
Journal of Convex Analysis

Volume 10 (2003), No. 2, 437–444

Summability of Solutions of Elliptic and Parabolic
Quasilinear Equations with Measures as Data

Youcef Atik
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1. Introduction

Let Ω a bounded open subset of RN , N ≥ 2. For T > 0, we denoteQ the cylinder Ω×]0, T [.
Also, we denote by M(Ω) (M(Q) respectively) the space of bounded Radon measures in
Ω (Q respectively). We consider an RN valued function Ýa defined in Ω × R × RN or in
Q × R × RN which is of Carathéodory and satisfying, a.e. (x, t) in Q and ∀s ∈ R and
∀ξ, ξ′ ∈ RN , the following:

Ýa(x, s, ξ) · ξ ≥ α0|ξ|p (or Ýa(x, t, s, ξ) · ξ ≥ α0|ξ|p) (1)

|Ýa(x, s, ξ)| ≤ α{|s|p−1 + |ξ|p−1 + a0(x)} (2)

(or |Ýa(x, t, s, ξ)| ≤ α{|s|p−1 + |ξ|p−1 + a0(x, t)})
[Ýa(x, s, ξ)− Ýa(x, s, ξ′)] · [ξ − ξ′] > 0 (3)

(or [Ýa(x, s, t, ξ)− Ýa(x, s, t, ξ′)] · [ξ − ξ′] > 0), ξ 6= ξ′.

Where p is a real number such that 2− 1/N < p < N , in the elliptic case and such that
2 − N/(N + 1) < p, in the parabolic one. Here, as usual, α0 and α are positive real
number. The function a0 is positive and belonging to Lp′(Ω) or to Lp′(Q), p′ = p/(p− 1).

We are interested in the problems:

(E)

{

− div (Ýa(x, u,∇u)) = µ in Ω
u = 0 on ∂Ω,
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and

(P )







u′ − div (Ýa(x, t, u,∇u)) = µ in Q
u = 0 on ∂Ω×]0, T [

u(·, 0) = u0 in Ω,

where µ ∈ M(Ω), in the first problem, and µ ∈ M(Q) and u0 ∈ M(Ω), in the second one.

The Problem (E), see [3], [4] or [10], with the above restrictions on p has a solution u in the
space W 1, q

0 (Ω), ∀q ∈ [1, q0[, where the critical exponent q0 is given by q0 = N(p− 1)/(N − 1).

Also, the Problem (P) has a solution in the space Lq(0, T ;W 1, q
0 (Ω)), ∀q ∈ [1, q̃0[ with q̃0 =

p− N/(N + 1), see [11].

Recently the above regularity results were improved. In fact, in [5], the authors proved that
∇Φ0(u), with Φ0(s) = s/ lnβ(2 + |s|), ∀β > 1/(p − 1), belongs to the limiting space W 1, q0

0 (Ω).
This result was extended to the parabolic case in [6], where it is proved that Φ0(u) belongs to
Lq̃0(0, T ; (W 1, q̃0

0 (Ω)).

The aim of this paper is to prove for elliptic case that Φ(u) ∈ W 1, q0
0 (Ω) and, for the parabolic

one, that Φ(u) ∈ Lq̃0(0, T ;W 1, q̃0
0 (Ω)), where Φ is in a large class of functions, denoted in the

sequel by Fp, containing Φ0 and functions increasing more rapidly than Φ0 near infinity, this is
in the sense that lim

t→∞
Φ0(t)/ΦA(t) = 0, see Section 2.

The rest of this paper will contains three sections. In the first of them, we presents the class
Fp, its relevant properties and give some important examples of function belonging to it. The
others two will be devoted to the elliptic and parabolic Problems (E) and (P ).

In this paper, the term “solution” means weak solution or solution in the sense of distributions.

Before giving our results, it seems of interest to make some remarks.

Remark 1.1. If the right-hand side member µ is in the Orlicz space L lnL(Ω), then the Problem
(E) has a solution in the limiting space W 1, q0

0 (Ω), see [4].

Remark 1.2. The Problem (E), considered in the framework of Orlicz spaces, with the follow-
ing coerciveness condition:

â(x, s, ξ) · ξ ≥ α0B(|ξ|/δ), α0 > 0, δ > 0,

where B is an N-function such that
∫∞
d

tp−1

B(t) dt < +∞ (d > 0), has a solution in the limiting

space W 1, q0
0 (Ω). Note that the previous condition, which is more restrictive than (1), is not

satisfied in the case of the p-Laplacian, see [2].

Remark 1.3. For p ∈ ]1, 2 − 1/N ], the framework of Sobolev spaces is too narrow to contain
the solution of (E). To overcome this difficulty, it is necessary to extend the framework and the
notion of solution, see [1], [12].

2. The class Fp

Definition 2.1. Let p > 1 a real number. The class Fp consists of odd functions of the form

ΦA(t) =
[

∫ t

0

dτ

{A(τ)}1/p
]p′

, t ≥ 0, p′ =
p

p− 1
, (4)
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where A is an even function, continuous in R, positive on ]0,+∞[, and satisfies the properties:

(a)
∫ +∞
d

dt
A(t) < +∞, for some d > 0.

(b) lim
t→+∞

A(t)
t = +∞.

(c) A has the following property of monotony: there exist two numbers β > 0 and t0 ≥ 0 such
that A(t2) ≥ βA(t1), ∀t1, t2 with t2 > t1 ≥ t0.

(d) If A(0) = 0, it is also assumed that there exists a constant C > 0 such that A(t) ≥ C|t|,
∀t ∈ R and Φ′

A(0) is finite.

Proposition 2.2. Let ΦA ∈ Fp. Then

1. ΦA is solution of the differential equation

A(t)[Φ′
A(t)]

p = (p′)p|ΦA(t)|, ∀t ∈ R. (5)

2. There exists a constant K > 0 such that |ΦA(t)| ≤ K|t|, ∀t ∈ R.

3. ΦA is globally Lipschitzian on R.

Proof. Deriving the relation (4), we get

Φ′
A(t) =

p′

[A(t)]1/p

[

∫ t

0

dτ

{A(τ)}1/p
]p′−1

= p′
[ΦA(t)

A(t)

]1/p
, t > 0

which implies the Equation (5).

For A(0) 6= 0, using Hölder inequality, we have ΦA(t) ≤ t[
∫ t
0

dτ
A(τ) ]

p′/p, t ≥ 0. Thus, by symmetry,

|ΦA(t)| ≤ K|t|, ∀t ∈ R, with K
.
= (

∫∞
0

dτ
A(τ))

p′/p.

If A(0) = 0, we use the Condition (d) to get |ΦA(t)| ≤ [
∫ t
0

dτ
(Cτ)1/p

]p
′
= (p′)p

′

Cp′/p t for t ≥ 0, which

gives the same estimate.

To prove that the function ΦA is globally Lipschitian, it suffices to write

|Φ′
A(t)| = p′

∣

∣

∣

ΦA(t)

A(t)

∣

∣

∣

1/p
≤ p′K1/p

∣

∣

∣

t

A(t)

∣

∣

∣

1/p
≤ C ′, ∀t ∈ R,

where K and C ′ are positive constants.

2.1. Examples of functions in Fp

It is easy to see that ΦA(t) = ln2(t+
√
t2 + 1) (t ≥ 0), the function determined by A(t) = t2+1,

is in F2. Also, it is easy to check that the function ΦA determined by A(t) = t for 0 ≤ t ≤ 1
and A(t) = tα for t ≥ 1, with 1 < α < p, is in Fp. Here ΦA is equivalent at infinity to the
function Ct(p−α)/(p−1). The previous functions do not give any improvement for the smoothness
of solution given in [3].

Let us now present some important examples which improve the smoothness of the solution.
But, due to the difficulty to calculate the integrals involved, instead of giving the function A
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and then determine ΦA, we mention merely the functions ΦA, where the index A is replaced by
an numerical one.

The case studied by Boccardo-Gallouët corresponds to the function Φ0 defined, for t ≥ 0, by
Φ0(t) = t/[lnα(κ0 + t)]1/(p−1), with κ0 = 2 and α > 1 a real number.

This last example is the weakest one of the family {Φm}m∈N where Φm is the function defined
for t ≥ 0 by Φm(t) = t/Dm(t) with

Dm(t) =
[

ln(κm + t) ln(ln(κm + t)) · · · ln(ln · · · ln
︸ ︷︷ ︸

m times

(κm + t)) lnα(ln · · · ln
︸ ︷︷ ︸

m+1 times

(κm + t))
] 1

p−1
,

where α > 1 and κm is chosen greater enough to have ln(ln · · · ln
︸ ︷︷ ︸

m+1 times

(κm)) > 0. By direct calculation,

one can see that the function Φm is in Fp, ∀m ∈ N. The function Am associated to Φm is
equivalent at the infinity to the function

Ct ln(κm + t) ln(ln(κm + t)) · · · ln(ln · · · ln
︸ ︷︷ ︸

m times

(κm + t)) lnα(ln · · · ln
︸ ︷︷ ︸

m+1 times

(κm + t)), C = const.

Notice that lim
t→∞

Φi(t)/Φj(t) = 0, ∀i < j.

3. Summability of solution of Problem (E)

Theorem 3.1. If Conditions (1–3) are satisfied, for 2 − 1/N < p < N , the Problem (E)
has a solution u such that

ΦA(u) ∈ Lq?0 (Ω) and ∇ΦA(u) ∈ Lq0(Ω), ∀ΦA ∈ Fp,

where q0 = N(p− 1)/(N − 1) and q?0 = Nq0/(N − q0), the Sobolev exponent of q0.

Proof. The proof needs four steps.

Step 1: Approximation. We replace the given Problem (E) by the family of approximate
ones:

(Ek)

{

−div (â(x, uk,∇uk)) = µk in Ω
uk = 0 on ∂Ω

where {µk}∞k=1 is a sequence of function in L∞(Ω) converging to µ in the weak-? topology of
M(Ω) and there exists a positive constant C0 such that ‖µk‖L1(Ω) ≤ C0, ∀k ≥ 1. The classical
theory of monotone operators, see [7], shows that the problem (Ek) admits a solution in the
space W 1, p

0 (Ω).

Step 2: Uniform estimates on {∇uk}∞k=1.

Lemma 3.2. Let A a function satisfying Conditions (a)–(d) of Definition 2.1. Then,
there exists a constant C1 > 0 such that

∫

{|uk|≥n0}

|∇uk|p

A(uk)
dx ≤ C1, ∀k ≥ 1, (6)

where {|uk| ≥ n0}
.
= {x ∈ Ω | |uk(x)| ≥ n0} and n0 = [t0] + 1, [t0] being the integral part of

t0.
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Proof of Lemma 3.2. For n ∈ N, let ϕn be the real function defined on R by ϕn(s) =
min{(|s| − n)+, 1}sign s, the superscript “+” stands for positive part, and put Bn = {n ≤
|uk| < n + 1}· Taking ϕn(uk) as a test function in the variational formulation of Problem
(Ek), using Condition (1), and noticing that |ϕn| ≤ 1 and its derivative equals one on the set
[−n− 1,−n] ∪ [n, n+ 1] and zero elsewhere, we get:

α0

∫

Bn

|∇uk|p dx ≤
∫

Ω
|µk| dx ≤ C0.

Putting now n0 = [t0] + 1 and using the monotony Condition (c), we can write

∫

{|uk|≥n0}

|∇uk|p

A(uk)
dx =

∑

n≥n0

∫

Bn

|∇uk|p

A(uk)
dx

≤
∑

n≥n0

∫

Bn

|∇uk|p

βA(n)
dx ≤ C0

α0β

∑

n≥n0

1

A(n)
.
= C1.

The convergence of this last series is a consequence of Conditions (a) and (c).

In the remainder of this paper, we denote by Ci, i = 2, . . ., various positive constants.

Step 3: Uniform estimates on {ΦA(uk)}∞k=1 and {∇ΦA(uk)}∞k=1. Using Sobolev inequality,
we can write

Cq0
Ω

(

∫

Ω
|ΦA(uk)|q

?
0 dx

)q0/q?0 ≤
∫

Ω
|∇ΦA(uk)|q0 dx

=

∫

Ω
|Φ′

A(uk)|q0 |∇uk|q0 dx = I1k + I2k ,

where

I1k =

∫

{|uk|<n0}
|Φ′

A(uk)|q0 |∇uk|q0 dx and I2k =

∫

{|uk|≥n0}
|Φ′

A(uk)|q0 |∇uk|q0 dx.

Here C−1
Ω stands for a Sobolev constant. Ω being bounded, the estimate of the term

∫

Bn
|∇uk|p dx

seen in the proof of Lemma 3.2, the fact that q0 < p, and the boundedness of the derivative of
Φ′
A, permit us to show that the sequence {I1k}∞k=1 is bounded by a positive constant C2.

To estimate the term I2k , we use Hölder inequality, Lemma 3.2, and Equation (5) to write:

I2k =

∫

{|uk|≥n0}

|∇uk|q0
A(uk)q0/p

|Φ′
A(uk)|q0A(uk)q0/p dx

≤
[

∫

{|uk|≥n0}

|∇uk|p

A(uk)
dx

]
q0
p
[

∫

{|uk|≥n0}
|Φ′

A(uk)|
pq0
p−q0 A(uk)

q0
p−q0 dx

]1− q0
p

≤ C3

[

∫

{|uk|≥n0}
|ΦA(uk)|

q0
p−q0 dx

]1− q0
p ≤ C3

[

∫

Ω
|ΦA(uk)|

q0
p−q0 dx

]1− q0
p
.

Now, using the above estimates, we get

(

∫

Ω
|ΦA(uk)|q

?
0 dx

)q0/q?0 ≤ C4 + C5

[

∫

Ω
|ΦA(uk)|q

?
0 dx

]1− q0
p
, ∀k ∈ N?.
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Finally, because q0
q?0

= p− q0 >
p−q0
p = 1− q0

p
, we deduce that

∫

Ω
|ΦA(uk)|q

?
0 dx ≤ C6 and

∫

Ω
|∇ΦA(uk)|q0 dx ≤ C7, ∀k ∈ N?. (7)

Step 4: Passage to the limit. To this end, we use a pointwise compactness result (see [4]
or [10]) on the sequence {uk}∞k=1 of approximate solutions and their gradients to construct a

function u inW 1, q
0 (Ω), ∀q ∈ [1, q0[, solution of Problem (E). Using this convergence, we can make

k goes to infinity in the estimate (7) to conclude that ΦA(u) ∈ Lq?0 (Ω) and ∇ΦA(u) ∈ Lq0(Ω).

Remark 3.3. For p = N , we have only u ∈ W 1, q
0 (Ω), ∀q ∈ [1, N [. The smoothness result

ΦA(u) ∈ W 1, q0
0 (Ω) is not true here for all ΦA in FN . In fact, for p = N = 2, denoting by U

the unit Euclidian ball of R2, it is easily seen that the function u(x, y) = − 1
2π ln

√

x2 + y2 is
solution of −∆u = δ in U with u = 0 on ∂U , δ is the Dirac distribution supported by the origin,
and that Φ0(u) = u/ lnβ(2 + |u|) (β > 1), is not in H1

0 (U) = W 1, 2
0 (U).

4. Summability of solution of Problem (P )

Our approach to the parabolic Problem (P ), will follows the one of Feng-Quan and Guang-
Wei [6]; we will merely replace the function Φ0 by a more general one ΦA belonging to the class
Fp.

Theorem 4.1. If Conditions (1–3) are satisfied, for 2 − 1/(N + 1) < p, the Problem (P )
has a solution u such that

ΦA(u) ∈ Lq̃0(0, T ;W 1,q̃0
0 (Ω)), ∀ΦA ∈ Fp,

where q̃0 = p−N/(N + 1).

Proof. As in the elliptic case, the proof needs, here also, four steps.

Step 1: Approximation. The given problem is replaced by a family of approximate ones:

(Pk)







u′k − div (â(x, t, uk,∇uk)) = µk in Q
uk = 0 on ∂Ω×]0, T [

uk(·, 0) = u0k in Ω,

where {µk}∞k=1 ({u0k}∞k=1) is a sequence of function in L∞(Q) (L∞(Ω)) converging to µ (µ0)
in the weak-? topology of M(Q) (M(Ω)) and there exists a positive constant C0 such that
‖µk‖L1(Q) ≤ C0 (‖u0k‖L1(Ω) ≤ C0), ∀k ≥ 1 (respectively). The existence of a weak solution
uk to the Problem (Pk) is guaranteed by classical results, see [8]. This solution is in the space
Lp(0, T ;W 1, p

0 (Ω)) ∩ C([0, T ];L2(Ω)).

Step 2: Uniform estimates on {uk}∞k=1.

Lemma 4.2. Let A a function satisfying Conditions (a)–(d) of Definition 2.1. Then,
there exists a constant C > 0 such that

∫

Bn

|∇uk|p dxdt ≤ C,∀k ≥ 1, Bn = {(x, t) ∈ Q | n ≤ |uk(x, t)| < n+ 1}; (8)

∫

{|uk|≥n0}

|∇uk|p

A(uk)
dxdt ≤ C, ∀k ≥ 1; (9)

‖uk‖L∞(0,T ;L1(Ω)) ≤ C, ∀k ≥ 1; (10)

‖ΦA(uk)‖L∞(0,T ;L1(Ω)) ≤ C, ∀k ≥ 1. (11)
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Proof of Lemma 4.2. To prove the Estimate (8), we take ϕn(uk), ϕn being the real function
used above in the elliptic case, as a test function in the variational formulation of Problem (Pk).
Integrating by parts the term containing the time derivative, using the Condition (1) and the
boundedness of {µk}∞k=1 in L1(Q) and of {u0k}∞k=1 in L1(Ω), we get the result.

The Estimate (9) can be proved in the same way as in the proof of Lemma 3.2.

The proof of Estimate (10) can be performed in a classical way by taking, for τ ∈ ]0, T ], as test
function ψ = T1(uk)χ]0,τ [ with T1(t) =

1
2{|t + 1| − |t − 1|} (t ∈ R) and χ]0,τ [ the characteristic

function of the open interval ]0, τ [, and then use an integration by parts formula.

The Estimate (11) is a consequence of the Estimate (10) and the fact that |ΦA(t)| ≤ K|t|,
∀t ∈ R.

Step 3: Uniform estimates on {∇ΦA(uk)}∞k=1. We have

∫

Q
|∇ΦA(uk)|q̃0 dxdt =

∫

Q
|Φ′

A(uk)|q̃0 |∇uk|q̃0 dxdt = J1
k + J2

k ,

where

J1
k =

∫

{|uk|<n0}
|Φ′

A(uk)|q̃0 |∇uk|q̃0 dxdt and J2
k =

∫

{|uk|≥n0}
|Φ′

A(uk)|q̃0 |∇uk|q̃0 dxdt.

To see the boundedness of sequence {J1
k}∞k=1, we note first that q̃0 < p, then use the Estimate (8),

and boundedness of the derivative Φ′
A.

To estimate the term J2
k , we use Hölder inequality, Lemma 4.2, and Equation (5) to write:

J2
k =

∫

{|uk|≥n0}

|∇uk|q̃0
A(uk)q̃0/p

|Φ′
A(uk)|q̃0A(uk)q̃0/p dxdt

≤
[

∫

{|uk|≥n0}

|∇uk|p

A(uk)
dxdt

]
q̃0
p
[

∫

{|uk|≥n0}
|Φ′

A(uk)|
pq̃0
p−q̃0 A(uk)

q̃0
p−q̃0 dxdt

]1− q̃0
p

≤ C1

[

∫

{|uk|≥n0}
|ΦA(uk)|

q̃0
p−q̃0 dxdt

]1− q̃0
p ≤ C3

[

∫

Q
|ΦA(uk)|

q̃0
p−q̃0 dxdt

]1− q̃0
p
.

Thus, we have

∫

Q
|∇ΦA(uk)|q̃0 dxdt ≤ C0 + C1

[

∫ T

0
‖ΦA(uk(t))‖

q̃0/(p−q̃0)

Lq̃0/(p−q̃0)(Ω)
dt
]1− q̃0

p
. (12)

Now, using Gagliardo-Nirenberg embedding theorem (see [9] or [6]), we can write

‖ΦA(uk(t))‖Lq̃0/(p−q̃0)(Ω) ≤ C2‖∇ΦA(uk(t))‖p−q̃0
Lq̃0 (Ω)

‖ΦA(uk(t))‖p−q̃0
L1(Ω)

, a.e. t ∈ ]0, T [.

This, with Estimates (12) and (11), allow us to write

∫

Q
|∇ΦA(uk)|q̃0 dxdt ≤ C0 + C3

(

∫

Q
|∇ΦA(uk)|q̃0 dxdt

)1− q̃0
p
.

As 0 < q̃0
p < 1, the above estimate implies the existence of a constant C4 > 0 such that

∫

Q
|∇ΦA(uk)|q̃0 dxdt ≤ C4, ∀k ≥ 1.
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Now, the application of Poincaré inequality gives

∫ T

0
‖ΦA(uk)‖q̃0

W
1, q̃0
0 (Ω)

dt ≤ C5,∀k ≥ 1. (13)

Step 4: Passage to the limit. As in the elliptic case, we use a pointwise compactness result
(see [11]) on the sequence {uk}∞k=1 of approximate solutions and their gradients to construct a

function u in Lq(0, T ;W 1, q
0 (Ω)), ∀q ∈ [1, q̃0[, solution of Problem (P ). Using this convergence, we

can make k goes to infinity in the Estimate (13) to conclude that ΦA(u) ∈ Lq̃0(0, T ;W 1, q̃0
0 (Ω)).
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