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We study the asymptotic behavior of the integral curves of the differential equation

u̇(t) = −∇xf(u(t), r(t)), u(t0) = u0

where f(x, r) is the exponential penalty function associated with the linear program min{c′x : Ax ≤ b},
and r(t) decreases to 0 as t goes to ∞. We show that for each initial condition (t0, u0) the solution u(t)
is defined on the whole interval [t0,∞) and, under suitable hypothesis on the rate of decrease of r(t), we
establish the convergence of u(t) towards an optimal solution u∞ of the linear program. In particular we
find sufficient conditions for u∞ to coincide with the limit of the unique minimizer x(r) of f(·, r).
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1. Introduction

In this paper we study the asymptotic behavior of a non-autonomous nonlinear evolution
equation of the form

(E)

{
u̇(t) = −∇xf(u(t), r(t))

u(t0) = u0

where f(x, r) is convex and differentiable with respect to the x variable for every fixed
r > 0, and r(t) is a positive real differentiable function decreasing to 0 as t→∞.
Our motivation for studying such type of evolution equations comes from the coupling of
the steepest descent method with different approximation and/or regularization schemes
for optimization problems. Namely, we interpret the function f(·, r) as a smooth convex
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approximation of a certain lower semicontinuous convex function f0 which we are willing
to minimize. The approximation f(·, r) is assumed to converge to f0 when r ↓ 0, so that
the evolution equation (E) corresponds to applying the steepest descent method to the
approximating functions while simultaneously controlling the degree of approximation by
means of a parameter function r(t).
More precisely, in the present work we consider the specific case of the exponential penalty
function

f(x, r) := c′x + r
m∑

i=1

exp[(Aix− bi)/r]

which is a smooth approximation for the function

f0(x) =

{
c′x if Ax ≤ b

+∞ otherwise

associated with a linear program of the form

(P ) min
x
{c′x : Ax ≤ b}.

Our goal is to find conditions on the function r(t) to ensure that the integral curves of
(E) converge as t→∞ towards an optimal solution of (P ).
Evolution equations, specially in infinite dimensional spaces, have received a great deal of
attention since many physical phenomena fall into such framework (see e.g. [2], [4], [7],
[8]). For autonomous subdifferential inclusions of the form

(A)

{
u̇(t) ∈ −∂f0(u(t))

u(t0) = u0

the asymptotic convergence of its integral curves towards a minimizer of f0 was established
by Brézis [2] and Brück [3]. The asymptotic convergence for so-called semi-autonomous
differential inclusions may also be found in [2], [7]. Fully non-autonomous evolution equa-
tions have been considered recently by Furuya, Miyashiba and Kenmochi [6]. Roughly
speaking, they consider the case in which the approximating functions f(·, r(t)) ap-
proach the limit function f0 sufficiently fast, so that the asymptotic behavior of the
non-autonomous system (E) is close to the one of the autonomous system (A). This
approach leads to results requiring a fast convergence of r(t) towards 0.
In this work we consider the specific setting of exponential penalties in linear programming
[5], and we present two results on the asymptotic convergence of (E), which go in some
sense in opposite directions in terms of assumptions. The first one is concerned with
the case of a function r(t) converging to zero sufficiently fast, being close in spirit to the
results in [6]. Nevertheless, the conditions we obtain are more explicit and seem to be
weaker than the ones imposed by the abstract results in [6]. The second result considers
the opposite situation: we show that asymptotic convergence will also be attained if the
function r(t) goes to zero sufficiently slow. An advantage of this second approach is that
the limit point of the integral curve may be identified and characterized in variational
terms.
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The paper is organized as follows. In section 2 we review the basic results concerning the
exponential penalty trajectory in linear programming needed for the asymptotic conver-
gence analysis of (E). The existence of global solutions for (E) as well as the asymptotic
convergence towards an optimal solution of (P ) are then presented in section 3.

2. Preliminaries

Let us consider the linear program

(P ) min
x
{c′x : Ax ≤ b}

where c ∈ IRn, A is an m × n matrix of full rank n ≤ m, and b ∈ IRm. We assume
throughout that the optimal solution set of (P ), which we denote by S, is nonempty and
bounded. Equivalently, this amounts to suppose that the dual problem

(D) min
λ
{b′λ : A′λ+ c = 0, λ ≥ 0},

has a strictly positive feasible solution.
Following [5], for each r > 0 we consider the unconstrained penalized problem

(Pr) min
x

c′x+ r
∑

i∈I
exp[(Aix− bi)/r]

where Ai denote the rows of A for i ∈ I := {1, . . . , m}. The dual problem of (Pr) is

(Dr) min
λ

{
b′λ+ r

∑

i∈I
λi(lnλi − 1) : A′λ+ c = 0, λ ≥ 0

}
,

which can be interpreted as a penalty method which introduces the positivity constraints
of (D) into the objective function through the barrier term “r

∑
λi(lnλi − 1)”.

From [5, Prop. 2.1] we know that both problems (Pr) and (Dr) have unique optimal
solutions x(r) and λ(r) respectively, which are related as

λi(r) = exp[(Aix(r)− bi)/r],

and are of class C∞ on the open interval (0,∞).
Moreover, according to [5, Thm. 5.8], when r tends to 0 the primal trajectory x(r)
approaches (quite rapidly indeed) a straight line directed towards a center of the optimal
face of (P ). More precisely we have the asymptotic expansion

x(r) = x∗ + rd∗ + η(r)

where x∗ is an optimal solution of (P ) which is called centroid, the directional deriva-
tive d∗ is completely characterized in variational terms, and the error η(r) goes to zero
exponentially fast, that is, at the speed of exp(−µ/r) for some µ > 0.
For the dual trajectory it turns out [5, Thm. 5.8] that λ(r) behaves asymptotically as a
constant, that is

λ(r) = λ∗ + ν(r),
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Figure 1. An example of primal (a) and dual (b) trajectories.

where λ∗ is a center of the optimal face of (D) and the error ν(r) goes to zero exponentially
fast as r goes to 0.
We recall a couple of additional properties which we shall use in section 3 (these may also
be found in [5]). Firstly we remark that the centroid x∗ is a (relative) interior point of
the optimal face S. Namely, denoting

I0 = {i ∈ I : Aix = bi for all x ∈ S}

the set of constraints which are binding at every optimal solution of (P ), we have

Aix
∗ < bi for all i 6∈ I0. (2.1)

Secondly, the derivative of x(r) stays bounded as r goes to zero. In fact we have

dx

dr
(r) = d∗ + ρ(r)

with ρ(r) converging exponentially fast towards 0.

3. The steepest descent method

In the sequel we denote by f(x, r) the exponential penalty function

f(x, r) = c′x + r
∑

i∈I
exp[(Aix− bi)/r].

In [5] it was suggested that the asymptotic straight line character of the primal trajectory
x(r), should make it easy for a predictor-corrector method to trace this path approxi-
mately. However, instead of being forced to follow and stay close to a single trajectory,
the task would be alleviated if we had a flow on IRn whose integral curves converged
towards the optimal set S. This leads us to consider the continuous steepest descent
equation

(E)

{
u̇(t) = −∇xf(u(t), r(t))

u(t0) = u0
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where r : [t0,∞) −→ IR+ is a given continuously differentiable decreasing function such
that

lim
t→∞

r(t) = 0.

Theorem 3.1. For each initial condition u0, problem (E) has a unique solution u(t)
which is defined on all of [t0,∞) and stays bounded as t→∞.

Proof. Since the mapping (x, t) −→ ∇xf(x, r(t)) is locally lipschitz we have local exis-
tence and uniqueness for (E), so that all we need is to establish an a priori bound for
u(t). To this end let us consider the function

ϕ(t) = 1
2‖u(t)− x(r(t))‖2.

The optimality of x(r), the convexity of f(·, r) and equation (E) imply that

0 ≤ f(u(t), r(t))− f(x(r(t)), r(t)) ≤ 〈−u̇(t), u(t)− x(r(t))〉. (3.1)

Denoting ∆(t) := 〈−u̇(t), u(t)− x(r(t))〉, taking a constant M such that

‖dx
dr

(r)‖ ≤
√

2M for all r < r(t0),

and observing that ṙ(t) ≤ 0, we obtain

0 ≤ ∆(t) = −ϕ̇(t)− ṙ(t)〈dx
dr

(r(t)), u(t)− x(r(t))〉 ≤ −ϕ̇(t)− 2M
√
ϕ(t)ṙ(t). (3.2)

It follows that ϕ̇(t) ≤ −2M
√
ϕ(t)ṙ(t) from which one easily gets

√
ϕ(t) ≤

√
ϕ(t0) +M [r(t0)− r(t)] ≤

√
ϕ(t0) +Mr(t0). (3.3)

Since x(r(t)) stays bounded as t→∞, we deduce that u(t) stays bounded as well.

We intend to prove that the solution u(t) of (E) converges, when t goes to infinity, towards
an optimal solution u∞ of the linear program (P ). To this end we need some assumptions
on the rate of decrease of r(t) towards 0. We shall distinguish two cases:

Fast Decay:

∫ ∞

t0

r(t) exp(−α/r(t))dt <∞ for all α > 0,

Slow Decay:

∫ ∞

t0

1

r(t)
exp(−K/r(t))dt =∞ for all K > 0.

Fast Decay holds for instance when r(t) = 1/ta with a > 0, while Slow Decay holds in
the case r(t) = 1/ ln(ln t). For r(t) = 1/ ln t neither Fast nor Slow Decay is satisfied.

Theorem 3.2. If r(t) satisfies the assumption of Fast Decay, then the solution u(t) of
(E) converges towards a particular solution u∞ ∈ S.
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Proof. We split the proof into 4 steps.

Step 1: Existence of lim ‖u(t)− x(r(t))‖ = lim ‖u(t)− x∗‖.
Letting K = 2M [

√
ϕ(t0) + Mr(t0)] and using (3.2) and (3.3) we have ϕ̇(t) + Kṙ(t) ≤ 0.

Then the function ϕ(t)+Kr(t) is positive and decreasing so that it has a finite limit when
t → ∞. The convergence of ϕ(t) follows at once and, since x(r(t)) converges to x∗, we
conclude the existence of

lim
t→∞
‖u(t)− x(r(t))‖ = lim

t→∞
‖u(t)− x∗‖.

Step 2: ∆(t) belongs to L1(t0,∞).

This follows from (3.2) taking into account that 2M
√
ϕ(t) ≤ K and

∫ ∞

t0

[−ϕ̇(τ)−Kṙ(τ)]dτ ≤ ϕ(t0) +Kr(t0).

Step 3: Existence of lim ‖u(t)− ū‖ for all ū ∈ S.
Let ū ∈ S. Since

‖u(t)− ū‖2 = ‖u(t)− x∗‖2 + ‖x∗ − ū‖2 − 2〈x∗, x∗ − ū〉+ 2〈u(t), x∗ − ū〉,

the existence of lim ‖u(t)− ū‖ is equivalent to the existence of

lim
t→∞
〈u(t), x∗ − ū〉.

To prove this fact we shall establish that θ(t) := 〈u̇(t), x∗ − ū〉 belongs to L1(t0,∞).
Indeed, for ε ∈ IR let us set xε(t) := x(r(t)) + ε(ū− x∗). The convexity of f(·, r) and (E)
imply that

〈−u̇(t), xε(t)− u(t)〉 ≤ f(xε(t), r(t))− f(u(t), r(t)),

so that using the optimality of x(r(t)) and the definitions of θ(t) and ∆(t) we deduce

εθ(t) = ε〈u̇(t), x∗ − ū〉 ≤ ∆(t) + f(xε(t), r(t))− f(x(r(t)), r(t)).

Now, since x∗ and ū are optimal solutions for (P ) we have

c′x(r(t)) = c′xε(t)

Aix(r(t)) = Aixε(t), i ∈ I0

and using the expression of f(·, r), we obtain the bound

εθ(t) ≤ ∆(t) + r(t)
∑

i6∈I0
exp[(Aixε(t)− bi)/r(t)].

We may then use (2.1) to find α > 0 such that for all ε close enough to 0 (either positive
or negative) and all t sufficiently large

Aixε(t)− bi ≤ −α.
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Then
εθ(t) ≤ ∆(t) +mr(t)e−α/r(t)

so that the assumption of Fast Decay together with Step 2 imply that θ(t) belongs to

L1(t0,∞) as claimed.

Step 4: Conclusion.

By Step 2, the function ∆(t) belongs to L1(t0,∞) so we may find a sequence tn → ∞
such that ∆(tn) → 0. By extracting a subsequence we may further assume that u(tn)
converges towards a certain u∞. Using (3.1) and the results quoted from [5] in section 2,
one may easily deduce that u∞ is a solution of (P ). But then, using Step 3 we have the
existence of

lim
t→∞
‖u(t)− u∞‖ = lim

n→∞
‖u(tn)− u∞‖ = 0,

achieving the proof of our theorem.

Theorem 3.3. If r(t) satisfies the assumption of Slow Decay, then the solution u(t) of
(E) converges to the centroid x∗ as t goes to infinity.

Proof. Since x(r) tends to x∗ as r → 0, it suffices to show that ϕ(t) tends to 0 as t goes
to ∞. By contradiction assume that the limit of ϕ(t) is not 0 (see Step 1 in the previous
proof).
Using the expression of f(·, r) it is easy to see that for every R > 0, there exist constants
K and L such that for all x, y ∈ B(0, R) and all r > 0 one has

〈∇f(y, r)−∇f(x, r), y − x〉 ≥ L

r
exp(−K/r)‖y − x‖2.

Since u(t) and x(r(t)) stay bounded, we may find appropiate constants so that the previous
inequality holds with x = x(r(t)), y = u(t) and r = r(t), to deduce

∆(t) ≥ 2L

r(t)
exp(−K/r(t))ϕ(t).

Denoting β(t) = L
r(t) exp(−K/r(t)) we obtain

ϕ̇(t) = −∆(t)− ṙ(t)〈dx
dr

(r(t)), u(t)− x(r(t))〉

≤ − 2β(t)ϕ(t)− 2Mṙ(t)
√
ϕ(t).

Since ϕ(t) 6= 0 for t large, we may divide by 2
√
ϕ(t) to deduce

1

2
√
ϕ(t)

ϕ̇(t) + β(t)
√
ϕ(t) ≤ −Mṙ(t).

Let B(t) =
∫ t
t0
β(τ)dτ . Multiplying this inequality by exp(B(t)) we get

d

dt
[exp(B(t))

√
ϕ(t)] ≤ −M exp(B(t))ṙ(t)
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which integrated between s and t gives

√
ϕ(t) ≤ exp(B(s)− B(t))

√
ϕ(s)−M

∫ t

s
exp(B(τ)− B(t))ṙ(τ)dτ.

We recall that ṙ(t) ≤ 0, so that using the fact that B(·) is increasing we obtain the bound

√
ϕ(t) ≤ exp(B(s)−B(t))

√
ϕ(s)−M

∫ t

s
ṙ(τ)dτ

= exp(B(s)−B(t))
√
ϕ(s) +M [r(s)− r(t)].

The assumption of Slow Decay implies that B(t) tends to infinity as t → ∞. Thus,
passing to the limit we deduce

lim
t→∞

√
ϕ(t) ≤Mr(s).

It suffices now to let s approach infinity to conclude that ϕ(t) tends to 0, contradicting
our assumption and proving the result.

Remark 3.4. The convergence analysis for the case of Slow Decay may be adapted
to more general non-autonomous evolution equations. This will be the subject of the
forthcoming paper [1].
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