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1. Introduction

It is well known that for a quasidifferentiable function f defined on an open set O ⊂ Rn

in the sense of Demyanov & Rubinov, the class of quasidifferentials of f at a point in O,
say x ∈ O, is very large so that the whole space Rn could be covered by the union of sub-
or super-differentials, i.e.,

Rn =
⋃

Df(x)∈Df(x)

∂f(x) =
⋃

Df(x)∈Df(x)

∂f(x)

where Df(x) denotes the class of quasidifferentials of f at x, Df(x) = [∂f(x), ∂f(x)]
denotes a quasidifferential of f at x consisting of two nonempty compact convex set ∂f(x)
and ∂f(x) as its components, called subdifferential and superdifferential, respectively, such
that

f ′(x; ·) = max < ·, ∂f(x) > +min < ·, ∂f(x) >

= δ∗(· | ∂f(x))− δ∗(· | − ∂f(x))
(1)

Here we denote by < ·, A > the set {< ·, a > | a ∈ A} and A is a set of Rn. Also it is
well known that every Df(x) and a quasilinear function of the vector space of quasilinear
functions are dual to each other in the sense of Minkowski and Df(x) is an element of a
quotient space defined by the equivalence relationship

[A1, B1] ∼ [A2, B2] iff A1 −B2 = A2 −B1 (2)

see for instance, [2], [3] and [4]. Some algebraic properties of Df(x) as a set are just
the consequences of results obtained in the last several years, see for instance, [9], [10],
[11], [12], [1] and [4]. The notion of minimal pairs, under an ordering defined by the
inclusion relationship, of convex compact subsets of a topological Hausdorff vector space
was introduced by Pallaschke, Scholtes and Unbański (1991), and the existence of equiv-
alent minimal pairs of nonempty compact convex sets was also proved. For one dimen-
sional space equivalent minimal pairs are uniquely determined up to translations, due
to [9]. For the two dimensional case equivalent minimal pairs are also uniquely deter-
mined up to translations, see [16] and [1]. For the case more than the 3-dimensional case
Grzybowski (1994) gave an example, in 3-dimensional case, of finitely many equivalent
minimal pairs which are not connected by translations, and furthermore, Pallaschke and
Unbański (1996) [12] indicated that a continuum of equivalent pairs are not connected
by translation for different indices. Some sufficient conditions and both sufficient and
necessary conditions for the minimality of pairs of compact convex sets were given and
some reduction techniques for the reduction of pairs of compact convex sets via cutting
hyperplanes or excision of compact convex subsets was proposed due to Pallaschke and
Urbański (1993, 1994). Since a finite sublinear function and a unique nonempty compact
convex set are dual in the sense of Minkowski. Hence, there exists an one-to-one corre-
spondence between Df(x) and the set, associated with a quasilinear function that is the
directional derivative f ′(x; ·) or f ′

x(·), of equivalent summation structures with sublinear
and superlinear functions, defined by f ′

x(·) = lsub(·) + lsup(·), or of equivalent subtrac-
tion structures with two sublinear functions defined by f ′

x(·) = l1sub(·)− l2sub(·), in other

words it is defined by (1). Df(x) and L+ = {[l1sub(·), l
2
sub(·)] | f

′
x(·) = l1sub(·) − l2sub(·)}

or L− = {[lsub(·), lsup(·)] | f
′
x(·) = lsub(·) + lsup(·)} are isomorphism, with respect to
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addition and multiplication by scalars in the real number field, with order-preserving.
Taking [A,B] and [C,D] ∈ Df(x) and define

[A,B] ¶ [C,D] iff A ⊂ C, B ⊂ D (3)

one can define a preordering for L+

[lAsub(·), l
B

sub(·)] ¶ [lCsub(·), l
D

sub(·)] iff [A,B] ¶ [C,D] (4)

Specifically,
lAsub(·),≤ lCsub(·), lBsub(·) ≤ lDsub(·) (5)

where " ≤ " is defined by normal meaning, or one can define a preordering for L−

[lAsub(·), l
B
sup(·)] ¶ [lCsub(·), l

D
sup(·)] iff [A,B] ¶ [C,D] (6)

Specifically,
lAsub(·),≤ lCsub(·), lBsup(·) ≥ lDsup(·) (7)

It follows from above that (3)-(7) might be used to characterize some properties of min-
imal elements in Df(x), mainly in algebraic, in other words, these properties related
to minimality in Df(x) might be determined by decomposition structures of directional
derivative f ′(x; ·) or f ′

x(·), indicated with (1). Indeed, the form (1) is suitable to describe
Df(x) in algebraic as has been done by Pallaschke et al.
A decomposition structure, subtraction structure, of f ′(x; ·) defined by

f ′(x; ·) = f ′(x; ·)− f
′
(x; ·) (8)

where f ′(x; ·) and f
′
(x; ·) are defined by

f ′(x; ·) = inf
Df(x)∈Df(x)

δ∗(· | (∂ + ∂)f(x)), f
′
(x; ·) = inf

Df(x)∈Df(x)
δ∗(· | (∂ − ∂)f(x)) (9)

respectively. Generally, f ′ and f
′
are positively homogeneous, but not sublinear. It was

proved that

S =
⋂

Df(x)∈Df(x)

(∂ + ∂)f(x), S =
⋂

Df(x)∈Df(x)

(∂ − ∂)f(x) (10)

are nonempty, due to Deng and Gao (1991). It is easy to be seen that

δ∗(· |S) ≤ f ′(x; ·), δ∗(· |S) ≤ f
′
(x; ·) (11)

The above statements, (8)-(11), lead to explore geometric properties of Df(x). In one
dimensional case, it was proved that

δ∗(· |S) = f ′(x; ·), δ∗(· |S) = f
′
(x; ·) (12)

in other words, [S, S] ∈ Df(x), denoted by [∂∗f(x), ∂
∗f(x)] and the structure of [S, S]

was given by
∂∗f(x) = [α∗, β∗], ∂∗f(x) = [α∗, β∗] (13)
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where
α∗ = min{f ′(x; 1),−f ′(x;−1)}
β∗ = max{f ′(x; 1),−f ′(x;−1)}
α∗ = min{0, f ′(x; 1) + f ′(x;−1)}
β∗ = max{0,−f ′(x; 1)− f ′(x;−1)}

(14)

see Gao (1988), Xia and Gao (1993). Recently, Gao proved, that both in one and two
dimensional cases the following equalities are true

S = ∂mf(x) + ∂mf(x), S = ∂mf(x)− ∂mf(x) (15)

and [S, S] ∈ Df(x), where [∂mf(x), ∂
mf(x)] ∈ Df(x) is a minimal pair of Df(x) in the

sense of Pallaschke, Scholtes and Urbański, see [9], [16], [7] and [8]. However, in more
than 3-dimensional case (15) is not true for all minimal quasidifferentials of Df(x). In this
case it might be necessary to explore some geometric properties that is the main purpose
of the paper and the work due to Rubinov & Yagubov (1986) would be one of the useful
and potential tools that will be quoted frequently as basic references for this purpose.
S and S (defined by (10)) are called sub- and super-kernel, respectively, and [S, S] is

called a quasi-kernel of Df(x). Of course S and S are compact convex.
In Sec. 2, a sufficient condition for a function to be a kernelled quasidifferentiable one and
some operations of kernelled quasidifferentiable functions are given. In Sec. 3, definitions
of star shaped quasidifferentials associated with subkernels will be introduced. In Sec. 4,
we investigate a subset D0f(x) of Df(x) containing zero and a sufficient condition for the
pair of sets

⋂

Df(x)∈Df(x)

∂f(x),
⋂

Df(x)∈Df(x)

∂f(x)

to be a quasidifferential. In Sec. 5, the notion of star shaped differentials is introduced
for directionally differentiable functions based upon the results given by Rubinov and
Yagubov (1986) and a nonnegative decomposition of directional derivatives. In Sec. 6,
some relationships between Penot differentials and sub- and super directional derivatives
are investigated briefly.

2. Kernelled Quasidifferentiable Functions

From Deng and Gao (1991), we know that S 6= ∅. It is easy to be seen that, for any

u ∈ S there exists at least one sequence {ui |ui ∈ ∂if(x) + ∂if(x)} convergent to u,

where [∂if(x), ∂if(x)] ∈ Df(x). Especially, if u ∈ bdS, then there exists a sequence

{ui |ui ∈ bd(∂if(x) + ∂if(x))} convergent to u. Let us denote by S(d) the max-face of S
with respect to d, i.e.,

S(d) = Argmax
u′∈S

< u′, d >

and by N(u, S) the normal cone to S at u ∈ S, i.e.,

N(u, S) = {v ∈ Rn | < v, u′ − u >≤ 0,∀u′ ∈ S}

then u ∈ S(d) if and only if d ∈ N(u, S). Suppose {ui |ui ∈ ∂if(x)+ ∂if(x)}∞1 −→ u ∈ S

and assume furthermore that for each i, di ∈ N(ui, ∂if(x) + ∂if(x))∩B1(0), then the set
of clusters of {di}∞1 is included in N(u, S). The above lines enable us to give a sufficient
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condition for d ∈ Rn satisfying δ∗(d |S) = f ′(x; d) as follows: u ∈ S and d ∈ Rn such

that there exist sequences {ui ∈ ∂if(x) + ∂if(x)}∞1 −→ u and {di | di ∈ and assume

furthermore that for each i, di ∈ N(ui, ∂if(x) + ∂if(x))}∞1 −→ d.

In the sequel, we will discuss the class of quasidifferentiable functions satisfying [S, S] ∈
Df(x) for every x ∈ Rn. For this purpose, the following definition is introduced.

Definition 2.1. Let f be a quasidifferentiable function defined on Rn. The quasi-kernel
is said to be a kernelled quasidifferential of f at x iff

δ∗(· |S) = f ′(x; ·), δ∗(· |S) = f
′
(x; ·) (16)

If f has a kernelled quasidifferential at x ∈ Rn, then f is said to be a kernelled quasidiffer-
entiable function at x. The kernel [S, S] is a quasidifferential, denoted by [∂∗f(x), ∂

∗f(x)]
or [∂∗, ∂

∗]f(x) or [∂∗f, ∂
∗f ](x).

Let F(S, S) be a shape of (S, S) that is defined by a similar way due to [9], such that

co
⋃

d∈F(S,S)

S(d) = S, co
⋃

d∈F(S,S)

S(d) = S (17)

where coM denotes the closed convex hull of a set M . If [S, S] ∈ Df(x) and satisfies

conditions stated in [Th.2.1 or Th.2.2, 10], then [S, S] is a minimal quasidifferential pair.

Generally speaking, [S, S] is not a quasidifferential, in other words, there are no kernelled
quasidifferentials under the definition (16). However, the following theorem provides a

sufficient condition for [S, S] to be a kernelled quasidifferential.

Lemma 2.2. If d1, d2 ∈ N(u,C) then

δ∗(d1 + d2 |C) = δ∗(d1 |C) + δ∗(d2 |C)

where C is a closed convex set and u ∈ C.

Proof. The conclusion comes from the inequality δ∗(d1+d2 |C)≤ δ∗(d1 |C)+δ∗(d2 |C) =<

d1 + d2, u > and the condition u ∈ C.

Theorem 2.3. Let f be a quasidifferntiable function on Rn. Suppose that f ′(x; ·) and

f
′
(x; ·) are continuous with respect to direction, and furthermore there exists a shape

F(S, S) of (S, S) such that for any u ∈ S and S one has that

N(u, S) = cone{N(u, S) ∩ F(S, S)} (18)

N(v, S) = cone{N(v, S) ∩ F(S, S)} (19)

If for any d ∈ F(S, S)}, u ∈ S(d) and v ∈ S(d) there exist sequences

{ui |ui ∈ (∂i + ∂i)f(x)}∞1 −→ u (20)

{vi | vi ∈ (∂i − ∂i)f(x)}∞1 −→ v (21)

{di | di ∈ N(ui, (∂i + ∂i)f(x)) ∩N(vi, (∂i − ∂i)f(x))} (22)

such that d is one of clusters of {di}∞1 , then [S, S] ∈ Df(x), in other words, one has that

f ′(x; ·) = δ∗(· |S), f
′
(x; ·) = δ∗(· |S) (23)
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Proof. Let d ∈ Rn be an arbitrary nonzero vector. There exist u ∈ S and v ∈ S such
that d ∈ N(u, S) ∩N(v, S). According to (18) and (19) there exists a sequence

di ∈ cone{N(u, S) ∩ F(S, S)} ∩ cone{N(v, S) ∩ F(S, S)}

i = 1, 2, . . ., convergent to d. For each i there are two index sets J i and J i, with finite
indices such that

dij ∈ N(ui, S) ∩ F(S, S), j ∈ J i (24)

dij ∈ N(vi, S) ∩ F(S, S), j ∈ J i (25)

di ∈ co{dij | j ∈ J i} ∩ co{dij | j ∈ J i} (26)

It follows from (20)-(22) and (24)-(26) that for each ij there exist {dijk}
∞
1 , {dijk}∞1 ,

{uijk}∞1 and {vijk}∞1 such that

{uijk ∈ (∂ijk
+ ∂ijk)f(x)}∞1 −→ u (27)

{vijk ∈ (∂ijk − ∂ijk)f(x)}∞1 −→ v (28)

{dijk ∈ N(uijk , (∂ijk
+ ∂ijk)f(x)}∞1 −→ dij, j ∈ J i, i = 1, 2, . . . (29)

{dijk ∈ N(vijk , (∂ijk − ∂ijk)f(x)}∞1 −→ dij, j ∈ J i, i = 1, 2, . . . (30)

Since each di is a convex combination of dij, j ∈ J i, or of dij, j ∈ J i, one has that there

are λij ≥ 0 and λij ≥ 0 such that

∑

j∈Ji

λij = 1, and
∑

j∈Ji

λij = 1

satisfying

di =
∑

j∈Ji

λijdij =
∑

j∈Ji

λijdij (31)

δ∗(di |S) =
∑

j∈Ji
λij < dij, ui >

=
∑

j∈Ji
λij limk→∞ < dijk , uijk >

(32)

from (20) and (21), where dijk ∈N(uijk , (∂ijk
+∂ijk)f(x)). Since {uijk ∈ (∂ijk

+∂ijk)f(x)}∞k=1

−→ ui, {dijk ∈ N(uijk , (∂ijk
+∂ijk)f(x)}∞k=1 −→ dij, it follows, from the sufficient condition

for δ∗(ξ |S) = f ′(x;xi) given at the beginning of this section, that

δ∗(dij |S) = f ′(x; dij)

= limk→∞ < dijk , uijk >

=< dij, ui >

(33)

Thus, we obtain that from (33) that

δ∗(di |S) =<
∑

j∈Ji

λijdij, ui >= f ′(x; di) (34)
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Without loss of generality assume {di}∞1 −→ d. Taking the limit to (34), one has that

δ∗(d |S) =< d, u >= lim
i→∞

f ′(x; di) (35)

According to the continuity of f ′(x; ·), (35) becomes

δ∗(d |S) = f ′(x; d) (36)

Likewise, the second assertion in (23) can be proved by the similar way used in proving
the first assertion of (23), i.e.,

δ∗(d |S) = f
′
(x; d) (37)

The demonstration is completed.

If f has a kernelled quasidifferential at a point, say x, under the definition (16), then some
basic operations on kernel at x can be established. We only list some of these properties
without demonstration as follows by Rules 1-5.

Rule 1. Suppose fi, i = 1, . . . ,m, are quasidifferentiable at x and have kernelled
quasidifferentials [∂∗f(x), ∂

∗f(x)]. Then for the sum function f(x) =
∑m

i=1 fi(x) one has

∂∗f(x) =
m
∑

i=1

∂∗fi(x), ∂∗f(x) =
m
∑

i=1

∂∗fi(x)

where Df(x) is understood as Df(x) =
∑m

i=1 Dfi(x).

Rule 2. Suppose fi, i ∈ I, are kernelled quasidifferentiable at x and λi, i ∈ I, are scalars,
where I is a finite index set. Then we have

DK(
∑

i∈I

λifi)(x) =
∑

i∈I

DK((signλi)fi)(x)

where DKφ(x) is defined by DKφ(x) = [∂∗φ(x), ∂
∗φ(x)].

Rule 3. Suppose f1 and f2 are kernelled quasidifferentiable at x. Then one has

DK(f1f2)(x) = |f1(x)|DK((signf1(x))f2)(x) + |f2(x)|DK((signf2(x))f1)(x)

where D(f1f2)(x) is understood as f1(x)Df2(x) + f2(x)Df1(x).

Rule 4. Suppose f1 and f2 are kernelled quasidifferentiable at x and f2(x) 6= 0. Then
one has

DK(f1/f2)(x) = (|f2(x)|DK((signf2(x))f1)(x) + |f1(x)|DK((sign(−f1(x))f2)(x))/f2(x)
2

Rule 5. For f = maxi∈I fi, where fi, i ∈ I, are kernelled quasidifferentiable at x, I is a
set of finite indices, one has

∂∗f(x) = co
⋃

k∈R(x)

(∂∗fk(x) +
∑

i∈R(x)\{k}

∂∗fi(x)), ∂∗f(x) =
∑

k∈R(x)

∂∗fk(x)

where R(x) = {i ∈ I | fi(x) = f(x)}.
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3. Star Kernels

It is already known that if f has a kernelled quasidifferential in the sense of the definition
(16) at x, then for any nonempty convex compact set A one has that [∂∗f(x)−A, ∂∗f(x)+

A] ∈ Df(x). This simple fact can be used to explore the case in which [S, S] /∈ Df(x),
i.e., f has no kernelled quasidifferential at x. In this case special structure for sub- and
super-derivatives might be studied. To this end define

S(x) = co{{0},
⋂

Df(x)∈Df(x)

(∂ + ∂)f(x)} (38)

For simplicity S is used instead of S(x) in the rest of this subparagraph. If 0 6 inS, then
S is a umbra of S with respect to the origin. Obviously, one has

(0, 0) ∈ [(∂ + ∂)f(x)− S, (∂ − ∂)f(x) + S] (39)

Note that S 6= ∅ since the second term in the convex hull of (38) is nonempty, see [5]. For
any positive M we define a type of structure on sub- and super-derivatives as follows.

Definition 3.1. Let M > 0,

f ′
M
(x; ·) = inf

Df(x)∈DMf(x)
δ∗(· | (∂ + ∂)f(x)) + δ∗(· | − S) (40)

f
′
M(x; ·) = inf

Df(x)∈DMf(x)
δ∗(· | (∂ − ∂)f(x)) + δ∗(· |S) (41)

where
DMf(x) = {Df(x) ∈ Df(x) | ∂f(x) ∪ ∂f(x) ⊆ B(0,M)}

f ′
M
(x; d) is called the subderivative of f at x in d ith respect to M , f

′
M(x; d) is called the

superderivative of f at x in d with respect to M , in short, f ′
M
(x; ·) the M -subderivative

of f at x and f
′
M(x; ·) the M -superderivative of f at x. Obviously, one has

f ′(x; d) = f ′
M
(x; d)− f

′
M(x; d)

Maybe, the problem on the relationship between limM→∞ f ′
M
(x; ·) and f ′(x; ·), or

limM→∞ f
′
M(x; ·) and f

′
(x; ·) would be quite interesting, we will discuss this issue latter.

Theorem 3.2. f ′
M
(x; ·) and f

′
M(x; ·) are positively homogenous and continuous in direc-

tions.

Proof. Given Df(x) ∈ DMf(x), one has f ′
M
(x; ·) ≥ 0 and f

′
M(x; ·) ≥ 0 because of

(40) and (41). The positive homogenousness of f ′
M
(x; ·) and f

′
M(x; ·) is obvious and we

only need to prove the continuity of them with respect to direction. Now we prove the

continuity of f ′
M
(x; ·) and the continuity property of f

′
M(x; ·) can be demonstrated in a

similar way. For simplicity, we denote M+(Df(x)) = (∂ + ∂)f(x) and M−(Df(x)) =

(∂ − ∂)f(x). Thus f ′
M
(x; ·) can be rewritten as

f ′
M
(x; ·) = inf

Df(x)∈DMf(x)
δ∗(· |M+(Df(x))) + δ∗(· | − S) (42)
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We only need to prove the continuity of the first term, denoted by ξ(·), of the right-hand
side of (42). Given d ∈ Rn, take

Dif(x) ∈ DMf(x), i = 1, 2, . . .

εi > 0, i = 1, 2, . . .

εi ↓ 0, i → ∞

such that

ξ(d) > δ∗(d |M+(Dif(x)))− εi

Thus, for any i, it holds that

f ′
M
(x; d+ q) ≤ δ∗(d+ q |M+(Dif(x)))

and hence

ξ(d+ q)− ξ(d) ≤ δ∗(q |M+(Dif(x))) + εi

Since

δ∗(d |M+(Df(x))) ≤ δ∗(d+ q |M+(Df(x))) + δ∗(−q |M+(Df(x)))

it follows that

ξ(d)− ξ(d+ q) ≤ inf
Df(x)∈DMf(x)

δ∗(d |M+(Df(x)))− inf
Df(x)∈DMf(x)

[δ∗(d |M+(Df(x)))−

−δ∗(−q |M+(Df(x)))]

≤ inf
Df(x)∈DMf(x)

δ∗(d |M+(Df(x)))− inf
Df(x)∈DMf(x)

[δ∗(d |M+(Df(x)))−

− sup
Df(x)∈DMf(x)

‖δ∗(· |M+(Df(x)))‖‖q‖]

≤ sup
Df(x)∈DMf(x)

‖δ∗(· |M+(Df(x)))‖‖q‖

≤ 2M‖q‖

Thus

|ξ(d+ q)− ξ(d)| ≤ max{δ∗(q |M+(Dif(x))) + εi, 2M‖q‖}
≤ 2M‖q‖+ εi

holds for every i ≥ 1 and in turn,

|ξ(d+ q)− ξ(d)| ≤ 2M‖q‖, ∀ q ∈ Rn

which implies the Lipschitz continuity of f ′
M
(x; ·) with respect to direction. The proof is

completed.

Corollary 3.3. f ′
M
(x; ·) and f

′
M(x; ·) are Lipschitz continuous in direction.
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Taking a monotonic sequence {Mi}∞1 ↑ ∞, one obtains a monotonically decreasing se-

quence {f ′
Mi
(x; ·)}∞1 ↓, so does {f ′

Mi
(x; ·)}∞1 ↓. It follows the monotonicity of the se-

quences that the limit limi→∞ f ′
Mi
(x; ·) exists. It is obvious that for any fixed h ∈ Rn,

f ′
Mi
(x;h) ≥ f ′(x;h) for any i and hence one has f ′

Mi
(x;h) > f ′(x;h)−ε for any ε > 0. On

the other hand, for the fixed h and any ε > 0 there exist sequences {M+(Dif(x))− S}∞1
and {Mi > 0}∞1 ↑ ∞, and an i0 such that

[∂i, ∂i]f(x) ∈ DMi
f(x), i ≥ i0 (42)

{δ∗(h | ((∂i + ∂i)f(x)− S)}∞1 ↓ f ′(x;h) (43)

δ∗(h | ((∂i + ∂i)f(x)− S) < f ′(x;h) + ε, i ≥ i0 (44)

Since f ′
Mi
(x;h) ≤ δ∗(h | (∂i + ∂i)f(x)− S), it follows that

f ′
Mi
(x;h) < f ′(x;h) + ε, i ≥ i0 (45)

Therefore, one obtains

|f ′
Mi
(x;h)− f ′(x;h)| < ε, i ≥ i0 (46)

which leads to

lim
M→∞

f ′
M
(x;h) = f ′(x;h), ∀h ∈ Rn (47)

in terms of the monotonicity of f ′
M
(x;h) with respect to M > 0, i.e., F ′

M converges to f ′

in pointwise. The same statement can be used to f
′
M(x;h) and we have

lim
M→∞

f
′
M(x;h) = f

′
(x;h), ∀h ∈ Rn (48)

Summarizing the words given above, we have the following theorem.

Theorem 3.4. f ′
M

and f
′
M converge to f ′ and f

′
with respect to M > 0, respectively.

Theorem 3.4 has pointed out that f ′
M
(x; ·) and f

′
M(x; ·) are continuous for every fixed M .

If f ′
M
(x; ·) (f ′

M(x; ·)) is continuous uniformly to M ∈ [c,∞), c > 0 at a point, say h, then

f ′(x; ·) (f ′
(x; ·)) is continuous at h.

Let Ω be a set of Rn, 0 ∈ Ω, the function | · |Ω be defined by

|x|Ω = inf{λ > 0 |x ∈ λΩ} (49)

(define inf = +∞) is called the (Minkowski) function of set Ω. The following lemma, due
to Rubinov and Yagubov (1986), plays a very important role in the sequel discussion.

Lemma 3.5. Let φ be a function defined on Rn. The following propositions are then
equivalent:

(a) the function φ is positively homogeneous, nonnegative and continuous;

(b) φ coincides with the gauge of a star-shaped set Ω, where Ω = {x |φ(x) ≤ 1}.
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Theorem 3.6. f ′
M
(x; ·) and f

′
M(x; ·) can be expressed as

f ′
M
(x; ·) = | · |ΩM

, f
′
M(x; ·) = | · |ΩM

(50)

where

ΩM = cl
⋃

Df(x)∈DMf(x)

(M+(Df(x))− S)◦, ΩM = cl
⋃

Df(x)∈DMf(x)

(M−(Df(x)) + S)◦ (51)

where polar operation A◦ of A is defined by A◦ = {y ∈ Rn | δ∗(y |A) ≤ 1}.

Proof. We only prove the first equality of (50) and the other equality can be obtained
in a similar way. Obviously, M+(Df(x)) − S is closed and contains the origin for all
Df(x) ∈ Df(x). In consequence, the support function δ∗(· |M+(Df(x))−S) is the gauge
function of (M+(Df(x))− S)◦ in terms of [13], i.e.,

δ∗(· |M+(Df(x))− S) = | · |(M+(Df(x))−S)◦

According to Th. 3.2, f ′
M
(x; ·) is nonnegative, positively homogeneous and continuous

in direction. By virtue of Lemma 3.3 and Proposition 2 of Rubinov & Yagubov (1986),
there exists a star-shaped set ΩM such that

inf
Df(x)∈DMf(x)

| · |(M+(Df(x))−S)◦ = | · |ΩM

where ΩM is defined by (51). This shows that the first equality of (50) is correct. The
proof is completed.

The pair [ΩM ,ΩM ] of sets given in the theorem above is called a star kernel of f at x and

ΩM , ΩM are called sub-star kernel and super-star kernel, respectively. If C1 and C2 is
defined by

⋃

0≤λ≤1

{(1− λ)C1 ∩ λC2} (52)

denoted by C1#C2, see [13] or C1⊕C2, see [15]. The symbols "#" and "⊕" are regarded
as the same in this paper. Since if 0 ∈ C1 ∩ C2, it holds

(C1 + C2)
◦ = C◦

1#C◦
2 (53)

in terms of Rubinov et al. (1986). We have the following corollary.

Corollary 3.7. We have the following equality

ΩM = cl
⋃

Df(x)∈DMf(x)

((M+(Df(x)))◦#S◦) (54)

It is easy to be seen that ΩM1
⊆ ΩM2

(ΩM1 ⊆ ΩM2) if M1 ≤ M2, in other words, ΩM ⊆ ΩM

are monotonically increasing as M is increasing. Note that

M+(Df(x))− S ⊆ SM − S, M−(Df(x)) + S ⊆ SM + S (55)
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for any Df(x) ∈ DMf(x) and M > 0 such that DMf(x) 6= ∅, where

SM =
⋂

Df(x)∈DMf(x)

M+(Df(x)), SM =
⋂

Df(x)∈DMf(x)

M−(Df(x))

Therefore, forM large enough such thatDf(x) 6= ∅, one has that ΩM and ΩM are bounded

above by (S + S)◦ and (S + S)◦, respectively, in the preordering relationship defined by
inclusion relationship.
Let f−1 and f−2 be quasidifferentiable on Rn. Suppose DMf1(x) 6= ∅ and DMf2(x) 6= ∅.
Define

ΩM(f1 + f2)(x) = cl
⋃

Df1(x) ∈ DMf1(x)
Df2(x) ∈ DMf2(x)

((M+(Df1(x) +Df2(x))− S1 − S2)
◦ (56)

where

S1 = co{{0},
⋂

Df1(x)∈Df(x)

M+(Df1(x))} S2 = co{{0},
⋂

Df2(x)∈Df(x)

M+(Df2(x))}

and S(f1(x) and S(f2(x)) are used from time to time instead of S1 and S2 when it is
better to be specified more clearlly. According to the definition (56), one has that

ΩM(f1 + f2)(x) = cl
⋃

Df1(x) ∈ DMf1(x)
Df2(x) ∈ DMf2(x)

(M+(Df1(x))− S1)
◦#(M+(Df2(x))− S2)

◦

= cl
⋃

Df1(x) ∈ DMf1(x)
Df2(x) ∈ DMf2(x)

⋃

0≤α≤1

[(1− α)(M+(Df1(x))− S1)
◦ ∩

∩α(M+(Df2(x))− S2)
◦]

It follows from the definition of ΩM(·) and the operation "#" (or " ⊕ " in the sense of
Rubinov & Yagubov (1986)) that

ΩM(f1 + f2)(x) = ΩM(f1(x))#ΩM(f2(x)) (57)

Likewise, it also can be proved that

ΩM(f1 + f2)(x) = ΩM(f1(x))#ΩM(f2(x)) (58)

For f multiplied bt a scalar, say α ∈ R1, we have that

ΩM(αf)(x) = |α|ΩM((signα)f(x) (59)

where ΩM = [ΩM ,ΩM ], and αΩM is defined by

αΩM =

{

[αΩM , αΩM ], α ≥ 0
[|α|ΩM , |α|ΩM ], α < 0

(60)
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Formulae (57)-(60) can be used to deduce operations ΩM(f1f2),ΩM(f2/f1) and
ΩM(maxi∈I fi(x)), where ΩM is understood as the same as mentioned above. We list some
of these operations without demonstration.

ΩM(f1f2)(x) = f1(x)ΩM(f2(x))#f2(x)ΩM(f1(x)) (61)

ΩM(f1/f2)(x) =
f2(x)ΩM(f1(x))#(−f1(x))ΩM(f2(x))

f 2
2 (x)

, f2(x) 6= 0 (62)

ΩM(max
i∈I

fi(x)) = [
⋂

i∈I(x)

ΩM(fi(x))(
∑

j∈I(x)\{i}

#)ΩM(fj(x)), (
∑

i∈I(x)

#)ΩM(fi(x))] (63)

where I(x) = {i ∈ I | fi = maxj∈I fj(x)}. From the definitions ofDMf(x) andM+(Df(x))
and M−(Df(x)) it follows that the limits

Ω = lim
M→∞

ΩM = lim
M→∞

cl
⋃

Df(x)∈DMf(x)

(M+(Df(x))− S)◦ (64)

Ω = lim
M→∞

ΩM = lim
M→∞

cl
⋃

Df(x)∈DMf(x)

(M−(Df(x)) + S)◦ (65)

exist, where the limit is defined by

lim
M→∞

AM = lim inf
M→∞

AM = lim sup
M→∞

AM (66)

and the definitions of liminf and limsup are defined by the way similar to the ones given
in [14].
Taking the limit to two sides in (57), one has

Ω(f1 + f2)(x) = Ωf1(x)#Ωf2(x) (67)

Likewise one has that
Ω(f1 + f2)(x) = Ωf1(x)#Ωf2(x) (68)

Ω(αf)(x) = |α|(signα)f)(x) (69)

Ω(f1f2)(x) = f1(x)Ω(f2(x))#f2(x)Ω(f1(x)) (70)

Ω(f1/f2)(x) =
f2(x)Ω(f1(x))#(−f1(x))Ω(f2(x))

f 2
2 (x)

(71)

Ω(max
i∈I

fi(x)) = [
⋂

i∈I(x)

Ω(fi(x))(
∑

j∈I(x)\{i}

#)Ω(fj(x)), (
∑

i∈I(x)

#)Ω(fi(x))] (72)

where Ω = [Ω,Ω] and the scalar multiplication is defined by (60).
According to [15], we have the following theorem.

Theorem 3.8. Assume [ΩM ,ΩM ] is a star kernel of f at x, A and B are star shaped
sets. Then f ′(x; ·) can be expressed

f ′(x; ·) = | · |A − | · |B (73)

if and only if
A#ΩM = B#ΩM (74)
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Let f be convex in Rn. If ∂f(x) 6= ∅, then

ΩM = (∂f(x)− S)◦, ΩM = S◦

where S = co{{0}, ∂f(x)} and M > 0 such that ∂f(x) ∈ MB(0, 1). Obviously S is the
umbra of ∂f(x) with respect to the origin. In fact, one has that

∂f(x)− S ⊂ M+(Df(x))− S

S ⊂ M−(Df(x)) + S, ∀Df(x) ∈ Df(x)

and hence
⋃

Df(x)∈Df(x)

(M+(Df(x))− S)◦ ⊂ (∂f(x)− S)◦ = ΩM

⋃

Df(x)∈Df(x)

(M−(Df(x)) + S)◦ ⊂ S◦ = ΩM

Suppose f is concave and ∂0f(x) 6= ∅. It has been proved that S = ∂0f(x) and

[∂0f(x), ∂0f(x)− ∂0f(x)] ∈ Df(x) (75)

and
∂0f(x) ⊂ M+(Df(x)), ∀Df(x) ∈ Df(x) (76)

and hence
∂0f(x)− S ⊂ M+(Df(x))− S

(∂0 − ∂0)f(x) + S ⊂ M−(Df(x)) + S
(77)

Therefore,
⋃

Df(x)∈Df(x)(M
+(Df(x))− S)◦ ⊂ (∂0f(x)− S)◦

⋃

Df(x)∈Df(x)(M
−(Df(x)) + S)◦ ⊂ ((∂0 − ∂0)f(x) + S)◦

(78)

It follows from (78) that for a concave function the sub- and super-star kernells at x could
be given by

ΩM = (∂0f(x)− S)◦, ΩM = ((∂0 − ∂0)f(x) + S)◦ (79)

(where M > 0 satisfying DMf(x) 6= ∅) which are both convex and star-shaped.

4. Star Differentials

It has been seen from the last section that for any Df(x) ∈ Df(x), one has that

(0, 0) ∈ [M+(Df(x))− S,M−(Df(x)) + S] ∈ Df(x) (80)

This leads to considering a special subclass of quasidifferntials that contain the origin in
both subdifferentials and superdifferentials. We denote by D0f(x) this class containing
the origin.

Given a positive scalar M > 0. We might define D0
Mf , f ′

M
, f

′
M , SM(f) and SM(f) as

follows.

D0
Mf(x) = {Df(x) ∈ Df(x) | 0 ∈ ∂f(x) ∩ ∂f(x), ∂f(x) ∪ ∂f(x) ⊆ B(0,M)} (81)
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f ′
M
(x; ·) = inf

Df(x)∈D0
Mf(x)

δ∗(· | ∂f(x)), f
′
M(x; ·) = inf

Df(x)∈D0
Mf(x)

δ∗(· | ∂f(x)) (82)

SM(f(x)) =
⋂

Df(x)∈D0
Mf(x)

∂f(x), SM(f(x)) =
⋂

Df(x)∈D0
Mf(x)

∂f(x) (83)

Similar to the proof of Th. 3.2, we can prove both f ′
M
(x; ·) and f

′
M(x; ·) are nonnegative-

valued, positively homogeneous and continuous. f ′
M
(x; ·) and f

′
M(x; ·) can be expressed

as follows
f ′
M
(x; ·) = | · |ΩM

, f
′
M(x; ·) = | · |ΩM

(84)

where
ΩM = cl

⋃

Df(x)∈D0
Mf(x)

(∂f(x))◦, ΩM = cl
⋃

Df(x)∈D0
Mf(x)

(−∂f(x))◦ (85)

Lemma 4.1. SM(f(x)) ∈ D0
Mf(x) holds iff [SM(f(x)), SM(f(x))] ∈ D0

Mf(x).

Proof. Since SM(f(x)) ∈ D0
Mf(x), there exists a nonempty convex set B ⊂ B such that

[SM(f(x)), N ] ∈ D0
Mf(x). Thus one has

f ′(x; ·) = δ∗(· |SM(f(x)))− δ∗(· | −B)

Since
f ′(x; ·) = f ′

M
(x; ·)− f

′
M(x; ·)

one has, for each Df(x) ∈ D0
Mf(x), that

SM(f(x)) ⊆ ∂f(x), SM(f(x))− ∂f(x) = ∂f(x)−B

which, by Minkowski duality, implies

δ∗(· | − ∂f(x)) ≥ δ∗(· | −B)

and thus B ⊆ ∂f(x) and inturn,

B ⊆
⋂

Df(x)∈D0
Mf(x)

∂f(x)

Thus we have B = SM(f(x)). The proof is completed.

The above lemma implies that if SM(f(x)) ∈ D0
Mf(x) then [SM(f(x)), SM(f(x)] is a

smallest quasidifferential in the set D0
Mf(x).

Corollary 4.2. If SM(f(x)) ∈ D0

Mf(x), then [SM(f(x)), SM(f(x)] is a smallest quasi-
differential in the set D0

Mf(x).

Theorem 4.3. SM(f(x)) ∈ D0
Mf(x) if and only if one of the following conditions holds

(i) For every d ∈ Rn, the following inequalities are valid

SM(f(x))(d)
⋂⋃

∂f(x)∈D0
Mf(x) ∂f(x)(d) 6= ∅

(−SM(f(x)))(d)
⋂⋃

∂f(x)∈D0
Mf(x)

(−∂f(x))(d) 6= ∅
(86)
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where A(d) = ∂δ∗(d |A), A is a nonempty convex compact set of Rn.
(ii) For a set T ⊆ Rn satisfying

⋃

u∈T

N(u, SM(f(x))) = Rn,
⋃

u∈T

N(u, SM(f(x))) = Rn (87)

it follows, for each u ∈ T , that

N(u, SM(f(x))) =
⋃

∂f(x)∈D0
Mf(x)N(u, ∂f(x))

N(u,−SM(f(x))) =
⋃

∂f(x)∈D0
Mf(x)

N(u,−∂f(x))
(88)

Proof. It is easy to be seen that SM(f(x)) ∈ D0
Mf(x) implies either of (86) or (88). We

first demonstrate that if (88) is valid then SM(f(x)) ∈ D0
Mf(x). For any d ∈ Rn there

exist u ∈ SM(f(x))(d) and ∂f(x) ∈ D0
Mf(x) such that u ∈ ∂f(x)(d). Thus

f ′
M
(x; d) ≥ δ∗(d |SM(f(x))) =< u, d >= δ∗(d | ∂f(x)) ≥ f ′

M
(x; d)

Likewise, there exist v ∈ (−SM(f(x)))(d) and ∂f(x) ∈ D0

Mf(x) such that v ∈ (−∂f(x))(d)
and hence

f
′
M(x; d) ≥ δ∗(d | − SM(f(x))) =< v, d >= δ∗(d | − ∂f(x)) ≥ f

′
M(x; d)

The above lines imply that f ′
M
(x; d) = δ∗(d |SM(f(x))) and f

′
M(x; d) = δ∗(d |−SM(f(x))).

In view of the convex compactness of SM(f(x)) and SM(f(x)), one has SM(f(x)) ∈
D0

Mf(x).

We now turn our attention to proving that if (ii) is valid then SM(f(x)) ∈ D0
Mf(x). For

every d ∈ Rn there exists u ∈ T such that d ∈ N(u, SM(f(x))) and from (ii), there exists

∂f(x) ∈ D0
Mf(x) such that d ∈ N(u, ∂f(x)). Then one has

f ′
M
(x; d) ≥ δ∗(d |SM(f(x))) =< u, d >= δ∗(d | ∂f(x)) ≥ f ′

M
(x; d)

Likewise, there exist v ∈ T such that d ∈ N(v,−SM(f(x))) and ∂f(x) ∈ D0

Mf(x) such

that d ∈ N(v,−∂f(x)) and hence

f
′
M(x; d) ≥ δ∗(d | − SM(f(x))) =< v, d >= δ∗(d | − ∂f(x)) ≥ f

′
M(x; d)

Thus we have that f ′
M
(x; d) = δ∗(d |SM(f(x))) and f

′
M(x; d) = δ∗(d | −SM(f(x))). Since

SM(f(x)) and SM(f(x)) are both nonempty convex and compact, one has SM(f(x)) ∈
D0

Mf(x). The proof is completed.

5. Star Differentiable Functions

In this section, a differential of a function at a point, where the function is directionally
differentiable at the point and the directional derivative is continuous in direction, is
investigated based on results due to Rubinov and Yagubov (1986). Suppose f : Rn −→ R1

is directionally differentiable at x and f ′(x; ·) is continuous in direction. Then there exists
a pair of star-shaped sets U and V , (U, V ) such that

f ′(x; d) = |d|U − |d|V , ∀d ∈ Rn (89)
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see Rubinov and Yagubov (1986), where | · |Ω denotes the gauge function of Ω (or with
respect to Ω) and Ω is a star-shaped set inRn. Such a pair may be called a star differential,

in the sense of Rubinov and Yagubov, of f at x, denoted by df(x) = [df(x), df(x)]. It is
not unique similar to the case for quasidifferentiable functions. Some rules for algebraic
operations over functions and corresponding differentials are also given in Rubinov and
Yagubov (1986) that can be listed as follows:
a) The following equalities are valid

d(f1 + f2)(x) = df1(x)#df2(x)

d(f1 + f2)(x) = df1(x)#df2(x)

b) We have the following formula

d(f1f2)(x) = f1(x)¬ df2(x)#f2(x)¬ df1(x)

where d(·) = [d(·), d(·)] and

[A1, B1]#[A2, B2] = [A1#A2, B1#B2] (90)

α[A,B] =







[A/α,B/α], α > 0
[Rn,Rn], α = 0
[B/|α|, A/|α|], α < 0

(91)

c) For star differentiable functions f1, . . . , fm, f = max1≤i≤m fi is also star differentiable
and its star differential df(x) can be expressed as

df(x) = [
m
⋂

k=1

(dfk(x)#(
∑

i6=k

#)dfi(x)), (
m
∑

i=1

#)dfi(x)] (92)

d) If fi, i = 1, . . . ,m are star differentiable at x, then φ(x) = min1≤i≤m fi(x) is also star
differentiable at x, and

dφ(x) = [(
m
∑

i=1

)dfi(x),
m
⋂

k=1

(dfk(x)#(
∑

i6=k

#)dfi(x)] (93)

It is also pointed out that if f is quasidifferentiable at x then

df(x) = (∂f(x))◦, df(x) = (−∂f(x))◦

for [∂f(x), ∂f(x)] ∈ D0f(x), where D0f(x) = {Df(x) ∈ Df(x) | (0, 0) ∈ Df(x)}. If there
exists a pair of star-shaped sets U and V for a function f at point x such that (89) holds,
then the function f might be said to be star differentiable at x. It is to be seen that if f
at x is star differentiable then f ′(x; ·) is continuous in direction.
Let (U1, V1) and (U2, V2) are pairs of star-shaped sets. They are said to be equivalent iff

U1#V2 = U2#V1 (94)

denoted by (U1, V1) ∼ (U2, V2), see [15]. Suppose f is star differentaible at x and let
DSf(x) denote the set of all star differentials of f at x. Then (U1, V1), (U2, V2) ∈ DSf(x)
if and only if

(U1, V1) ∼ (U2, V2) (95)
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Suppose that f is directionally differentiable at x and f ′(x; ·) is continuous in direction.
Define

f ′
+(x; ·) = max{f ′(x; ·), 0}, f ′

−(x; ·) = max{−f ′(x; ·), 0} (96)

then f ′
+(x; ·) and f ′

−(x; ·) are positively homogeneous and nonnegative in direction. Ob-
viously

f ′(x; ·) = f ′
+(x; ·)− f ′

−(x; ·) (97)

Let
Ω+ = {y | f ′

+(x; y) ≤ 1}, Ω− = {y | f ′
−(x; y) ≤ 1} (98)

Theorem 5.1. [Ω+,Ω−] ∈ DSf(x).

Proof. In view of Lemma 3.3 or Th.1 of [15], we have that

f ′
+(x; ·) = | · |Ω+ , f ′

−(x; ·) = | · |Ω−

and f ′(x; ·) = | · |Ω+ − | · |Ω− , i.e., [Ω+,Ω−] ∈ DSf(x). £
It is reasonable to regard [Ω+,Ω−] as the representative of DSf(x). Obviously, it is
determined uniquely. Since (97) is the smallest decopmosition of (89), it follows that the
star differential given by (98) is the smallest (in the sense of anti-inclusion) one of f at
x.

Theorem 5.2. If f is quasidifferentiable at x then [ΩM ,ΩM ] ∈ DSf(x) where [ΩM ,ΩM ]
is defined by (51) or (85), and

ΩM ⊆ Ω+, ΩM ⊆ Ω− (99)

Proof. Since | · |ΩM
≥ f ′(x; ·) and | · |ΩM

≥ −f ′(x; ·), we have | · |ΩM
≥ f ′

+(x; ·) = | · |Ω+

and | · |ΩM
≥ f ′

−(x; ·) = | · |Ω− . In view of the properties of gauge function, we obtain

(99).

6. On Penot Differentials

Assume that f is quasidifferentiable at x, define

∂≥
Mf(x) = {y | < y, z >≤ f ′

M
(x; z), ∀ z ∈ Rn} (100)

∂
≥
Mf(x) = {y | < y, z >≤ f

′
M(x; z), ∀ z ∈ Rn} (101)

where f ′
M

and f
′
M are defined by (40) and (41) or (82). We call ∂≥

Mf(x) and ∂
≥
Mf(x) the

sub-Penot differential of f at x and the super-Penot differential of f at x, respectively.

Lemma 6.1. ∂≥
Mf(x) and ∂

≥
Mf(x) are nonempty convex compact sets containing (0, 0).

Lemma 6.2. δ∗(· | ∂≥
Mf(x)) (δ∗(· | ∂≥

Mf(x))) is the greatest sublinear function majorized

by f ′
M
(x; ·) (f ′

M(x; ·)).

Theorem 6.3. For D0
Mf(x), one has that

∂≥
Mf(x) =

⋂

Df(x)∈D0
Mf(x)

∂f(x), ∂
≥
Mf(x) =

⋂

Df(x)∈D0
Mf(x)

∂f(x) (102)
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Proof. We only prove the first equality of (102). For each Df(x) ∈ D0
Mf(x), one has

δ∗(· | ∂f(x)) ≥ δ∗(· |
⋂

Df(x)∈D0
Mf(x)

∂f(x))

i.e.,

f ′
M
(x; ·) ≥ δ∗(· |

⋂

Df(x)∈D0
Mf(x)

∂f(x))

In view of Lemma 6.2, we have

δ∗(· | ∂≥
Mf(x)) ≥ δ∗(· |

⋂

Df(x)∈D0
Mf(x)

∂f(x))

and by Minkowski duality, one has

∂≥
Mf(x) ⊇

⋂

Df(x)∈D0
Mf(x)

∂f(x)

Since δ∗(· | ∂f(x)) ≥ δ∗(· | ∂≥
Mf(x)) for any Df(x) ∈ D0

Mf(x) we obtain ∂f(x)) ⊇ ∂≥
Mf(x))

for any Df(x) ∈ D0
Mf(x). Thus ∂≥

Mf(x) =
⋂

Df(x)∈D0
Mf(x) ∂f(x). The proof is completed.

Theorem 6.4. For ΩM and ΩM defined by (51) or (85), it holds

coΩM = (∂≥
Mf(x))◦, coΩM = (∂

≥
Mf(x))◦ (103)

Proof. We only prove the first equality of (103) when ΩM is defined by (51) and other
equalities can be demonstrated by a similar way.
Since f ′

M
(x; ·) = | · |ΩM

≥ | · |(∂≥
Mf(x))◦ , we have

ΩM ⊆ (∂≥
Mf(x))◦ (104)

Noting that coΩM is star-shaped and coΩM ⊇ ΩM , one has

| · |coΩM
≤ | · |ΩM

= f ′
M
(x; ·)

In view of Lemma 6.2, one has the following inequalities

δ∗(· | (coΩM)◦) ≤ δ∗(· | ∂≥
Mf(x))

| · |coΩM
≤ δ∗(· | ∂≥

Mf(x)) = | · |(∂≥
Mf(x))◦

Thus coΩM ⊇ (∂≥
Mf(x))◦. Combining this conclusion with (104), we obtain the first

equality of (103).

Defining
∂≥f+(x) = {y | < y, z >≤ f ′

+(x; z), ∀ z ∈ Rn} (105)

∂≥f−(x) = {y | < y, z >≤ f ′
−(x; z), ∀ z ∈ Rn} (106)

df(x) = {y | f ′
+(x; y) ≤ 1}, df(x) = {y | f ′

−(x; y) ≤ 1} (107)

we have the following proposition:
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Proposition 6.5. The following equalities are valid

codf(x) = (∂≥f+(x))
◦, codf(x) = (∂≥f−(x))

◦ (108)

For one dimensional case, a star shaped set is also convex, we have ΩM = (∂≥
Mf(x))◦,

and f ′
M
(x; ·) = δ∗(· | ∂≥

Mf(x)) and f
′
M(x; ·) = δ∗(· | ∂≥

Mf(x)). We obtain the same result

as (12), also see [7].
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[11] D. Pallaschke, R. Urbański: Reduction of quasidifferentials and minimal representations,
Math. Programming, Series A 66 (1994) 161–180.
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