′+(x+ ξ(y − x); y − x) + f ′+(x+ ξ(y − x);x− y) = 0.

From ψ′+(ξ; 1) = 0 and ξ maximal point for ψ we have

ψ′′+(ξ; 1) = lim sup
t↓0

2t−2(ψ(ξ + t)− ψ(ξ)) ≤ 0.

On the other hand we infer from Condition (C2) that

ψ′′+(ξ; 1) = f ′′+(x+ ξ(y − x); y − x) + 2ε > 0,

which is a contradiction.
Thus, ξ does not attain its maximum on (0, 1), which implies that

ψ(t) ≤ max{ψ(0), ψ(1)} = 0 for all t ∈ [0, 1].

This inequality can be rewritten in the form

f((1− t)x+ ty) ≤ εt(1− t) + (1− t)f(x) + tf(y)

and passing to a limit with ε→ 0 we conclude that f is convex.
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(ii) To adapt the proof of strongly convex case to the convex one, we
must change only in the proof the function ψ into

ψ1(t) = f(x+ t(y − x))− (ε− κ‖y − x‖2)t(1− t)− f(x)(1− t)− f(y)t.

(iii) We apply reasoning similar to that of (i) to the function

ψ2(t) = f(x+ t(y − x))− f(x)(1− t)− f(y)t.

The following example shows that Condition (C1) cannot be dropped and
Condition (C2) truncated only to f ′′+(x;u) ≥ 0 for all x ∈ X and u ∈ E as
in the classical case.

Example 2.1. The function f(x) = −|x|, where |·| is the usual absolute
value of a real number, satisfies the equality f ′′+(x;u) = 0 for all x, u ∈ R.
It is continuous, but not convex. Obviously, f ′+(0; 1) + f ′+(0;−1) = −2.

The following example shows that the assumption that f is radially
u.s.c. cannot be dropped in Theorem 2.1.

Example 2.2. The function f : R→ R

f(x) =

{
x2, if x is rational;
0, otherwise,

satisfies Conditions (C1) and (C2), but f is not convex. This function is
also not u.s.c.

Theorem 2.1 (i) is an extension of Theorem 2 in Huang, Ng [10]. In
their work the corresponding theorem is proved in terms of the second-
order derivative of Ben-Tal and Zowe. In comparison to the present paper
the considerations in Huang, Ng [10] are restricted only to a regular locally
Lipschitz function on an open convex set. Condition (C1) in fact does not
appear there, since in case of a regular locally Lipschitz function it is trivially
satisfied. When the function is regular locally Lipschitz and the set X is
open the second-order Dini derivative coincides with the derivative used
in Theorem 2 of Huang, Ng [10]. Characterization of convexity through
second-order directional derivatives give also Chaney [1], Cominetti, Correa
[3], Yang, Jeyakumar [14], and Yang [15], where again functions defined on
open sets from restricted classes are considered satisfying ad hoc condition
(C1).

Related necessary and sufficient conditions for convexity of a continuous
function f in terms of other type lower generalized directional derivatives
are derived in Ginchev, Ivanov [8].
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3. Characterizations of pseudoconvex functions

In this section we use the following well-known definitions.
The function f defined on the convex set X ⊂ E is said to be quasiconvex

on X if

f((1− t)x+ ty) ≤ max{f(x), f(y)} for all t ∈ [0, 1].

The function f defined on the convex set X ⊂ E is said to be upper Dini
(strictly) pseudoconvex on X if the following implications holds:

x, y ∈ X, f(y) < f(x) implies f ′+(x; y − x) < 0

(x, y ∈ X, f(y) ≤ f(x), x 6= y implies f ′+(x; y − x) < 0).

For brevity we omit the words “upper Dini” saying simply “pseudoconvex”
or “strictly pseudoconvex” function.

The point x ∈ X is said to be a stationary point of the function f : X → R
with respect to the upper Dini-directional derivative if f ′+(x;u) ≥ 0 for all
u ∈ E.

The following proposition due to Komlosi [11] is a generalization of a well-
known characterization of pseudoconvex differentiable functions derived in
Crouzeix, Ferland [5].

Proposition 3.1. Let f be a radially u.s.c. quasiconvex function defined on
the open convex set X ⊂ Rn. If f attains a global minimum at x whenever
x is an stationary point of f , then f is pseudoconvex on X.

The main result of this section is Theorem 3.1, which gives a charac-
terization of pseudoconvex functions. In the contrary to Proposition 3.1
and similarly to the convex case from Theorem 2.1 our point of view is to
consider an arbitrary and not necessarily open set X ⊂ E (recall that even
more, we do not assume a topological structure on E) and to state our result
in local and not global concepts. The price we pay is that in the sufficiency
parts of Theorem 3.1 (i1) and (i2) we confine to the class of functions satis-
fying Condition (C1), which does not contain all the pseudoconvex functions
(such a restriction does not appear in Proposition 3.1).

Example 3.1. The function f : R→ R defined by

f(x) =

{
2x, x < 0,
x, x ≥ 0,

is pseudoconvex and it does not satisfy Condition (C1) at x = 0.

We consider the following conditions:
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(C5) f ′+(x;u) = 0 implies ∃ δ > 0: ∀ t ∈ (0, δ) :
f(x) ≤ f̄(x+ tu);

(C6) f ′+(x;u) = 0 implies ∃ δ > 0: ∀ t ∈ (0, δ) :
f(x) < f̄(x+ tu);

(C7) f ′+(x;u) = 0 implies f ′′+(x;u) ≥ 0;
(C8) f ′+(x;u) = f ′′+(x;u) = 0 implies ∃ δ > 0: ∀ t ∈ (0, δ) :

f(x) ≤ f̄(x+ tu);
(C9) f ′+(x;u) = 0 implies f ′′+(x;u) > 0.

Theorem 3.1. Let f be a radially u.s.c. function defined on the convex set
X ⊂ E.
(First-order conditions)
(i1) If f is pseudoconvex, then Conditions (C5) is satisfied for all x ∈ X

and u ∈ E. Conversely, if Conditions (C1) and (C5) are satisfied for
all x ∈ X and u ∈ E, then f is pseudoconvex.

(ii1) If Conditions (C1) and (C6) are satisfied for all x ∈ X and u ∈ E\{0},
then f is strictly pseudoconvex.

(Second-order conditions)
(i2) If f is pseudoconvex, then Conditions (C7) and (C8) are satisfied for

all x ∈ X and u ∈ E. Conversely, if Conditions (C1), (C7) and (C8)
are satisfied for all x ∈ X and u ∈ E, then f is pseudoconvex.

(ii2) If Conditions (C1) and (C9) are satisfied for all x ∈ X and u ∈ E\{0},
then f is strictly pseudoconvex.

Proof. We prove only the second-order conditions, since the proof of the
first-order conditions can be obtained as an obvious simplification of that
of the second-order ones.

(i2) Suppose that f is pseudoconvex on X. Let us fix x ∈ X and u ∈ E
such that f ′+(x;u) = 0. Then f(x) ≤ f̄(x+ tu) for all t ≥ 0. Indeed, assume
the contrary that f̄(x + tu) < f(x) for some t > 0. By the definition of f̄ ,
x+ tu ∈ X. Therefore, the positive homogeneity of f ′+(x; ·) contradicts the
assumption f ′+(x;u) = 0. Hence Condition (C8) has place. Now Condition
(C7) is implied by

f ′′+(x;u) = lim sup
t↓0

2t−2(f̄(x+ tu)− f(x)).

Conversely, assume that additional Condition (C1) is satisfied together
with Conditions (C7) and (C8) for all x ∈ X and u ∈ E. Our purpose is to
show that f is pseudoconvex.

We show first the quasiconvexity of f . Indeed, if this is not the case, there
for some x, y ∈ X and for the function ϕ(t) = f(x + t(y − x)), 0 ≤ t ≤ 1,



268 I. GINCHEV and V. I. IVANOV

we would have

ϕ(ξ̄) =f((1− ξ̄)x+ ξ̄y) = max
0≤t≤1

ϕ(t)

>max{ϕ(0), ϕ(1)} = max{f(x), f(y)}
(3.1)

(the maximum is attained, which is guaranteed by the generalized Weier-
strass Theorem accounting that f is radially u.s.c.). From the maximality
of ξ̄ we get

f ′+(x+ ξ̄(y − x); y − x) ≤ 0, f ′+(x+ ξ̄(y − x);x− y) ≤ 0.

These inequalities and Condition (C1) give

f ′+(x+ ξ̄(y − x); y − x) = f ′+(x+ ξ̄(y − x);x− y) = 0. (3.2)

Now the maximality property of ξ̄ and Condition (C7) imply

f ′′+(x+ ξ̄(y − x); y − x) = f ′′+(x+ ξ̄(y − x);x− y) = 0.

Further the maximality of ξ̄ and Condition (C8) imply that ϕ is constant in
a neghbourhood of ξ̄. This property is valid for each maximizer ξ ∈ (0, 1),
whence ϕ is constant on the whole interval [0, 1]. The latter is a consequence
of the following reasoning. Let

Ξ =
⋃
{(α, β) | 0 ≤ α < ξ̄ < β ≤ 1, ϕ is constant on (α, β)}.

Then Ξ is an open interval (ξ∗, ξ∗) and ϕ(ξ) = ϕ(ξ̄) for ξ∗ < ξ < ξ∗. We
prove that also ϕ(ξ∗) = ϕ(ξ∗) = ϕ(ξ̄). From the maximality of ξ̄ and the
upper semicontinuity of ϕ we have

ϕ(ξ∗) ≥ lim sup
ξ↑ξ∗

ϕ(ξ) = ϕ(ξ̄) ≥ ϕ(ξ∗),

where ξ ↑ ξ∗ denotes ξ → ξ∗, ξ < ξ∗. Similarly ϕ(ξ∗) = ϕ(ξ̄). This implies
that ξ∗ = 0 and ξ∗ = 1. Indeed, ξ∗ is a maximizer of ϕ. If ξ∗ < 1, then
from the proved property there exist α, β such that ξ∗ ∈ (α, β) ⊂ [0, 1]
and ϕ is constant on (α, β). Now ϕ is constant on the interval [ξ∗, β),
which contradicts the choice of ξ∗. Hence ξ∗ = 1. Similarly we prove
ξ∗ = 0. Thus, ϕ is constant on [ξ∗, ξ∗] = [0, 1]. The property ϕ is constant
on [0, 1] contradicts however the strict inequality (3.1), which proves the
quasiconvexity of f .

We show that f is pseudoconvex on X. Assume the contrary: there
exist x, y ∈ X such that f(y) < f(x) and f ′+(x; y − x) ≥ 0. Thanks
to quasiconvexity f ′+(x; y − x) = 0. It follows from Condition (C7) and the
quasiconvexity that f ′′+(x; y−x) = 0. Condition (C8) and the quasiconvexity
imply an existence of δ > 0 such that

f(x) = f(x+ t(y − x)) for all t ∈ [0, δ).
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In order to get a contradiction denote by x∗ = (1− t∗)x+ t∗y, where

t∗ = sup{t ∈ [0, 1] | ϕ is constant on [0, t)}.

From the upper semicontinuity and quasiconvexity of ϕ we have

ϕ(t∗) ≥ lim sup
t↑t∗

ϕ(t) = ϕ(0) ≥ ϕ(t∗).

Hence f(x∗) = f(x). Assume that t∗ < 1. From the quasiconvexity
f ′+(x∗; y−x∗) ≤ 0. On the other hand, by the choice of x∗, f ′+(x∗;x∗−y) = 0,
whence applying Condition (C1) we get that f ′+(x∗; y − x∗) = 0. Now
Condition (C7) and the quasiconvexity imply that f ′′+(x∗; y − x∗) = 0.
From the quasiconvexity and Condition (C8) we conclude that f(x∗) =
f(x∗ + t(y− x∗)) for 0 < t < δ and some δ > 0. This contradicts the choice
of x∗. The obtained contradiction implies that t∗ = 1, which is impossible,
since f(y) < f(x). Hence, f is pseudoconvex.

(ii2) The proof of this claim is simpler and it almost repeats the general
parts of case (i2). To show the quasiconvexity we see that the maximality
of ξ̄ and equality (3.2) contradict Condition (C9). In the proof of the strict
pseudoconvexity equality f ′+(x; y−x) = 0 and the quasiconvexity contradict
Condition (C9) again.

Theorem 3.1 is a generalization of some well-known results of Diewert,
Avriel, Zang [6, Theorems 10, 11 and Corollaries 10.1, 11.1], Crouzeix [4,
Propositions 3, 4 and Theorem 2] for a directionally differentiable function
or a twice continuously differentiable function on an open set X.

Remark 3.1. Some classes of functions, which satisfy condition (C1) are
the Gâteaux-differentiable, quasidifferentiable in the sense of Pshenichnyi
[13], or regular locally Lipschitz in the sense of Clarke [2] functions. Another
functions, which fulfill this condition are the upper Dini subdifferentiable
functions, that is the functions for which the upper Dini subdifferential

∂f(x) = {ξ ∈ E∗ | 〈ξ, u〉 ≤ f ′+(x;u) ∀ u ∈ E},

where 〈·, ·〉 denotes the canonical pairing between E and its dual space E∗,
is nonempty for all x ∈ X.

Looking at Conditions (C5)–(C9) we see that (C5), (C6) and (C8) are
bit different. Although they are local, they involve not only the values of
the derivatives, but also the values of the function f over a finite interval.
Further we comment this situation, but we give first an example showing
that the sufficient part of Theorem 3.1 (i2) fails to be true without Condition
(C8).
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Example 3.2. The function f : R→ R defined by f(x) = (x2−1)3 satisfies
everywhere Conditions (C1) and (C7), but it is not pseudoconvex. This
function does not fulfill Condition (C8) at the points x = 1 and x = −1.

Indeed, each differentiable function satisfies Condition (C1), since then
f ′+(x;−u) = −f ′+(x;u). Here we can check this condition also directly
from f ′+(x;u) = 6x(x2 − 1)2u. The second-order derivative is f ′′+(x;u) =
6(x2−1)2u2 +24x2(x2−1)u2. For u = 0 Condition (C7) is trivially satisfied.
Let u 6= 0 and f ′+(x;u) = 0. Then x ∈ {−1, 0, 1}. For x = 0 we have
f ′′+(x;u) = 6u2 > 0 and x = ±1 gives f ′′+(x;u) = 0. Therefore (C7) holds
for each x ∈ R and u ∈ R. The function f is however not pseudoconvex,
since for x = 1, y = 0 we have f(y) = f(0) = −1 < 0 = f(1) = f(x), but
f ′+(x; y − x) = 0.

Commenting that the conclusion in Condition (C8) is not given in terms
of directional derivatives, we could say the following. Obviously, conditions
in terms of directional derivatives can be reformulated as conditions over
small intervals. For instance, Condition (C7) can be given in the form:
f ′+(x;u) = 0 implies that for each ε > 0 and all δ > 0 there exists t ∈ (0, δ)

such that f̄(x+ tu) > f(x)− 0.5 t2ε.
It seems that the conclusion in Condition (C8) cannot be given in terms of

directional derivatives. However sometimes it is advantageous to remain by
the directional derivatives, since then known calculus rules can be applied.
Having this in mind, we come easily to the following corollary.

Corollary 3.1. If f : X → R is pseudoconvex, then Condition (C7) is sat-
isfied and

f ′+(x;u) = f ′′+(x;u) = 0 implies f ′′′+ (x;u) ≥ 0. (3.3)

Conversely, assuming (C1) and (C7) are satisfied and that

f ′+(x;u) = f ′′+(x;u) = 0 implies f ′′′+ (x;u) > 0, (3.4)

then f is strictly pseudoconvex.

In general the applied above upper third-order Dini-directional derivative
is defined as element of R iff f ′′+(x;u) is finite and

f ′′′+ (x;u) = lim sup
t↓0

6
t3

(f̄(x+ tu)− f(x)− tf ′+(x;u)− 1
2
t2f ′′+(x;u)).

Corollary 3.1 is an obvious consequence of Theorem 3.1, taking into account
that (C8) implies (3.3) and (3.4) implies that there exists δ > 0 such that
f̄(x+ tu) > f(x) for all t ∈ (0, δ).
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Obviously, assertions like Corollary 3.1 can be formulated in terms of
higher-order upper Dini-directional derivatives. Such derivatives can be
introduced in manner similar to the ones considered in [7] and [8].

4. Final remarks

Remark 4.1. Theorem 3.1 and Corollary 3.1 remain true if Condition (C1)
is replaced by the following one:

(C ′1) f ′+(x;u) ≤ 0 and f ′+(x;−u) ≤ 0 implies f ′+(x;u) = f ′+(x;−u) = 0.

In fact in the proof of Theorem 3.1 we have used not exactly (C1), but
the weaker Condition (C ′1). Now we gain the possibility to recognize a wider
class of pseudoconvex functions. For instance, the pseudoconvex function
from Example 3.1 does not satisfy (C1), but satisfies (C ′1). Still, the follow-
ing example shows that there exist pseudoconvex functions, which do not
satisfy even this weaker condition.

Example 4.1. The function f : R→ R, f(x) = min{x, x2} is pseudoconvex
and it does not satisfy Condition (C ′1).

Each convex function satisfies (C1) and in such a sense this condition
is natural for the convex case. It is some link between Sections 2 and
3, but for pseudoconvex functions (C1) is not necessarily satisfied. The
simplification to (C ′1) comes from the proof of Theorem 3.1. It remains
still an open question, whether arbitrary pseudoconvex functions can be
characterized (with similarly looking necessary and sufficient conditions) in
terms of directional derivatives.

Remark 4.2. Theorem 2.1 and Theorem 3.1 remain true if Condi-
tion (C1) in them is replaced respectively by the given below Conditions
(Cc1) and (Cp1 ) (the superscript c stands for convex and p for pseudoconvex):

(Cc1) f ′+(x;u) ≤ a and f ′+(x;−u) ≤ −a for some a ∈ R implies
f ′+(x;u) + f ′+(x;−u) ≥ 0;

(Cp1 ) f ′+(x;u) ≤ 0 and f ′+(x;−u) ≤ 0 implies f ′+(x;u) + f ′+(x;−u) ≥ 0.

Obviously Condition (Cc1) is weaker than (C1) and Condition (Cp1 ) is
equivalent to (C ′1). We involve these conditions for purely esthetic reasons,
observe that they are in some sense similar to each other.

Let us underline again that the present paper gives second-order char-
acterizations of nonsmooth convex and pseudoconvex functions in terms
of the upper Dini-directional derivatives. For twice continuously differen-
tiable functions characterizations of different types of generalized convexity
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in terms of Hessians are well-known, and Giorgi, Thierfelder [9] is a good
survey on the subject. The case of pseudoconvex functions is studied in
Komlosi [12] who introduces the concept of a quasi-Hessian. A generaliza-
tion of these results could be a task for another paper.
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