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conditions for weak multiobjective optimization problems.
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1. Introduction

The investigations of scalar optimization problems in topological linear spaces use above
all ordinary convex sets, but also two types of generalized convex sets, called nearly convex
sets and closely convex sets, respectively.

Multiobjective optimization requires additional convexity concepts for sets. Tackling de-
cision problems with multiobjectives, P. L. Yu [23] has given a generalization of the convex
sets by introducing sets that are convex with respect to another set. The point of his idea
was to consider the translate of the original set by a given set K. In the present paper
we show that both the nearly convex sets and the closely convex sets can be generalized
in the same way. In consequence, the number of convexity concepts induced by a given
set will increase to three.

The main purpose of the present paper is to reveal the connections between the three basic
convexity concepts mentioned at the beginning, on the one hand, and the three convexity
concepts induced by a given set K, on the other hand. The major results highlighting
these connections are proved in Section 2. They show that, if K is a convex set, then
the concept of a closely convex set with respect to K is the most general concept among
the six convexity concepts considered here for sets. Some interesting characterizations of

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



110 W.W.Breckner, G.Kassay / A systematization of convexity concepts ...

the sets, that are closely convex with respect to a convex cone with nonempty interior,
are also established in Section 2. As an application of these sets we derive in Section 3 a
characterization of the elements that are weakly minimal with respect to a convex cone.
After that we leave the convexity concepts regarding sets and turn in Section 4 to a
discussion of convexity concepts regarding functions that take values in topological linear
spaces. In order to define a convexity concept for such a function we start either from
the graph or from the range of the function. Then we apply the six convexity concepts,
examined in Section 2, to each of these two particular sets associated with the function
and obtain in this way in each case six convexity concepts for functions. The names
that we attribute to these convexities concerning functions are in such a manner chosen
that they distinctly emphasize the relationship with one of the six convexity concepts
concerning sets. It will be seen that this procedure of introducing convexity concepts for
functions by reduction to sets allows to find easily the connections between the twelve
classes of functions we have obtained. The connections that we will reveal will show that
if K is a convex set, then the functions that are called closely convexlike with respect to
K are the most general ones among all the functions considered in this paper. By using
closely convexlike functions with respect to a convex cone with nonempty interior we state
in the last section of the paper an alternative theorem as well as necessary conditions for
the solutions of weak multiobjective optimization problems.
It should be mentioned that most of the convexities concerning functions, that occur in
the present paper, are not new. They have already been introduced in earlier papers,
mostly separately by other approaches and under other less logical names. But here,
for the first time, there is given a simple unitary scheme, based on convexities for sets,
in which they all can be naturally arranged and which clearly emphasizes the relations
between them. Besides it is shown that the familiar technique of separating convex sets
by closed hyperplanes can be directly used to derive some results, that relate to classes
of generalized convex sets or generalized convex functions, considered in this paper, and
that are applicable in nonconvex multiobjective optimization.

Throughout the paper X and Y denote topological linear spaces over the field R of real
numbers. The zero-elements in X and Y are denoted by oX and oY , respectively. The
topological dual of Y is denoted by Y ′ and its zero-element by o′.
The addition and scalar multiplication on the family of subsets of Y are defined by

aM + bN = {z ∈ Y | ∃(x, y) ∈M ×N : z = ax + by},

where M , N are subsets of Y , and a, b are real numbers.
If M is any set in a topological space, then intM denotes the interior of M , while clM
denotes the closure of M .

2. Convexity Concepts for Sets

We start by recalling the definitions of the basic convexity concepts concerning subsets of
topological linear spaces.

A subset S of Y is said to be:

(a) convex if (1− a)S + aS ⊆ S for all a ∈ ]0, 1[;
(b) nearly convex if there is an a ∈ ]0, 1[ such that (1− a)S + aS ⊆ S;
(c) closely convex if clS is a convex set.
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Introduced in ancient times for the needs of geometry, in the last century the convex
sets have demonstrated their utility also in analysis, functional analysis and optimization
theory (see, for instance, [9], [19] and [5]). Unlike convex sets, nearly convex sets have
not been frequently used. Properties of the sets of this type may be found in [1], [14] and
[20]. From the three convexity concepts defined above, that of a closely convex set is the
most recent. It has been introduced in [2].

Within the class of convex sets the convex cones play an important role. We say that
a subset S of Y is a convex cone if it is not empty, convex and satisfies aS ⊆ S for all
a ∈ ]0,∞[.

A simple example of a convex cone is the set Rn+ consisting of all vectors (α1, . . . , αn) in

Rn with αi ≥ 0 for each i ∈ {1, . . . , n}. In particular, the set R+ of all nonnegative real
numbers is a convex cone.
If S is a subset of Y , then

S∗ = {y′ ∈ Y ′ | ∀y ∈ S : y′(y) ≥ 0}
is a convex cone in Y ′ called the dual cone of S.

Next let us fix a subset K of Y . By means of this set and the three basic convexity
concepts we can define three other convexity concepts for sets as follows.

A subset S of Y is said to be:

(a′) convex with respect to K (or shortly K-convex) if S +K is a convex set;

(b′) nearly convex with respect to K (or shortly nearly K-convex) if S + K is a nearly
convex set;

(c′) closely convex with respect to K (or shortly closely K-convex) if S + K is a closely
convex set.

Obviously, a set S in Y is convex (respectively nearly convex, closely convex) if and only
if it is convex (respectively nearly convex, closely convex) with respect to {oY }.
Under the assumption that K is a convex cone, the K-convex sets have been introduced
in [23]. So far as we know, the other two convexity concepts induced by the set K have
not been explored before.

In what follows we discuss the connections between the six convexity concepts mentioned
in this section. In order to simplify the formulations, we denote by

C(Y ), NC(Y ) and CC(Y )

the families of all convex sets, nearly convex sets, and closely convex sets in Y , respectively.
Similarly, we denote by

CK(Y ), NCK(Y ) and CCK(Y )

the families of all K-convex sets, nearly K-convex sets, and closely K-convex sets in Y ,
respectively.

Theorem 2.1. If K is a convex subset of Y and S is a subset of Y , then the implications
indicated by the arrows in the diagram below are true:

S ∈ C(Y ) ⇒ S ∈ NC(Y ) ⇒ S ∈ CC(Y )
⇓ ⇓ ⇓

S ∈ CK(Y ) ⇒ S ∈ NCK(Y ) ⇒ S ∈ CCK(Y ).
(2.1)
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Proof. We establish this theorem in a sequence of five steps.

Step 1. The implication S ∈ C(Y ) ⇒ S ∈ NC(Y ) follows immediately from the defi-
nitions of the convex and nearly convex sets, while the implication S ∈ NC(Y ) ⇒ S ∈
CC(Y ) is a consequence of Corollary 2.3 stated in [1]. Consequently, the implications in
the first row of diagram (2.1) are true.

Step 2. By applying the implications of the first row of diagram (2.1) to the set S + K
instead of S, we obtain the implications of the second row of the above diagram.

Step 3. Suppose that S ∈ C(Y ). Because K is also convex, it follows that

(1− a)(S +K) + a(S +K) ⊆ (1− a)S + aS + (1− a)K + aK ⊆ S +K (2.2)

for all a ∈ ]0, 1[. Hence S + K is a convex set. Thus the implication S ∈ C(Y ) ⇒ S ∈
CK(Y ) is true.

Step 4. Suppose that S ∈ NC(Y ). Then there exists a number a ∈ ]0, 1[ such that
(1 − a)S + aS ⊆ S. Consequently, this number satisfies (2.2). Hence S + K is a nearly
convex set. Thus the implication S ∈ NC(Y )⇒ S ∈ NCK(Y ) is true.

Step 5. Suppose that S ∈ CC(Y ). This means that cl S is a convex set. On the other
hand, taking into account that K is a convex set, it follows by Step 1 that cl K is a convex
set. Since both the sets cl S and cl K are convex, it follows that the set cl S + clK is
also convex. By applying again Step 1, we conclude that cl (clS + clK) is a convex set.
But, in view of

S +K ⊆ clS + clK ⊆ cl (S +K),

we have
cl (S +K) = cl (clS + clK).

Consequently, cl (S +K) must be a convex set. Thus the implication S ∈ CC(Y )⇒ S ∈
CCK(Y ) is true.

Corollary 2.2. If K and S are subsets of Y and L is a convex subset of Y , then the
following implications are true:

S ∈ CK(Y )⇒ S ∈ CK+L(Y ), S ∈ NCK(Y )⇒ S ∈ NCK+L(Y ),

S ∈ CCK(Y )⇒ S ∈ CCK+L(Y ).

Proof. Apply the vertical implications of diagram (2.1).

By invoking Corollary 2.2 we get the next corollary.

Corollary 2.3. Let K be a subset of Y containing oY , let L be a convex cone in Y
such that K ⊆ L, and let S be a subset of Y . Then the following implications are true:

S ∈ CK(Y )⇒ S ∈ CL(Y ), S ∈ NCK(Y )⇒ S ∈ NCL(Y ),

S ∈ CCK(Y )⇒ S ∈ CCL(Y ).

Proof. Note that K + L = L, and then apply Corollary 2.2.
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Remark 2.4. By reversing the arrows in diagram (2.1) we obtain implications that are
not generally true. This claim results from the following simple examples involving only

subsets of R2.

1. The set M = {(x, y) ∈ R2 | y > 0} ∪{(x, 0) ∈ R2 | x ∈ Q} is nearly convex, but it
is not convex. Hence, the implication S ∈ NC(Y ) ⇒ S ∈ C(Y ) is not always true.
Consequently, the implication S ∈ NCK(Y )⇒ S ∈ CK(Y ) is not always true either.

2. The set M = {(x, y) ∈ R2 | y > 0} ∪{(x, 0) ∈ R2 | x ∈ R \Q} is closely convex. Next
note that, for every a ∈ ]0, 1[, the irrational numbers

x1 =

{√
2 if a ∈ Q

1/(a− 1) if a ∈ R \ Q
and x2 = (1− 1/a)x1

satisfy (1− a)x1 + ax2 = 0. Thus there is no a ∈ ]0, 1[ such that

(1− a)(R \ Q) + a(R \ Q) ⊆ R \ Q.

This means that R \ Q is not nearly convex. Hence the set M is not nearly convex
either. Consequently, the implication S ∈ CC(Y )⇒ S ∈ NC(Y ) is not always true.
Of course, the implication S ∈ CCK(Y )⇒ S ∈ NCK(Y ) is not always true either.

3. The set M = {(x, 0) ∈ R2 | x ≥ 0} ∪{(0, y) ∈ R2 | y ≥ 0} is R2
+-convex, because

M + R2
+ = R2

+. Taking into account the implications in the second row of diagram

(2.1), it follows that the set M is also nearly R2
+-convex and closely R2

+-convex. But,

obviously, M is not closely convex. Thus, due to the implications in the first row of
diagram (2.1), the set M cannot be neither convex nor nearly convex. In consequence,
the implications

S ∈ CK(Y )⇒ S ∈ C(Y ), S ∈ NCK(Y )⇒ S ∈ NC(Y ),

S ∈ CCK(Y )⇒ S ∈ CC(Y )

are not always true.

Provided that K is a convex set, it follows from Theorem 2.1 and Remark 2.4 that the
concept of a closely K-convex set is the most general concept among the six convexities
concerning sets that we have considered in this section. In the case when K is a convex
cone with nonempty interior we can give some nice characterizations of the closely K-
convex sets. For establishing these characterizations we need the following lemma.

Lemma 2.5. Let K be a convex cone in Y with intK 6= ∅, and let S be a subset of Y .
Then the following equalities hold:

int[cl (S +K)] = S + intK; (2.3)

cl (S +K) = cl (S + intK). (2.4)

Proof. Let y be any point in int[cl (S + K)]. Then there exists a neighbourhood U of
oY such that

y − U ⊆ cl (S +K). (2.5)
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Now we choose a point k0 ∈ intK. Since U is absorbing, we can find an a ∈ ]0,∞[ such
that ak0 ∈ U . In view of (2.5) it follows that the point z = y− ak0 lies in cl (S +K). On
the other hand, y − intK is a neighbourhood of z, because this set is open and contains
z. Consequently, we have

(S +K) ∩ (y − intK) 6= ∅.
Thus there exist s ∈ S and k ∈ K such that s+ k ∈ y − intK. From this we get

y ∈ s+ k + intK ⊆ S +K + intK ⊆ S + intK.

Since y was arbitrarily chosen in int[cl (S +K)], we have proved that

int[cl (S +K)] ⊆ S + intK. (2.6)

Next note that
S + intK ⊆ S +K ⊆ cl (S +K).

Taking into account that the set S + intK is open, it follows that

S + intK ⊆ int[cl (S +K)]. (2.7)

From (2.6) and (2.7) we obtain (2.3).
Now let y be any point in S + K. Further let V be any neighbourhood of y. From
y ∈ S +K it follows that y − s ∈ K for some s ∈ S. Next we choose a point k0 ∈ intK.
Since V is a neighbourhood of y and

lima→1 [s + (1− a)k0 + a(y − s)] = y,

we can choose a number a0 ∈ [0, 1[ such that the point z = s+ (1− a0)k0 + a0(y− s) lies
in V . On the other hand, a well-known property of the convex sets in topological linear
spaces (see, for instance, formula (11.1) in [9, p. 59]) implies that

(1− a0)k0 + a0(y − s) ∈ intK.

Therefore z lies also in S+intK. Consequently, we have V ∩ (S+intK) 6= ∅. Since y was
arbitrarily chosen in S + K and V was an arbitrary neighbourhood of y, we have shown
that

S +K ⊆ cl (S + intK).

Taking into account that the set cl (S + intK) is closed, it follows that

cl (S +K) ⊆ cl (S + intK). (2.8)

Finally note that S + intK ⊆ S +K implies

cl (S + intK) ⊆ cl (S +K). (2.9)

From (2.8) and (2.9) we obtain (2.4).

By applying this lemma, we now can obtain the announced characterizations of the closely
K-convex sets.
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Theorem 2.6. Let K be a convex cone in Y with intK 6= ∅, let L = intK, and let S
be a subset of Y . Then the implications indicated by the arrows in the diagram below are
true:

S ∈ CCK(Y ) ⇒ S ∈ CL(Y )
⇑ ⇓

S ∈ CCL(Y ) ⇐ S ∈ NCL(Y ).

Proof. The key observation for the proof is the well-known fact that the interior of a
convex set in a topological linear space is a convex set (see, for instance, [19, Lemma 2,
p. 13]).
Suppose that S ∈ CCK(Y ). Thus the set cl (S +K) is convex, and hence int[cl (S +K)]
is also convex. By applying (2.3), we conclude that S + intK is convex. In other words,
we have S ∈ CL(Y ). Consequently, the implication S ∈ CCK(Y )⇒ S ∈ CL(Y ) is true.
Next we note that the implications

S ∈ CL(Y )⇒ S ∈ NCL(Y )⇒ S ∈ CCL(Y )

are true in virtue of Theorem 2.1.
Finally, suppose that S ∈ CCL(Y ). Thus cl (S + intK) is a convex set. Taking into
account (2.4), it follows that cl (S + K) is also convex, i.e. S ∈ CCK(Y ). Therefore the
implication S ∈ CCL(Y )⇒ S ∈ CCK(Y ) is true.

3. A Characterization of Weakly K-Minimal Elements

Since their introduction, the K-convex sets have been successfully applied in multiobjec-
tive optimization (see [23], [8], [11]). Here we will illustrate that the more general closely
K-convex sets, we dealt with in the preceding section, are also useful in optimization.
When K is a convex cone in Y with intK 6= ∅, then we intend to characterize those
points s0 of a given closely K-convex subset S of Y that satisfy

(s0 − intK) ∩ S = ∅. (3.1)

Any element s0 ∈ S satisfying (3.1) is said to be weakly minimal with respect to K (or
shortly weakly K-minimal).

Lemma 3.1. Let K be a convex cone in Y with intK 6= ∅, let S be a nonempty subset
of Y , and let s0 be an element of Y . Then the following assertions are true:

1. If s0 satisfies (3.1) and S is closely K-convex, then there exists a y ′0 ∈ K∗ \ {o′} such
that

y′0(s0) ≤ y′0(s) for all s ∈ S. (3.2)

2. If there exists a y′0 ∈ K∗ \ {o′} satisfying (3.2), then (3.1) holds.

Proof. 1. First we observe that

(s0 − intK) ∩ (S +K) = ∅. (3.3)

Indeed, if we assume the contrary, then there exist elements s ∈ S and k ∈ K such that
s+ k ∈ s0 − intK. From this we obtain s ∈ s0 − (k + intK) ⊆ s0 − intK. Consequently,
we have s ∈ (s0 − intK) ∩ S, which contradicts (3.1). Hence (3.3) must hold.
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From (3.3) it follows that
S +K ⊆ Y \ (s0 − intK). (3.4)

Since s0 − intK is an open set, it follows that Y \ (s0 − intK) is a closed set. Therefore
(3.4) implies

cl (S +K) ⊆ Y \ (s0 − intK),

i.e.
(s0 − intK) ∩ [cl (S +K)] = ∅.

Since the sets s0− intK and cl (S+K) are convex, we can apply a well-known separation

theorem (see [9, p. 63]) and conclude that there is a y′0 ∈ Y ′ \ {o′} such that

sup {y′0(s0 − k) | k ∈ K} ≤ inf {y′0(y) | y ∈ cl (S +K)}. (3.5)

Now let s be any element in S, and let k be any element in K. Since K is a cone, we
have ak ∈ K for all a ∈ ]0,∞[. Consequently, (3.5) implies

y′0(s0 − k) ≤ y′0(s+
1

a
k) for all a ∈ ]0,∞[,

on the one hand, and

y′0(s0 − ak) ≤ y′0(s+ ak) for all a ∈ ]0,∞[,

on the other hand. These inequalities can be rewritten as follows:

y′0(k) ≥ a[y′0(s0 − k)− y′0(s)] for all a ∈ ]0,∞[,

y′0(s) ≥ y′0(s0)− 2ay′0(k) for all a ∈ ]0,∞[.

Letting a → 0, we then obtain y′0(k) ≥ 0 and y′0(s) ≥ y′0(s0). Hence y′0 lies in K∗ and

satisfies (3.2).

2. Let y′0 ∈ K∗ \ {o′} satisfy (3.2). Suppose that there is an element s ∈ S such that
s− s0 ∈ − intK. Then we can choose a neighbourhood U of oY which satisfies

s− s0 + U ⊆ −K. (3.6)

Next we select an element y ∈ Y for which y′0(y) > 0. Since y′0 6= o′, we can find such an

element. Then take into consideration that U is absorbing and choose a number a ∈ ]0,∞[
such that ay ∈ U . From (3.6) it follows that s − s0 + ay lies in −K, and therefore we

have y′0(s− s0 + ay) ≤ 0. This inequality implies

y′0(s) ≤ y′0(s0)− ay′0(y) < y′0(s0),

which contradicts (3.2). Thus (3.1) must hold.

By applying Lemma 3.1 we obtain the following characterization theorem for the weakly
K-minimal elements.
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Theorem 3.2. Let K be a convex cone in Y with intK 6= ∅, let S be a nonempty
subset of Y which is closely K-convex, and let s0 be an element of S. Then s0 is weakly
K-minimal if and only if there exists a y′0 ∈ K∗ \ {o′} such that

y′0(s0) = min {y′0(s) | s ∈ S}.

This theorem generalizes Theorem 1 given in [21, p. 104].

4. Convexity Concepts for Functions

Let D be a nonempty subset of X. The convexity concepts regarding sets, studied in
Section 2, allow us to introduce convexity concepts for functions defined on D and taking
values in Y . The procedure is quite simple. It is based on assigning a determined subset
S(f) of a topological linear space to each function f : D → Y . If the set S(f) has one
of the six convexity properties defined in Section 2, then we say that the function f has
that one same convexity property. Consequently, the set-valued mapping f 7−→ S(f) will
yield six convexity concepts regarding functions. We illustrate this technique, which can
be called defining by reduction to sets, in two cases, namely when the set S(f) assigned
to f is the graph

gr f = {(x, f(x)) | x ∈ D}
and the range

rng f = {f(x) | x ∈ D}
of f , respectively.

Let K be a subset of Y . Set K0 = {oX} ×K.
Depending on the convexity properties of gr f in the topological linear space X × Y , we
say that f : D → Y is:

(a1) convex if gr f ∈ C(X × Y );

(b1) nearly convex if gr f ∈ NC(X × Y );

(c1) closely convex if gr f ∈ CC(X × Y );

(a′1) convex with respect to K (or shortly K-convex) if gr f ∈ CK0(X × Y );

(b′1) nearly convex with respect to K (or shortly nearly K-convex) if gr f ∈ NCK0(X×Y );

(c′1) closely convex with respect to K (or shortly closely K-convex) if gr f ∈ CCK0(X×Y ).

Similarly, depending on the convexity properties of rng f in the topological linear space
Y , we say that f : D → Y is:

(a2) convexlike if rng f ∈ C(Y );

(b2) nearly convexlike if rng f ∈ NC(Y );

(c2) closely convexlike if rng f ∈ CC(Y );

(a′2) convexlike with respect to K (or shortly K-convexlike) if rng f ∈ CK(Y );

(b′2) nearly convexlike with respect to K (or shortly nearly K-convexlike) if rng f ∈
NCK(Y );

(c′2) closely convexlike with respect to K (or shortly closely K-convexlike) if rng f ∈
CCK(Y ).
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In virtue of the definitions (a′1), (b′1) and (c′1) we have to check whether the set gr f +K0

is convex, nearly convex or closely convex, so that we can decide whether f is K-convex,
nearly K-convex or closely K-convex. This set gr f + K0 is called the epigraph of f with
respect to K and denoted by epiK f . Obviously, we have

epiK f ={(x, y) ∈ X × Y | x ∈ D, y ∈ f(x) +K}.

Similarly, in virtue of the definitions (a′2), (b′2) and (c′2) we have to examine whether the
set rng f +K is convex, nearly convex or closely convex, so that we can decide whether f
is K-convexlike, nearly K-convexlike or closely K-convexlike. This set rng f +K is called
the epirange of f with respect to K.

By analogy with the notations introduced in Section 2 for the families of all subsets of Y
having the same convexity property, we denote by

C(D, Y ), NC(D, Y ), CC(D, Y ), CK(D, Y ), NCK(D, Y ), CCK(D, Y )

the families of all functions from D into Y that are convex, nearly convex, closely convex,
K-convex, nearly K-convex and closely K-convex, respectively. Similarly, we denote by

CL(D, Y ), NCL(D, Y ), CCL(D, Y ), CLK(D, Y ), NCLK(D, Y ), CCLK(D, Y )

the families of all functions from from D into Y that are convexlike, nearly convexlike,
closely convexlike, K-convexlike, nearly K-convexlike and closely K-convexlike, respec-
tively.
According to the definitions of the above introduced twelve convexity concepts regard-
ing functions, Theorem 2.1 implies the following theorem proclaiming some connections
between these concepts.

Theorem 4.1. If K is a convex subset of Y and f is a function from D into Y , then
the implications indicated by the arrows in the diagrams below are true:

f ∈ C(D, Y ) ⇒ f ∈ NC(D, Y ) ⇒ f ∈ CC(D, Y )
⇓ ⇓ ⇓

f ∈ CK(D, Y ) ⇒ f ∈ NCK(D, Y ) ⇒ f ∈ CCK(D, Y );
(4.1)

f ∈ CLK(D, Y ) ⇒ f ∈ NCLK(D, Y ) ⇒ f ∈ CCLK(D, Y )
⇑ ⇑ ⇑

f ∈ CL(D, Y ) ⇒ f ∈ NCL(D, Y ) ⇒ f ∈ CCL(D, Y ).
(4.2)

The relationship between the diagrams (4.1) and (4.2) is given by the next theorem.

Theorem 4.2. Let K be a subset of Y , and let f be a function from D into Y . Then
the following implications are true:

f ∈ CK(D, Y )⇒ f ∈ CLK(D, Y ), f ∈ NCK(D, Y )⇒ f ∈ NCLK(D, Y ),

f ∈ CCK(D, Y )⇒ f ∈ CCLK(D, Y ).

Proof. Suppose that f ∈ CK(D, Y ). We claim that under this assumption the set
rng f +K is convex. To prove this, let y1 and y2 be elements of rng f +K, and let a be in
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]0,1[. We can associate with y1 and y2 ordered pairs (x1, k1), (x2, k2) ∈ D ×K such that
yi = f(xi) + ki for i ∈ {1, 2}. Then we have (xi, yi) ∈ epiK f for i ∈ {1, 2}. Taking into
account that the set epiK f is convex, it follows that

((1− a)x1 + ax2, (1− a)y1 + ay2) = (1− a)(x1, y1) + a(x2, y2) ∈ epiK f.

Thus

(1− a)x1 + ax2 ∈ D and (1− a)y1 + ay2 ∈ f((1− a)x1 + ax2) +K.

These relations show that (1− a)y1 + ay2 ∈ rng f +K. Therefore rng f +K is convex, as
claimed. In other words, the function f is K-convexlike. Consequently, the implication
f ∈ CK(D, Y )⇒ f ∈ CLK(D, Y ) is true.
Now suppose that f ∈ NCK(D, Y ). This means that the set epiK f is nearly convex.
Hence there exists a number a ∈ ]0, 1[ such that

(1− a) epiK f + a epiK f ⊆ epiK f.

By reasoning as in the proof of the implication f ∈ CK(D, Y ) ⇒ f ∈ CLK(D, Y ), we
immediately see that this number a satisfies

(1− a)(rng f +K) + a(rng f +K) ⊆ rng f +K.

Therefore rng f+K is nearly convex, and whence f is nearly K-convexlike. Consequently,
the implication f ∈ NCK(D, Y )⇒ f ∈ NCLK(D, Y ) is also true.
Finally, suppose that f ∈ CCK(D, Y ). We claim that in this case the set cl (rng f +K)
is convex. To prove this, let y1 and y2 be elements of cl (rng f +K), and let a be in ]0,1[.
Further, fix any neighbourhood U of the element y = (1− a)y1 + ay2. Since the mapping

(t, u) ∈ Y × Y 7−→ (1− a)t + au ∈ Y

is continuous at (y1, y2), we can choose an open neighbourhood V1 of y1 and an open
neighbourhood V2 of y2 such that

(1− a)V1 + aV2 ⊆ U. (4.3)

Taking into account that y1, y2 ∈ cl (rng f +K), it results that

(rng f + K) ∩ Vi 6= ∅ for i ∈ {1, 2}.

Thus there exist x1, x2 ∈ D and k1, k2 ∈ K such that

z1 = f(x1) + k1 ∈ V1 and z2 = f(x2) + k2 ∈ V2.

Now, note that (x1, z1) and (x2, z2) lie in cl (epiK f). Then it follows that

((1− a)x1 + ax2, (1− a)z1 + az2) ∈ cl (epiK f),

because the set cl (epiK f) is convex. Since W = X× [(1−a)V1 +aV2] is a neighbourhood
of the element ((1− a)x1 + ax2, (1− a)z1 + az2), we must have (epiK f)∩W 6= ∅. Hence
there exist an x0 ∈ D and a k0 ∈ K such that

f(x0) + k0 ∈ (1− a)V1 + aV2. (4.4)
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From (4.3) and (4.4) it results that (rng f + K) ∩ U 6= ∅. Since U was an arbitrary
neighbourhood of y, we have y ∈ cl (rng f+K). This shows that cl (rng f+K) is a convex
set. Hence the function f is closely K-convexlike. Consequently, the last implication of
our theorem, namely f ∈ CCK(D, Y )⇒ f ∈ CCLK(D, Y ), is also true.

Remark 4.3. By reversing the arrows in the diagrams (4.1) and (4.2) we obtain impli-
cations that are not necessarily true. This assertion results from the following examples.

1. Let D be a nonempty subset of X. Define ϕ : D → X by ϕ(x) = x. Then it is
immediately seen that the following equivalences are true:

D ∈ C(X) ⇔ ϕ ∈ C(D,X);

D ∈ NC(X) ⇔ ϕ ∈ NC(D,X);

D ∈ CC(X) ⇔ ϕ ∈ CC(D,X).

These equivalences together with Remark 2.4 show that the implications that result
from reversing the arrows in the first row of diagram (4.1) are not always true.
Consequently, the implications that result from reversing the arrows in the second
row of diagram (4.1) are not always true either.

2. Let φ : R → R be the function defined by φ(x) = x2. This function is R+-convex.
Taking into account the implications in the second row of diagram (4.1), it follows
that φ is also nearly R+-convex and closely R+-convex. But φ is not closely convex.
Thus, due to the implications in the first row of diagram (4.1), the function φ cannot
be neither convex nor nearly convex. Consequently, the implications

f ∈ CK(D, Y )⇒ f ∈ C(D, Y ), f ∈ NCK(D, Y )⇒ f ∈ NC(D, Y ),

f ∈ CCK(D, Y )⇒ f ∈ CC(D, Y )

are not generally true.

3. Consider again the function ϕ, defined in example 1. For this function we have
rngϕ = D. Therefore the following equivalences are obvious:

D ∈ C(X) ⇔ ϕ ∈ CL(D,X);

D ∈ NC(X) ⇔ ϕ ∈ NCL(D,X);

D ∈ CC(X) ⇔ ϕ ∈ CCL(D,X).

Moreover, if K is a subset of X, then we also have

D ∈ CK(X) ⇔ ϕ ∈ CLK(D,X);

D ∈ NCK(X) ⇔ ϕ ∈ NCLK(D,X);

D ∈ CCK(X) ⇔ ϕ ∈ CCLK(D,X).

Taking into account all these equivalences and Remark 2.4, it follows that in diagram
(4.2) the reversed implications are not always true.

Remark 4.4. The implications that are obtained by reversing the arrows in the impli-
cations stated in Theorem 4.2 do not always hold either. To see this, consider the function
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φ : R→ R, defined by φ(x) = x3. This function is R+-convexlike, because rng φ+R+ = R.
Taking into account the implications in the first row of diagram (4.2), it follows that the
function φ is also nearly R+-convexlike and closely R+-convexlike. But φ is not closely
R+-convex, because the closed set

grφ+ {0} × R+ = {(x, y) ∈ R2 | x3 ≤ y}

is not convex. Thus, due to the implications in the second row of diagram (4.1), the
function φ cannot be neither R+-convex nor nearly R+-convex. Consequently, the impli-
cations

f ∈ CLK(D, Y )⇒ f ∈ CK(D, Y ), f ∈ NCLK(D, Y )⇒ f ∈ NCK(D, Y ),

f ∈ CCLK(D, Y )⇒ f ∈ CCK(D, Y )

are not generally true.

When K is a convex subset of Y , then the Theorems 4.1 and 4.2 together with the
Remarks 4.3 and 4.4 show that the concept of a closely K-convexlike function is the most
general concept among the twelve convexities concerning functions studied in this section.
From Theorem 2.6 we immediately obtain the following characterizations of the closely
K-convexlike functions.

Theorem 4.5. Let K be a convex cone in Y with intK 6= ∅, let L = intK, and let f be
a function from D into Y . Then the implications indicated by the arrows in the diagram
below are true:

f ∈ CCLK(D, Y ) ⇒ f ∈ CLL(D, Y )
⇑ ⇓

f ∈ CCLL(D, Y ) ⇐ f ∈ NCLL(D, Y ).

Next we deal with a weakened convexity for functions that has been discussed in [20]. It
is defined as follows.
If K is a subset of Y , then a function f : D → Y is called K-subconvexlike if there exists
a k0 ∈ intK such that for any a ∈ ]0, 1[ and any b ∈ ]0,∞[ one has

(1− a) rng f + a rng f + bk0 ⊆ rng f +K. (4.5)

In the special case when Y = Rn, this concept has been introduced in [13]. It has been
applied not only in [13], but also in [22]. Its relationship with the convexity concepts
investigated in the present paper is given by our next result.

Corollary 4.6. Let K be a convex cone in Y with intK 6= ∅, and let f be a function
from D into Y . Then the following assertions are equivalent:

1. f is K-subconvexlike.
2. There exist a k0 ∈ intK and an a ∈ ]0, 1[ such that (4.5) holds for all b ∈ ]0,∞[.
3. f is closely K-convexlike.

Proof. Obviously, the implication 1. ⇒ 2. is true. Next we assume that 2. holds. For
short we set L = intK. Let y1 and y2 be in rng f+L. Then there exist elements k1, k2 ∈ L
such that yi ∈ rng f+ki for i ∈ {1, 2}. The convexity of L implies that (1−a)k1+ak2 ∈ L.
But, in addition, the set L is open. Hence there exists a neighbourhood U of oY such
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that (1− a)k1 + ak2−U ⊆ L. Since U is absorbing, we can find a number b ∈ ]0,∞[ such
that bk0 ∈ U . Therefore we have

(1− a)k1 + ak2 − bk0 ∈ L. (4.6)

From (4.5) and (4.6) we obtain

(1− a)y1 + ay2 ∈ (1− a) rng f + a rng f + (1− a)k1 + ak2

= [(1− a) rng f + a rng f + bk0] + [(1− a)k1 + ak2 − bk0]

⊆ rng f +K + L

⊆ rng f + L.

Since y1 and y2 were arbitrarily chosen in rng f + L, we have shown that rng f + L is a
nearly convex set. In other words, f is nearly L-convexlike. By Theorem 4.5 it follows
that f is closely K-convexlike. In conclusion, the implication 2. ⇒ 3. is true.
Finally, if the function f is closely K-convexlike, then by Theorem 4.5 it is also L-con-
vexlike, where as before L = intK. Hence rng f + L is a convex set. We choose any
k0 ∈ L. Then we have

(1− a) rng f + a rng f + bk0 = (1− a)(rng f + bk0) + a(rng f + bk0)

⊆ (1− a)(rng f + L) + a(rng f + L)

⊆ rng f + L

⊆ rng f +K

for all a ∈ ]0, 1[ and all b ∈ ]0,∞[. Thus f is K-subconvexlike. In conclusion, the
implication 3. ⇒ 1. is also true.

From Corollary 4.6, which completes the results of Section 3 of the paper [20], we conclude
that the class CCLK(D, Y ) of all closely K-convexlike functions f : D → Y coincides
with the class of all K-subconvexlike functions f : D → Y when K is a convex cone in Y
with intK 6= ∅.
Finally, it should be remarked that some of the convexities regarding functions, defined
here by reduction to sets, can also be defined otherwise. This is shown by the following
elementary theorem.

Theorem 4.7. Let K be a convex cone in Y containing oY , and let f be a function
from D into Y . Then the following assertions are true:

1. f ∈ CK(D, Y ) if and only if for all a ∈ ]0, 1[ and all x1, x2 ∈ D the conditions

(1− a)x1 + ax2 ∈ D, (4.7)

(1− a)f(x1) + af(x2) ∈ f((1− a)x1 + ax2) +K (4.8)

are satisfied.

2. f ∈ NCK(D, Y ) if and only if there exists a number a ∈ ]0, 1[ such that for all
x1, x2 ∈ D the conditions (4.7) and (4.8) are satisfied.

3. f ∈ CLK(D, Y ) if and only if for all a ∈ ]0, 1[ and all x1, x2 ∈ D the condition

(1− a)f(x1) + af(x2) ∈ rng f +K (4.9)
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is satisfied.

4. f ∈ NCLK(D, Y ) if and only if there exists a number a ∈ ]0, 1[ such that for all
x1, x2 ∈ D the condition (4.9) is satisfied.

Proof. 1. Necessity. Let x1 and x2 be points in D. Since oY ∈ K, we have

(xi, f(xi)) ∈ gr f ⊆ epiK f for i ∈ {1, 2}.

Taking into account that the set epiK f is convex, it follows that

((1− a)x1 + ax2, (1− a)f(x1) + af(x2)) = (1− a)(x1, f(x1)) + a(x2, f(x2)) ∈ epiK f

for all a ∈ ]0, 1[. Thus (4.7) and (4.8) hold for all a ∈ ]0, 1[.
Sufficiency. Let (x1, y1) and (x2, y2) be elements of epiK f . Then (4.7) holds for all
a ∈ ]0, 1[. On the other hand, taking into account that yi ∈ f(xi) +K for i ∈ {1, 2} and
that (4.8) holds for all a ∈ ]0, 1[, we obtain

(1− a)y1 + ay2 ∈ (1− a)f(x1) + af(x2) + (1− a)K + aK

⊆ f((1− a)x1 + ax2) +K

for all a ∈ ]0, 1[. Thus

(1− a)(x1, y1) + a(x2, y2) = ((1− a)x1 + ax2, (1− a)y1 + ay2) ∈ epiK f

for all a ∈ ]0, 1[. Consequently, the set epiK f is convex. This means that f is K-convex.

2. By reasoning as in the proof of assertion 1., but for a fixed number a ∈ ]0, 1[, we
immediately see that assertion 2. is true.

3. Necessity. Let x1 and x2 be points in D. Since oY ∈ K, we have

f(xi) ∈ rng f ⊆ rng f +K for i ∈ {1, 2}.

Due to the convexity of the set rng f +K it follows that (4.9) holds for all a ∈ ]0, 1[.
Sufficiency. Let y1 and y2 be points in rng f + K. Then there exist elements x1, x2 ∈ D
such that yi ∈ f(xi) +K for i ∈ {1, 2}. In view of (4.9) it follows that

(1− a)y1 + ay2 ∈ (1− a)f(x1) + af(x2) + (1− a)K + aK

⊆ rng f +K

for all a ∈ ]0, 1[. Consequently, the set rng f +K is convex. This means that the function
f is K-convexlike.

4. By reasoning as in the proof of assertion 3., but again for a fixed number a ∈ ]0, 1[, we
see that assertion 4. is true.

Corollary 4.8. Let f be a function from D into Y . Then the following assertions are
true:

1. f ∈ C(D, Y ) if and only if for all a ∈ ]0, 1[ and all x1, x2 ∈ D the conditions (4.7)
and

(1− a)f(x1) + af(x2) = f((1− a)x1 + ax2) (4.10)
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are satisfied.
2. f ∈ NC(D, Y ) if and only if there exists a number a ∈ ]0, 1[ such that for all x1, x2 ∈

D the conditions (4.7) and (4.10) are satisfied.

Remark 4.9. The assertions 3. and 4. of Theorem 4.7 are mentioned without proofs
in [20, Lemma 3.2].

Remark 4.10. The definitions (a2), (b2), (c2), (a′2), (b′2) and (c′2) as well as the
definition of the K-subconvexlike functions do not require that D is a subset of the
topological linear space X. All these definitions and the results referring to the functions
corresponding to these definitions remain valid even if D is any nonempty set.

5. Characterizations of Weakly K-Minimizers

The K-convex functions as well as their generalizations that we have called here K-con-
vexlike and nearly K-convexlike functions, respectively, have been employed for deriving
minimax theorems, theorems of the alternative, optimality conditions and duality results
(e.g. see [4], [16], [3], [7], [6], [24], [12], [17], [14], [18], [15], [10]). Some of the results
involving such functions are also valid for the closely K-convexlike functions. To see this
it suffices to transpose the results, stated for sets in Section 3, to functions defined on a
nonempty set D and taking values in Y .
Indeed, Lemma 3.1 yields the following theorem of the alternative of Gordan type.

Theorem 5.1. Let K be a convex cone in Y with intK 6= ∅, let D be a nonempty set,
and let f : D → Y be a closely K-convexlike function. Then exactly one of the following
assertions is true:

1. There exists an x ∈ D such that −f(x) ∈ intK.

2. There exists a y′ ∈ K∗ \ {o′} such that y′(f(x)) ≥ 0 for all x ∈ D.

Proof. Take S = rng f and s0 = oY . Then apply Lemma 3.1.

This theorem has been stated in [15]. According to Corollary 4.6 it generalizes Theorem
2.1 proved in [13]. In virtue of Theorem 4.1 it is also a generalization of several other
results of the same type (Theorem 2.5.1 in [3], Lemma 2.1 in [7], Lemma 3 in [25], Theorem
4.1 in [10]).

When K is a convex cone in Y with intK 6= ∅ and f is a function from D into Y , then
we say that an element x0 ∈ D is a weak K-minimizer of f over a subset E of D if x0 ∈ E
and if f(x0) is a weakly K-minimal element of the set f(E). By taking into account this
definition, Theorem 3.2 yields the next theorem which generalizes several results given in
the literature (see, for instance, [21, Theorem 2, p. 105], [17, Theorem 2.10, p. 91] and
[22, Theorem 3.1]).

Theorem 5.2. Let K be a convex cone in Y with intK 6= ∅, let D be a nonempty set,
let f : D → Y be a closely K-convexlike function, and let x0 be an element of D. Then
x0 is a weak K-minimizer of f over D if and only if there exists a y ′0 ∈ K∗ \ {o′} such
that

y′0(f(x0)) = min {y′0(f(x)) | x ∈ D}.
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Lemma 3.1 can also be used to derive necessary conditions for weak solutions of con-
strained multiobjective optimization problems. To see this, let Y1 and Y2 be real topolog-
ical linear spaces. Let Y ′1 and Y ′2 be their topological duals, respectively. The zero-elements

of the spaces Y1, Y2, Y
′
1 and Y ′2 are denoted by o1, o2, o

′
1 and o′2, respectively.

Theorem 5.3. Let K1 ⊆ Y1 and K2 ⊆ Y2 be convex cones with

intK1 6= ∅ and intK2 6= ∅,

let D be a nonempty set, let f = (f1, f2) : D → Y1 × Y2 be a closely K1 ×K2-convexlike
function, and let x0 ∈ D be a weak K1-minimizer of f1 over the set

E = {x ∈ D | − f2(x) ∈ K2}. (5.1)

Then the following assertions are true:

1. There exists a (y′1, y
′
2) ∈ K∗1 ×K∗2 \ {(o′1, o′2)} such that

y′1(f1(x0)) = min {y′1(f1(x)) + y′2(f2(x)) | x ∈ D}. (5.2)

2. If (rng f2)∩ (− intK2) 6= ∅, then there exists a (y′1, y
′
2) ∈ K∗1 ×K∗2 with y′1 6= o′1 such

that (5.2) holds.

Proof. 1. If we set y0 = (f1(x0), o2) and K = K1 ×K2, then we have

(y0 − intK) ∩ rng f = ∅.

By applying assertion 1. of Lemma 3.1 in the space Y1 × Y2, we conclude that there is a
y′0 ∈ K∗ \ {o′} such that

y′0(y0) ≤ y′0(y) for all y ∈ rng f. (5.3)

Now we define the functions y′1 : Y1 → R and y′2 : Y2 → R by

y′1(y1) = y′0(y1, o2) and y′2(y2) = y′0(o1, y2),

respectively. Then we have

y′0(y) = y′1(y1) + y′2(y2) for all y = (y1, y2) ∈ Y1 × Y2. (5.4)

In view of this equality, (5.3) can be rewritten as follows:

y′1(f1(x0)) ≤ y′1(f1(x)) + y′2(f2(x)) for all x ∈ D. (5.5)

On the other hand, due to (5.4) it is also seen that

(y′1, y
′
2) ∈ K∗1 ×K∗2 \ {(o′1, o′2)}.

Since −f2(x0) ∈ K2 and y′2 ∈ K∗2 , we have y′2(f2(x0)) ≤ 0. Taking into account this

inequality, it follows from (5.5) that

y′1(f1(x0)) + y′2(f2(x0)) ≤ y′1(f1(x0)) ≤ y′1(f1(x)) + y′2(f2(x))
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for all x ∈ D. Consequently, (5.2) must hold.

2. According to assertion 1. there is a (y′1, y
′
2) ∈ K∗1 ×K∗2 \ {(o′1, o′2)} satisfying (5.2). We

must have y′1 6= o′1. Indeed, if we suppose that y′1 = o′1, then we have y′2 6= o′2 as well as

0 = min {y′2(f2(x)) | x ∈ D}.

By applying assertion 2. of Lemma 3.1 it follows that

(rng f2) ∩ (− intK2) = ∅,

which is absurd. Hence we have y′1 6= o′1, as claimed.

Remark 5.4. If x0 is an element of the set E, defined by (5.1), and if there is a

(y′1, y
′
2) ∈ K∗1 ×K∗2 with y′1 6= o′1 such that (5.2) holds, then x0 is a weak K1-minimizer of

the function f1 over E even when the function f = (f1, f2) : D → Y1 × Y2 is not closely

K1×K2-convexlike. Indeed, for any x ∈ E we have −f2(x) ∈ K2, and thus y′2(f2(x)) ≤ 0.

Therefore (5.2) implies

y′1(f1(x0)) ≤ y′1(y) for all y ∈ f1(E).

By applying assertion 2. of Lemma 3.1, it follows that

[f1(x0)− intK1] ∩ f1(E) = ∅.

This means that x0 is a weak K1-minimizer of f1 over E.
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[21] V. V. Podinovskĭı, V. D. Nogin: Pareto-Optimal Solutions of Multicriteria Problems, Nauka,

Moscow, 1982. (in Russian)

[22] S. Wang, Z. Li: Scalarization and Lagrange duality in multiobjective optimization, Opti-

mization 26 (1992) 315–324.

[23] P. L. Yu: Cone convexity, cone extreme points, and nondominated solutions in decision

problems with multiobjectives, J. Optim. Theory Appl. 14 (1974) 319–377.

[24] P.-L. Yu: Multiple-Criteria Decision Making, Concepts, Techniques, and Extensions, Plenum
Press, New York, London, 1985.
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