
Journal of Convex Analysis
Volume 2 (1995), No.1/2, 1–17

Consistency of Minimizers and the SLLN

for Stochastic Programs1

Zvi Artstein2

Department of Theoretical Mathematics, The Weizmann Institute
of Science, Rehovot 76100, Israel.

e-mail: mtarts@weizmann.weizmann.ac.il

Roger J-B Wets

Department of Mathematics, University of California,
Davis, CA 95616, U.S.A.
e-mail: rjb@ucdavis.edu

Received 21 June 1994
Revised manuscript received 1 February 1995

Dedicated to R. T. Rockafellar on his 60th Birthday

A general strong law of large numbers for stochastic programs is established. It is shown that solutions
and approximate solutions may not be consistent with the strong law in general, but consistency holds
locally, or when the decision space is compact. An additional integrability condition implies the uniform
consistency of approximate solutions. The results are applied in the context of linear recourse models.

1. Introduction

The paper examines relations between solutions of a stochastic optimization problem, and
the solutions of large sampled versions of the problem. We consider an abstract stochastic
program of the form

minimize
x∈X

EP (dξ)(f(x, ξ)) (∗)

where EP (dξ) is the expectation operator with respect to the probability measure P over
the space Ξ of random elements. The decision space here is taken as a metric space. For a
given sequence ξ1, . . . , ξn of realizations of the random variable we form the deterministic
problem

minimize
x∈X

1

n
(f(x, ξ1) + · · ·+ f(x, ξn)). (∗∗)

When the ξi are drawn according to the distribution P , and independently, a reasoning in
line of a strong law of large numbers indicates toward relations between solutions of (∗)
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and those of (∗∗) for large n. Such relations, especially the robustness and the statistical
consistency, are explored in the sequel. We note that the abstract form (∗) incorporates
many concrete stochastic optimization problems, see e.g. Wets [15]; a linear recourse
model is analyzed in the closing section.
As a preliminary consideration we examine the functions on the space X which determine
the minimization problems (∗) and (∗∗), namely

(Ef)(x) = EP (dξ)(f(x, ξ)) (1.1)

(we suppress the superscript P on the operator E when no confusion may arise), and for
ξ1, . . . , ξn fixed

F (x; ξ1, . . . , ξn) =
1

n

n∑

j=1

f(x, ξj). (1.2)

Under quite relaxed conditions (e.g. boundedness from below by an integrable function),
if the ξj are independent and P -distributed, the values F (x; ξ1, . . . , ξn) converge almost

surely to (Ef)(x), for x fixed. This follows from the standard strong law of large numbers,
see e.g. Ash [1, Section 7].
But a more general property holds. Under some conditions, the functions F (· ; ξ1, . . . , ξn)
converge almost surely to the function (Ef)(·), this when the convergence is with respect
to the epi-convergence of functions, which can be interpreted as a one-sided version of
uniform convergence. Such results are given in King and Wets [9], Attouch and Wets [3],
Castaing and Ezzaki [5] and Hess [7]; we elaborate on that in Section 2 where such a
strong law of large numbers for functions is verified under somewhat weaker conditions.
In the rest of the paper we are interested in the robustness and consistency of optimal
solutions and near optimal solutions of (∗). We ask, in particular, whether employing an
optimal solution of (∗) for the problem (∗∗) with large n, yields with high probability
a good approximate solution of (∗∗). The same question is examined with respect to
uniformly small deviations from solutions of (∗).
The consistency of optimal solutions is examined in Section 3. We give a counterexample
for global consistency; but provide a local consistency result, and establish the global
consistency when the decision space is compact.
The uniform consistency of approximate solutions is examined in Section 4. Here even
local robustness fails, unless the underlying conditions are strengthened. We display such
sufficient conditions, and in the closing section demonstrate their applicability in the
context of linear recourse models.

2. A Law of Large Numbers

We start by setting the conditions under which we work. We then recall the notion of
epi-convergence, and state and prove the corresponding strong law of large numbers.
We assume that X is a complete separable metric space. We assume that (Ξ,Σ, P ) is a
probability space, and that the σ-field Σ is complete with respect to P , namely, a subset
of a null set in Σ also belongs to Σ (this assumption is for technical convenience only;
standard techniques can be used to eliminate it).
Two assumptions are placed on the cost functions f(x, ξ) as follows.
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Assumption 2.1. The function

f(x, ξ):X × Ξ→ (−∞,∞]

is measurable on X × Ξ (where on X the Borel field is taken), and f(·, ξ) for ξ fixed is
lower semicontinuous in x, namely xk → x0 implies lim inf f(xk, ξ) ≥ f(x0, ξ).

Assumption 2.2. For each x0 ∈ X there exists an open set N0 in X and an integrable
function α0(ξ): Ξ→ (−∞,∞) such that x0 ∈ N0 and for almost all ξ ∈ Ξ the inequality

f(x, ξ) ≥ α0(ξ) (2.1)

holds for all x ∈ N0.

The assumptions are quite relaxed, and are satisfied by the typical stochastic programs. In
fact, in quite a number of cases stochastic programs exhibit continuity in the x variable;
the semicontinuity allows in turn to model constraints, as we can set f(x, ξ) = ∞ for
the nonfeasible cases. We also note that the terminology random lower semicontinuous
functions is often used in the literature to describe functions that satisfy Assumption 2.1.

Note that Fatou’s lemma (see e.g. Ash [1, 1.6.8(a)]), implies that (Ef)(x) is lower semi-
continuous under Assumptions 2.1 and 2.2. Also, it is clear then that F (x; ξ1, . . . , ξn) is
lower semicontinuous in the x variable. We recall now the concept of epi-convergence for
lower semicontinuous functions. Consult with Attouch [2] and Rockafellar and Wets [12]
for a thorough analysis of the concept and its relation with minimization problems.
Consider the sequence of lower semicontinuous functions

Fk(x):X → (−∞,∞].

The sequence Fk(·) epi-converges to F0(·) if the following two properties hold for every
x0 ∈ X.

(I) lim inf Fk(xk) ≥ F0(x0) whenever xk → x0, and

(II) limFk(yk) = F0(x0) for at least one sequence yk → x0.

Epi-convergence of lower semicontinuous functions is equivalent (as it is easy to see) to
the set convergence of their epigraphs. To this end we introduce the notation

epi h = {(x, r): r ≥ h(x)} (2.2)

for the epigraph of the function h(·). When h(·) is lower semicontinuous the set epi h
is a closed set in X × (−∞,∞]. Under some conditions on X, e.g. local compactness,
epi-convergence is metrizable; we shall not need this property.

We state and prove now a strong law of large numbers with respect to epi-convergence.
Such results were initiated in King and Wets [9], where the strong law was verified for
convex integrands in a euclidean space. Attouch and Wets [3] have established the law for
a separable Banach space, and general lower semicontinuous functions. Here we further
relax the conditions, and work within a metric space; our approach though is in line
with that of [3], the difference lies only in the way the equi-Lipschitz approximations
are taken. Also worth mentioning in this respect are the contributions of Castaing and
Ezzaki [5] and Hess [7] (we thank a referee for pointing them out to us). In [5] the authors
use the Lipschitz approximations to provide limit laws for martingales and supperadditive
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sequences. In [7] the result is verified for a general, not necessarily complete, metric space.
In turn the minorization condition is somewhat stronger. We note that a particular case of
the epi-convergence would be the standard vector-valued slln into the space of continuous
functions with the sup norm. But in our case the vector-valued methods seem not to
apply. Also note the related observations by Plachky [10].

For convenience we state the results using a sequence ξ1, ξ2, . . . of independent and identi-
cally distributed samplings from Ξ; then almost sure properties refer to the denumerable
power of (Ω,Σ, P ). An easy reduction would cover the case of a sequence fj(x, ξ) of i.i.d.
cost functions.

Theorem 2.3. Let ξ1, ξ2, . . . be a sequence of independent and identically P -distributed
drawings from Ξ. Under Assumptions 2.1 and 2.2, the sequence F (· ; ξ1, . . . , ξn) almost
surely epi-converges to (Ef)(·).

Proof. We first prove that almost surely property (I) of epi-convergence holds.
Consider a fixed open set N0 in X, on which Assumption 2.2 holds. We verify first that
almost surely property (I) holds for the restriction of F (· ; ξ1, . . . , ξn) and of (Ef)(·) to
N0.
One possibility is that on a set of ξ of positive measure the function f(x, ξ) = ∞ iden-
tically. Then the result is trivial, as (Ef)(x) = ∞ for x ∈ N0, and clearly almost surely
F (x; ξ1, . . . , ξn) = ∞ for n large. Hence we proceed under the assumption that almost
surely f(x, ξ) <∞ for some x ∈ N0.
We claim that a sequence gk(x, ξ) exists, of functions

gk(x, ξ):N0 × Ξ→ (−∞,∞]

satisfying the following properties

(i) Each gk is measurable on N0 × Ξ.

(ii) Each gk is a Lipschitz function of the variable x, with Lipschitz constant independent
of the variable ξ.

(iii) gk(x, ξ) ≥ α0(ξ), and gk(x, ξ) converges monotonically to f(x, ξ) as k →∞.

In order to provide the sequence gk we employ the very useful construction of G. Beer [4].
Define first

g0(x, ξ) = α0(ξ). (2.3)

Suppose that gk(x, ξ) is given. Define

ϕk(x, ξ) = inf{d(x, y) + |gk(x, ξ)− r|: y ∈ N0, r ≥ f(y, ξ)} (2.4)

where d(·, ·) is the metric on X; namely, ϕk(x, y) is the distance (of an L1 nature) of
(x, gk(x, ξ)) from the epigraph of f(·, ξ) restricted to N0. Since f(·, ξ) is not identically
+∞, the function ϕk(x, ξ) is finite. Define

gk+1(x, ξ) = gk(x, ξ) + ϕk(x, ξ). (2.5)

We verify now the three desired properties. The measurability of gk+1(x, ξ) follows, by
induction, from that of ϕk(x, ξ). To establish the measurability of the latter, consider the
set-valued map epi f(·, ξ), namely a map from Ξ to the closed subsets of N0 × (−∞,∞].
By Lemma VII-1 of Castaing and Valadier [6, page 196], this set-valued function has a
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measurable graph. Further, by the Castaing Representation, see Rockafellar [11, Thm. 1B]
or Castaing and Valadier [6, Section 2], a sequence sk(ξ): Ξ→ N0×(−∞,∞] of measurable
point-valued functions exists, such that

epi f(·, ξ) = closure of {s1(ξ), s2(ξ), . . .} (2.6)

(here epi f(·, ξ) is the epigraph of the function f(x, ξ) for ξ fixed). Each sj(ξ) is of the

form (xj(ξ), rj(ξ)). Since for an arbitrary fixed c

{(x, ξ):ϕk(x, ξ) < c} =
∞⋃

j=1

{
(x, ξ): d(x, xj(ξ)) + |gk(x, ξ)− rj(ξ)| < c

}

and since xj(·), gk(·, ·), rj(·) are measurable, it indeed follows that ϕk(·, ·) is measurable.

This verifies property (i).

Property (ii) follows directly from the construction. Indeed, g0(x, ξ) is constant in x,
namely has a Lipschitz constant 0. Suppose that L is a Lipschitz constant for gk(·, ξ).
From the definition of ϕk(x, ξ) in (2.4) it follows that it is Lipschitz with constant L+ 1;
hence by (2.4) the value 2L + 1 is a Lipschitz constant for gk+1(·, ξ) for ξ fixed. Simple

recursion shows then that 2k − 1 is a Lipschitz constant for gk(·, ξ), and property (ii) is
proved.

Property (iii) is clear, and as was mentioned, it was observed by Beer [4]. This completes
the proof of the claim.
With the aid of the sequence gk(x, ξ) we can verify Property (I) on N0 as follows.
For x and k fixed, define

Gk(x; ξ1, . . . , ξn) =
1

n

n∑

j=1

gk(x, ξj) (2.7)

since gk(x, ξ) ≥ α0(ξ). The standard strong law of large numbers implies that for x fixed,
almost surely Gk(x; ξ1, . . . , ξn) converge to

(Egk)(x) = EP (dξ)(gk(x, ξ)). (2.8)

Let xi, i = 1, 2, . . . be a dense sequence in N0. By the countability, almost surely
Gk(xi; ξ1, . . . , ξn) converge as n → ∞ to (Egk)(xi) for all i = 1, 2, . . ., say that this
holds for the collection Θk of sequences. The Lipschitz property in (ii) implies that for
(ξ1, ξ2, . . .) in Θk the convergence of Gk(x; ξ1, . . . , ξn) to (Egk)(x) holds for all x ∈ N0.
Finally, on the intersection of Θk for k = 0, 1, . . ., we have that Gk(x; ξ1, . . . , ξn) converge
as n→∞ to (Egk)(x) for all x ∈ N0 and all k. And note that the intersection, which we
denote by Θ, has a full measure. We are ready to prove that Property (I) holds for every
F (· ; ξ1, . . . , ξn) with (ξ1, ξ2, . . .) in Θ, namely almost surely.

Let x0 ∈ N0 be arbitrary. Suppose first that (Ef)(x0) <∞. The monotonic convergence
property (iii) implies that for k large the value (Egk)(x0) is close to (Ef)(x0), say

(Ef)(x0)− (Egk)(x0) < ε.
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Since for a fixed k, the Lipschitz constant of gk(·, ξ) is shared by all the ξ (it is 2k− 1), it
follows that (Egk)(·) is also Lipschitz, and the same is true for each Gk(·, ξ1, . . . , ξn). For
sequences in Θ, the values Gk(· ; ξ1, . . . , ξn) converge to (Egk)(·), and since

F (x; ξ1, . . . , ξn) ≥ Gk(x; ξ1, . . . , ξn)

always, it follows that whenever xn → x0

lim inf F (xn; ξ1, . . . , ξn) ≥ (Ef)(x0)− ε (2.9)

for all sequences in Θ. Since ε is arbitrarily small it follows that (2.9) holds also with
ε = 0. This concludes the proof for (Ef)(x0) < ∞. The case (Ef)(x0) = ∞ is similar.
The only modification is to replace the phrase ε arbitrarily small by (Egk)(x0) arbitrarily
large. We leave out the details.
So far we verified that almost surely Property (I) holds for x ∈ N0. Since X is assumed
separable, a countable number of such neighborhoods N0 cover X, this by Assumption
2.2. Therefore on a set of full measure, namely the intersection of the sequence of the
corresponding Θ, the inequality (2.9) holds with ε = 0 for all x0 ∈ X and sequences
xn → x0. This concludes the first part of the proof.

We now verify that almost surely Property (II) of epi-convergence holds. We consider the
epigraph

epi(Ef)(·) (2.10)

which is a set in X × (−∞,∞] (by Assumption 2.2), and a dense sequence (xi, ri) in it.
Note that ri = ∞ is allowed. The lower semicontinuity of (Ef)(·) implies in particular
that the sequence (xi, (Ef)(xi)) is then dense in the lower boundary of the epigraph (2.10).
Namely, for each x0 ∈ X, a subsequence of (xi, (Ef)(xi)) converges to (x0, (Ef)(x0)). We
apply now the standard strong law of large numbers for each xi separately. The count-
ability implies that on a set Θ of sequences (ξ1, ξ2, . . .) of full measure, F (xi; ξ1, . . . , ξn)
converge to (Ef)(xi) as n → ∞, for each i = 1, 2, . . . . Clearly, for each element in Θ, if
x0 is given, a subsequence, say yn, of xi can be deduced (related to the aforementioned
subsequence of xi), such that

limF (yn; ξ1, . . . , ξn) = (Ef)(x0). (2.11)

This verifies Property (II) of epi-convergence on Θ, that is almost surely. This concludes
the proof.

3. Robustness and Consistency of Minimizers

The epi-convergence almost surely of F (· ; ξ1, . . . , ξn) to (Ef)(·) implies a number of prop-
erties for the convergence of the minimizers and of the infima. For instance, the set of
approximate solutions of (∗∗) almost surely converges topologically to the corresponding
set of approximate solutions of (∗). See Rockafellar and Wets [12] for an elaborate dis-
cussion. Here we go beyond such statements and examine robust properties of solutions
and approximate solutions.

We define first the notion of asymptotic minimizers, and discuss its relation to the ro-
bustness and consistency. We show then that for a general decision space, a minimizer of
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(∗) may not be robust with respect to independent samples. We establish consistency for
a compact X, and provide a local consistency result for a general space.

A point x0 is an ε-minimizer of H(·) if

H(x0)−min
x∈X

H(x) ≤ ε. (3.1)

A point x0 is an asymptotic ε-minimizer of the sequence Hk(·) if

lim sup
k→∞

(
Hk(x0)−min

x∈X
Hk(x)

)
≤ ε. (3.2)

A 0-minimizer is called a minimizer, and likewise for an asymptotic 0-minimizer.

If Hk(·) converges in some sense to H0(·), it it natural to inquire whether a minimizer
of H0(·) is an asymptotic minimizer of the sequence Hk(·). This is the robustness of
the minimizer with respect to the convergence. We note that minimizers are not, in
general, robust with respect to the epi-convergence of lower semicontinuous functions.
For instance, for x scalar let H0(x) = 1 if x < 0 and H0(x) = x if x ≥ 0. Let Hk(x) =

H0(x− k−1). Then Hk(·) epi-converge to H0(·), yet the minimizer x∗ = 0 of H0(·) is not
an asymptotic minimizer of Hk(·).
The situation may be different in the framework of the almost sure convergence given in
Theorem 2.3, as the strong law can be applied to f(x∗, ·) with x∗ being the solution of
(∗). Asymptotic minimization is then called consistency, in line with the terminology in
statistical estimates.

We find, however, that the consistency of the minimizer of (∗) may fail in general.

Example 3.1. Let Ξ = [0, 1] with the Lebesgue measure. Let X = {0, 1, 2, . . .} with
the line distance. We define

f(0, ξ) = 0. (3.3)

We proceed successively. In the jth step (j ≥ 2) we define f(k, ξ) for ( j
2

j ) numbers, say

for the numbers

m = k(j) + 1, . . . , k(j) + ( j
2

j ). (3.4)

This is done as follows. We divide Ξ into j2 intervals of equal length. To each group of j

such intervals we associate a different number from (3.4), and hence the ( j
2

j ) numbers in

the sequence. Denote the union of the j intervals associated with the number m by Ij,m.
Define

f(m, ξ) =

{
−1 if ξ ∈ Ij,m
2 otherwise.

(3.5)

This for m = k(j) + 1, . . . , k(j) + ( j
2

j ).

The cost function f satisfies, of course, all the assumptions. The expectation is easily
computed as

(Ef)(m) = (2j2 − 3j)j−2 if k(j) + 1 ≤ m ≤ k(j) + ( j
2

j ). (3.6)
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Therefore x∗ = 0 is the unique minimizer of (Ef)(·), with (Ef)(0) = 0, and (Ef)(m) ≥ 1
for m > 0. But, for every sample (ξ1, . . . , ξj) there is at least one natural number m with

F (m; ξ1, . . . , ξj) = −1. (3.7)

Indeed, such an m can be found among the numbers in (3.4). This completes the example.

The situation is different when the decision space is compact. We show it following a
standard, yet useful, lemma.

Lemma 3.2. If X is compact, then

min
x∈X

H(x)

is continuous with respect to epi-convergence.

Proof. A stronger result is provided in Attouch [2, Theorem 2.11].

Theorem 3.3. Suppose that X is compact. Let x∗ be a minimizer (an ε-minimizer) of
(Ef)(·). Then almost surely x∗ is an asymptotic minimizer (respectively an asymptotic
ε-minimizer) of F (· ; ξ1, . . . , ξn).

Proof. The standard strong law of large numbers when applied to f(x∗, ·) with x∗ fixed,
implies that on a set Θ1 of sequences (ξ1, ξ2, . . .), of full measure the following limit holds

lim
n→∞

F (x∗; ξ1, . . . , ξn) = (Ef)(x∗). (3.10)

The slln of Theorem 2.3 together with Lemma 3.2 imply that on a set Θ2 of sequences,
of full measure, the following limit occurs

lim
n→∞

(
min
x∈X

F (x; ξ1, . . . , ξn)
)

= min
x∈X

(Ef)(x). (3.11)

The two limits imply directly the desired asymptotic minimization properties on the
intersection of Θ1 and Θ2 which is also of full measure.

Here is an alternative formulation of the preceding result. The probability on the n-
product Ξ× Ξ× · · · × Ξ is the product probability.

Proposition 3.4. Suppose that X is compact. Let x∗ be an ε-minimizer of (Ef)(·).
Then for every η > 0,

Prob
{
F (x∗; ξ1, . . . , ξn)−

(
min
x∈X

F (x; ξ1, . . . , ξn) + ε
)
≥ η
}

(3.12)

tends to 0 as n→∞; for x∗ being a minimizer the same estimate holds with ε = 0.

Proof. Follows from Theorem 3.3 in a standard way.

A formulation similar to that of (3.12) holds locally near a minimizer of (Ef)(·), even in
the noncompact case, as follows.
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Proposition 3.5. Let x∗ be an ε-minimizer of (Ef)(·). For every η > 0 there are δ > 0
and n0 such that

Prob
{

min
x∈X

(Ef)(x)−
(

min
x∈Nδ(x∗)

F (x; ξ1, . . . , ξn) + ε
)
≥ η
}
< η (3.13)

for all n ≥ n0, where Nδ(x
∗) denotes the δ-neighborhood of x∗ in X. For x∗ a minimizer

the same estimate holds with ε = 0.

Proof. On a set Θ1 of full measure of sequences (ξ1, ξ2, . . .) we have

F (x∗; ξ1, . . . , ξn)→ (Ef)(x∗). (3.14)

The slln in Theorem 2.3 implies that on a set Θ2 of full measure

lim inf F (xn; ξ1, . . . , ξn) ≥ (Ef)(x∗) (3.15)

whenever xn → x∗. In particular, for each fixed sequence in Θ2, a number δ > 0 exists
and n0 such that

F (x; ξ1, . . . , ξn)− F (x∗; ξ1, . . . , ξn) ≤ η (3.16)

if n ≥ n0 and x ∈ Nδ(x∗). A simple exhaustion argument would show that (3.16) holds
with arbitrary large probability for δ small and n0 high enough. Together with (3.14) and
noting that x∗ is an ε-minimizer the proof is complete.

4. Uniform Consistency of Approximations

The consistency in Theorem 3.3 applies for a fixed minimizer, or for a fixed approximate
minimizer. In this section we inquire about the uniform consistency of approximations.
For instance, we ask if with high probability an arbitrary approximate solution of (∗)
yields an approximate solution of (∗∗) for large n. We find that this uniformity is false
even locally for X compact, unless further conditions are imposed.

Example 4.1. Let X = {0, 1, 1
2 ,

1
3 , . . .} with the metric of the line. Let Ξ = [0, 1] with

the Lebesgue measure. We construct an integrand g(x, ξ) by modifying Example 3.1 as
follows. At x = 0 we use the same value, namely

g(0, ξ) = 0. (4.1)

For x = 1
m we define

g( 1
m , ξ) =

{
0 if f(m, ξ) = 2

1 if f(m, ξ) = −1
(4.2)

with f as defined in Example 3.1. The underlying assumptions hold, including the lower
semicontinuity at x = 0. It is easy to see that

(Eg)( 1
m) = 1

j if k(j) + 1 ≤ m ≤ k(j) + ( j
2

j ) (4.3)
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with k(j) given in Example 3.1. Since (Eg)(0) = 0 it follows that (Eg)(·) is continuous

at its minimizer x∗ = 0. For each sample (ξ1, . . . , ξn), however, there are points 1
m ∈ X

arbitrarily close to 0, with F ( 1
m ; ξ1, . . . , ξn) = 1. This shows that with probability one

an arbitrary approximate solution for (∗) may fail to provide an approximate solution of
(∗∗).
Remark 4.2. Note that the approximation in the preceding example breaks down in one
direction, namely for an ε-minimizer x of (∗) it may occur that F (x; ξ1, . . . , ξn)−(Ef)(x∗)
is large. The smallness of (Ef)(x∗)− F (x; ξ1, . . . , ξn) is guaranteed in the compact case
by Theorem 3.3, and for local perturbations by Proposition 3.5.

An appropriate continuity condition would be sufficient for the desired uniform consis-
tency. Indeed, notice that the integrand in Example 4.1 oscillates rapidly near the mini-
mizer x∗ = 0. We set first some terminology.

We consider the problem (∗) and denote by X∗ the ensemble of minimizers of (Ef)(·),
namely the solutions of (∗). Note that under Assumptions 2.1 and 2.2 the function (Ef)(·)
is lower semicontinuous, hence X∗ is closed.

Let Y be a subset of X. We say that Y is a manifold of approximations with respect to
X∗ if yk ∈ Y and yk → x∗ with x∗ ∈ X∗, imply that (Ef)(yk) converge to (Ef)(x∗).
Namely on Y ∪X∗ the function (Ef)(·) is continuous at X∗.

A manifold of approximations may not contain a full neighborhood of X∗; in fact, in
realistic problems it may occur that only perturbations from the minimizers in prescribed
directions yield good approximations. The following result refers to a manifold of approx-
imations (which may yet be part of a larger manifold) which enjoys additional properties.
What we in fact show is that under the additional properties the approximations in this
manifold are statistically consistent.

Theorem 4.3. Let Y be a manifold of approximations. Suppose that Y is compact and
that the following conditions hold.
(a) yk ∈ Y , yk → x∗ and x∗ ∈ X∗ then f(yk, ξ)→ f(x∗, ξ) for almost every ξ;
(b) for each x∗ ∈ Y ∩X∗ a neighborhood N0 of x∗ exists, and an integrable function β(ξ)

such that |f(y, ξ)| ≤ β(ξ) for all y ∈ N0 ∩ Y .
Then for every ε > 0 there exists a δ > 0 such that on a set Θ of sequences (ξ1, ξ2, . . .) of
full measure,

lim sup
n→∞

(
max
y∈Yδ

F (y; ξ1, . . . , ξn)−min
x∈X

F (x; ξ1, . . . , ξn)
)
≤ ε (4.4)

when Yδ is the set of δ-minimizers of (Ef)(·) in Y .

Proof. The statement allows for Y ∩X∗ to be empty, but then the claim holds trivially.
We therefore assume that there are elements in Y which are minimizers of (Ef)(·) on X.
We denote Y ∗ = Y ∩X∗.
The lower semicontinuity of (Ef)(·) and the compactness imply that if yk is a sequence
with (Ef)(yk) converging to min(Ef)(·), then yk must converge to Y ∗. Therefore we can
replace the statement “Yδ is the set of δ-minimizers of (Ef)(·)” by the statement “Yδ is
in the closed δ-neighborhood of Y ∗ in Y ”.
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Consider now the upper closure of f(y, ξ) with respect to Y , namely the function

h(y, ξ) = lim sup
z∈Y,z→y

f(z, ξ).

Then h(y, ξ) is upper semicontinuous in the y variable on Y . We claim that h(y, ξ) is
measurable. To prove the claim let sk(ξ) = (yk(ξ), rk(ξ)) be a sequence of measurable
functions from Ξ into Y × (−∞,∞], such that

epi f(·, ξ) = closure {s1(ξ), s2(ξ), . . .}
for all ξ. Such a sequence exists by the Castaing Representation, see Rockafellar [11] or
the arguments leading to (2.6). The lower semicontinuity of f(y, ξ) in y implies that

(
yk(ξ), f(yk(ξ), ξ)

)

is almost surely dense in the graph of f(·, ξ). Therefore h(y, ξ) can also be defined as

h(y, ξ) = lim sup
yi(ξ)→y

f(yk(ξ), ξ)

with yi(ξ) an arbitrary subsequence of yk(ξ). The measurability of yk(·), and hence of
f(yk(·), ·), yields then the measurability of h(y, ξ) in a routine way as follows. For every

c ∈ (−∞,∞) the inverse set h−1(−∞, c) can be expressed as follows

{(y, ξ): h(y, ξ) < c} =

⋃

δ>0

⋂

ε>0

∞⋃

k=1

{
(y, ξ): d(y, yk(ξ)) < ε

}
∩
{

(y, ξ): f(y, ξ) < c− δ
} (4.5)

with d(·, ·) the metric on Y . The union over δ > 0 and the intersection over ε > 0 can be
replaced by denumerable operations with δi → 0 and εi → 0. Then clearly the right hand

side of (4.5) is a measurable set, and hence h−1(−∞, c) is measurable, which implies the
measurability of h.

We note, however, that the continuity assumption (a) implies that h(y∗, ξ) = f(y∗, ξ)
for y∗ ∈ Y ∗, and furthermore (a) holds when h(y, ξ) replaces f(y, ξ). The integrability
assumptions (b) and Assumption 2.2 imply that (Eh)(y) is continuous at each y∗ ∈ Y ∗.
Therefore, for every ε > 0 there exists a δ > 0 such that

|(Eh)(y)− (Ef)(y∗)| ≤ ε (4.6)

when d(y, y∗) ≤ δ for some y∗ ∈ Y ∗.
We apply now Theorem 3.3 with a decision space being Yδ, and with the upper semi-
continuous integrand h(y, ξ); namely, we apply the result for the upper semicontinuous
case, with maximizers replacing minimizers. The inequality (4.6) implies that y∗ in Y ∗

is an ε-maximizer on Yδ. By Theorem 3.3, on a set Θ of sequences (ξ1, ξ2, . . .), with full
measure, the decision y∗ is an asymptotic ε-maximizer for

H(y; ξ1, . . . , ξn) =
1

n

n∑

j=1

h(y, ξj)



12 Z. Artstein, R. J-B. Wets / Consistency of Minimizers

on Yδ. Since F (y; ξ1, . . . , ξn) ≤ H(y; ξ1, . . . , ξn) it follows that y∗ is then also an asymptotic
ε-maximizer on Yδ. Namely,

lim inf
(
F (y∗; ξ1, . . . , ξn)−max

δ∈Yδ
F (y; ξ1, . . . , ξn)

)
≥ −ε

which in a form closer to (4.4) can be written as

lim sup
(

max
y∈Yδ

F (y; ξ1, . . . , ξn)− F (y∗; ξ1, . . . , ξn)
)
≤ ε. (4.7)

The previous inequality together with the convergence almost surely of F (y∗; ξ1, . . . , ξn)
to (Ef)(y∗), verifies (4.4) almost surely.

An alternative formulation of the uniform consistency of approximations is as follows.

Proposition 4.4. Under the conditions of Theorem 4.3, for every ε > 0 there exists a
δ > 0, such that for every η > 0

Prob
{

max
y∈Yδ

F (y; ξ1, . . . , ξn)−min
x∈X

F (x; ξ1, . . . , ξn) ≥ ε + η
}
< η (4.8)

for n large enough, with Yδ the set of δ-minimizers of (Ef)(·).

Proof. Follows from (4.4) using standard arguments.

We note that indeed in Example 4.1, the probability in equation (4.8) is equal to 1
whenever ε + η < 1. Note also that the integrability condition (b) in the statement of
Theorem 4.3 cannot be dropped, even if the continuity in (a) prevails. Indeed, the values
f(y, ξ) may be made large for y close to y∗ on subsets of Ξ with small measure, along the
construction of Example 4.1, such that (4.8) is violated. Finally note that conditions (a)
and (b) in Theorem 4.3 actually imply that Y is a manifold of approximations, so stating
this fact explicitly as an assumption could be dropped.

5. Linear Recourse

The results of the preceding sections are illustrated here in the context of the two stage
linear recourse model. For an overview of the theory and applications of such models
consult with Wets [14], [15], and Kall [8].

Consider the problem

minimize 〈c, x〉+ EP (dξ)(Q(x, ξ))

subject to Ax = b, x ≥ 0
(5.1)

where x ∈ IRk, the k dimensional euclidean space, A, c and b are a fixed matrix and
vectors (and 〈·, ·〉 denotes scalar multiplication), and P is a probability distribution over
a space Ξ of random elements, as in previous sections. The cost Q(x, ξ) is determined via
a recourse procedure, and given by

Q(x, ξ) = inf
z
{〈q(ξ), z〉: W (ξ)z = d(ξ) + T (ξ)x, z ≥ 0} (5.2)
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with z ∈ IR` and q, W , d and T are random matrices and vectors with the appropriate
dimensions; in particular q(·), W (·), d(·) and T (·) are measurable.
In terms of the problem formulation in (∗) we have

f(x, ξ) =

{〈c, x〉+Q(x, ξ) if Ax = b, x ≥ 0

∞ otherwise.
(5.3)

Note that f(x, ξ) may equal +∞ even if the constraints on x are met; this happens when
the recourse is not feasible, i.e., for no z ≥ 0 the equality W (ξ)z = d(ξ)+T (ξ)z is satisfied.
Also note that the formulation (5.3) may not fit the general framework of this paper as
Q(x, ξ) may be equal to −∞. This happens when the recourse decision is degenerate.
We refer the reader to Wets [14] and references therein, and to Kall [8] for conditions
that guarantee that Q(x, ξ) >∞ for almost every ξ. Here, for concreteness, we impose a

condition which implies this property, as follows. We use MT to denote the transpose of
the matrix M .

Assumption 5.1. (Integrable dual feasibility) There exists a vector u such that c ≥
ATu. There exists a measurable function v(ξ) such that q(ξ) ≥ W T (ξ)v(ξ) and such that

〈d(ξ), v(ξ)〉 and T T (ξ)v(ξ) are both integrable.

Remark 5.2. The role of the integrable dual feasilibility conditions will be apparent
in the proof of the following proposition. We note here that most practical examples
satisfy this condition (see [14], [15], [8] and references therein). For instance, if c ≥ 0
and q(ξ) ≥ 0 for almost every ξ then the integrable dual feasibility holds with u = 0 and
v(ξ) = 0.

Proposition 5.3. Under Assumption 5.1 the linear recourse problem (5.1)–(5.2) satisfies
Assumptions 2.1 and 2.2.

Proof. The lower semicontinuity of f(x, ξ) in x follows from the more general result of
Wets [14, Proposition 7.5]; note that for ξ fixed the lower semicontinuity of Q(x, ξ) can
be verified by checking that min{〈q, z〉: Wz = s, z ≥ 0} is lower semicontinuous in s, for
q and W fixed. The lower semicontinuity of f(x, ξ) in x follows then from the closedness
of the constraints Ax = b, x ≥ 0.

To prove the joint measurability of f(x, ξ) consider first a set-valued map, say Γ1, which
assigns to the data (x,W, d, T ) the set {z: Wz = d + Tx} if Ax = b and x ≥ 0, and the
empty set otherwise. The set-valued map Γ1 may have empty values, but it certainly has

a closed graph, hence Γ1 is measurable but moreover, the inverse Γ−1 (C) of a compact set

C is a closed set (see e.g. Castaing and Valadier [6] for the definitions). Define now

Γ(x, ξ) = Γ1(x,W (ξ), d(ξ), T (ξ)).

By the measurability of the data in (5.2) the set-valued map Γ is measurable jointly in

(x, ξ), this since the inverse Γ−(C) of a compact set is the inverse of the closed set Γ−1 (C)

by the function (x,W (ξ), d(ξ), T (ξ)) which is assumed to be measurable. Finally note
that

f(x, ξ) = min{〈q(ξ), z〉: z ∈ Γ(x, ξ)}
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which implies (say by using the Castaing Representation) the measurability of f(x, ξ)
jointly in (x, ξ) in case the underlying σ-field is complete (see [6, Chapter III]), a property
that we assume throughout.
The remaining properties needed to complete the proof are that f(x, ξ) > −∞ and that
the integral bound in Assumption 2.2 holds. For this we employ Assumption 5.1. Indeed,

〈c, x〉 ≥ 〈ATu, x〉, hence by the equality Ax = b we get 〈c, x〉 ≥ 〈u, b〉, which gives a
uniform lower bound on the cost of the primary decision. The recourse decision can be
estimated as follows

〈q(ξ), z〉 ≥ 〈W T (ξ), z〉
= 〈v(ξ),W (ξ)z〉
= 〈v(ξ), d(ξ)− T T (ξ)x〉.

The integrability requirement in Assumption 5.1 implies that Q(x, ξ) > −∞, and further-
more, there is an integral bound as required in Assumption 2.2, locally in x.

With the preceding proposition, the strong law of large numbers verified in Theorem 2.3
applies. An immediate consequence is that if xn = xn(ξ1, . . . , ξn) is a solution of

minimize 〈c, x〉+
1

n

n∑

j=1

〈q(ξj), zj〉

subject to Ax = b

T (ξj)x +W (ξj)zj = d(ξj) j = 1, . . . , n

x ≥ 0

zj ≥ 0 j = 1, . . . , n

(5.4)

then almost surely any cluster point of xn is a solution of the stochastic problem (5.1).
Note that (5.4) is a large scale linear program, depending on a stochastic parameter.

We turn now to check the consistency of minimizers and ε-minimizers (that could as well
be computed, with large probability, using (5.4) with a large enough sample). We note
that the underlying conditions of Theorem 3.3 and Propositions 3.4 and 3.5 are satisfied.
Hence consistency of minimizers and ε-minimizers is guaranteed with respect to decisions

in any compact subset of IRk.
Next we wish to analyze the uniform consistency of approximations for the linear recourse,
in line with the approach in Section 4. To this end define

D =
{
x: EP (dξ)(f(x, ξ)) <∞

}
(5.5)

namely D is the effective domain of the cost function. Note that

D =
{
x: EP (dξ)(Q(x, ξ)) <∞

}
∩ {x: Ax = b, x ≥ 0}. (5.6)

The domain D may not be compact, and even its intersection with compact subsets

of IRk may not be compact; this was noted in Walkup and Wets [13] and will be also
demonstrated in an example below. The following observation is of help.
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Proposition 5.4. Let K be a compact polyhedral subset of D. Then there exists an
integrable function β(ξ): Ξ → [0,∞), such that for all x ∈ K, the bound f(x, ξ) ≤ β(ξ)
holds almost everywhere.

Proof. The compact polyhedral set K is a convex combination of a finite number of
points, say x1, . . . , xr. Let zj(ξ) be an optimal recourse decision for the point xj , namely

W (ξ)zj(ξ) = d(ξ) + T (ξ)xj, and 〈q(ξ), zj(ξ)〉 = Q(xj , ξ). Such a recourse exists and is

measurable by the completeness of the σ-field, see Kall [8]. The linearity of the constraints
implies that the convex combination

α1z1(ξ) + · · ·+ αrzr(ξ)

is an admissible recourse decision for the primal decision

α1x1 + · · ·+ αrxr.

Since the latter combinations exhaust K, it follows that β1(ξ) = max{〈q(ξ), zj(ξ)〉: j =

1, . . . , r} is an integrable bound of Q(x, ξ) for x ∈ K, and therefore β(ξ) = β1(ξ) +
max{〈c, x〉: x ∈ K} is the desired integrable bound.

We note that the preceding argument also proves that any polyhedral subset K of D
is a manifold of approximations for the recourse problem, as defined in Section 4. This

property also follows from the fact, proved in Wets [14], that EP (dξ)(Q(x, ξ)) is continuous
on polyhedral subsets of D.
With the preceding arguments we can conclude that the uniform consistency of approxi-
mations to solutions of the stochastic linear recourse, holds whenever the approximations
are restricted to a set contained in a polyhedral subset of D. Indeed, Proposition 5.4
implies that condition (b) of Theorem 4.3 holds, and as noted before, any polyhedral
subset of D is a manifold of approximations.
It is worthwile to note that under additional conditions the entire domain D is polyhe-
dral. For instance, if P is supported on a finite set; or when W is fixed and the data
(q(·), d(·), T (·)) have a finite variance and form a polyhedral set in the linaer space of
(q, d, T ), see [14, Theorem 4.7]; or if W and T are fixed and (q(·), d(·)) are square inte-
grable, see [14, Theorem 4.10]. In general, D is a convex set which may not be closed, and

EP (dξ)(f(x, ξ)) may not be continuous on D, as noted in Walkup and Wets [13]. We pro-
vide here an example which demonstrates the phenomenon, and illustrates the preceding
considerations.

Example 5.5. Let the primary decision x = (x1, x2) be two dimensional, and let the
recourse decision z = (z1, z2, z3) be three dimensional. The random element ξ takes values
in [1,∞), with an underlying probability that will be determined later.

Let the recourse cost be given by

Q(x, ξ) = min{z1: z1 + z2 = ξ2x1, z2 + z3 = (ξ2 − ξ)x2, z ≥ 0} (5.7)

and suppose that the goal is to minimize the expected value of the recourse, with x ≥ 0
(namely c = b = A = 0).

It is easy to see that the optimal decision, regardless of the probability, is x = 0, and then
Q(0, ξ) = 0 identically. For a general x, it is clear that

Q(x, ξ) = max(0, ξ2x1 − (ξ2 − ξ)x2). (5.8)



16 Z. Artstein, R. J-B. Wets / Consistency of Minimizers

Consider now the particular probability P on [1,∞) that assigns the value 2−k to the

point ξ = 2k, this for k = 1, 2, . . . , (note that then the data in (5.7) does not have finite
variance). With this probability it is easy to see that

D = {(x1, x2): 0 ≤ x1 < x2} ∪ {(0, 0)}. (5.9)

Indeed, for x1 ≥ x2 > 0 we have Q(x, ξ) = ξ2(x1 − x2) + ξx2 and the expectation is +∞.

If x1 < x2 then for ξ > x2(x2−x1)−1 we have Q(x, ξ) = 0, hence the expectation is finite.

The lower semicontinuity of the expected cost EP (dξ)(Q(x, ξ)) implies then that as deci-

sions xj ∈ IR2 converge to x0 = (x1, x1) and x1 > 0, then EP (dξ)(Q(xj , ξ)) converge to
+∞. This implies that not every compact subset of D that includes (0, 0) is a manifold of

approximations. Indeed, on points xj that converge to 0, but get closer and closer to the

diagonal x1 = x2 in IR2, the value may converge to +∞ as j →∞. (In the concrete exam-
ple (5.7) it is not difficult to compute the expectation, and come up with such a sequence.

In fact, on the cone in IR2
+ determined by the relation (1− 2−`)x2 ≤ x1 ≤ (1− 2−(`+1))x2

the value can be obtained by a finite summation of 2−kQ(x, 2k) over k = 1, . . . , 2`, result-
ing in

EP (dξ)(Q(x, ξ)) = (x1 − x2)(2`+1 − 2) + `x2.

Hence if the sequence xj = (x1,j , x2,j) is determined by x2,j = j−1/2, x1,j = (1− 2−j)x2,j ,

the expectations tend to +∞ as xj → 0.)

A conclusion of the theory, however, is that on any polyhedral subset of (5.9), in particular
on a set {(x1, x2): 0 ≤ x1 ≤ (1− δ)x2 ≤ ∆}, with δ > 0, the consistency of the minimizer
x = 0, and the uniform consistency of approximations of x = 0, hold.
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