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In this paper, we give a result of summability of solution of elliptic and parabolic boundary and initial-
boundary value problems associated with an operator of Leray-Lions type when the right-hand side and
the initial condition are two bounded Radon measures. This work generalizes the results of papers by
Boccardo-Gallouét [5] and Li Feng-Quan & Li Guang-Wei [6].
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1. Introduction

Let 2 a bounded open subset of RV, N > 2. For T' > 0, we denote Q the cylinder 2x]0, 7.
Also, we denote by M(Q) (M(Q) respectively) the space of bounded Radon measures in
Q (Q respectively). We consider an RY valued function @ defined in 2 x R x RY or in
Q x R x RY which is of Carathéodory and satisfying, a.e. (x,t) in Q and Vs € R and
VE € e RY, the following:

a(x,s,8) - &= al€l” (o afw,t,s,8) - & = aolE]’) (1)
(@, s, )] < afls|"™" + €77 + ao(2)} (2)
(or Ja(z,t,5,6)] < af[s|”™" + [€]7"" +ao(x,1)})

[a(z,5,§) — a(z,s,8)] - [€ = €]>0 (3)

(or [a(x,s,t,8) —afw,s,t,8)] - [ =&]>0), £#E

Where p is a real number such that 2 — 1/N < p < N, in the elliptic case and such that
2 — N/(N 4+ 1) < p, in the parabolic one. Here, as usual, oy and « are positive real
number. The function aq is positive and belonging to L (Q2) or to L* (Q), p' = p/(p — 1).

We are interested in the problems:

—div (a(z,u, Vu)) = in
(E) { u = l(; on 0f,
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and

u — div(a(x,t,u,Vu)) = p in Q
(P) u = 0 on 00x]0,T]
u(-,0) = wy in Q,

where ;1 € M (), in the first problem, and p € M(Q) and uy € M(£2), in the second one.

The Problem (E), see [3], [4] or [10], with the above restrictions on p has a solution u in the
space Wol’q(Q), Vq € [1, qo[, where the critical exponent qq is given by go = N(p — 1)/(N — 1).

Also, the Problem (P) has a solution in the space L9(0,T; Wol’q(Q)), Vg € [1,qo[ with gy =
p— N/(N +1), see [11].

Recently the above regularity results were improved. In fact, in [5], the authors proved that
V& (u), with ®g(s) = s/In?(2 4 |s|), V8 > 1/(p — 1), belongs to the limiting space Wol’qO(Q).
This result was extended to the parabolic case in [6], where it is proved that ®q(u) belongs to
L (0, T5 (Wy *(92)).

The aim of this paper is to prove for elliptic case that ®(u) € VVO1 () and, for the parabolic

one, that ®(u) € L%(0,T; W()l’qo(Q)), where @ is in a large class of functions, denoted in the
sequel by F,, containing ®p and functions increasing more rapidly than ®y near infinity, this is
in the sense that tlim Do(t)/Pa(t) =0, see Section 2.

—00

The rest of this paper will contains three sections. In the first of them, we presents the class
Fp, its relevant properties and give some important examples of function belonging to it. The
others two will be devoted to the elliptic and parabolic Problems (E) and (P).

In this paper, the term “solution” means weak solution or solution in the sense of distributions.

Before giving our results, it seems of interest to make some remarks.

Remark 1.1. If the right-hand side member 4 is in the Orlicz space L In L(€2), then the Problem
(E) has a solution in the limiting space WO1 10(0)), see [4].

Remark 1.2. The Problem (F), considered in the framework of Orlicz spaces, with the follow-
ing coerciveness condition:

&(xﬂsvf) ! g > OZOB(|£|/5), ag > 0, 6> 0,

where B is an N-function such that | doo % dt < 400 (d > 0), has a solution in the limiting

space WO1 0(Q). Note that the previous condition, which is more restrictive than (1), is not
satisfied in the case of the p-Laplacian, see [2].

Remark 1.3. For p €]1,2 — 1/N], the framework of Sobolev spaces is too narrow to contain
the solution of (F). To overcome this difficulty, it is necessary to extend the framework and the
notion of solution, see [1], [12].

2. The class F,
Definition 2.1. Let p > 1 a real number. The class F,, consists of odd functions of the form

(I)A(t):[/otJm(i;}l/ij/’tZO’ p/:pfl, (4)
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where A is an even function, continuous in R, positive on |0, +oo[, and satisfies the properties:

(a) joo “Et) < 400, for some d > 0.

(b)  lim A% = jo0,

t—-4o0

(¢) A has the following property of monotony: there exist two numbers 5 > 0 and o > 0 such
that A(tg) > ﬂA(tl), Vi1, to with to > t1 > tg.

(d) If A(0) =0, it is also assumed that there exists a constant C' > 0 such that A(t) > C|¢|,
vVt € R and ®/,(0) is finite.

Proposition 2.2. Let ®4 € F,. Then
1. D4 is solution of the differential equation
AR = ()P|Pa(t)], VteR. (5)

2. There exists a constant K > 0 such that |P4(t)] < K|t|, Vt € R.

3. D4 is globally Lipschitzian on R.

Proof. Deriving the relation (4), we get

Py (t) = [A(f)/]yp [/0 {A(f_;}l/p]pll = p,[iﬁg)r/p, t>0

which implies the Equation (5).

For A(0) # 0, using Hélder inequality, we have ® 4(t) < t[; t _dr [P'/P_t > 0. Thus, by symmetry,

0 A(7)]
[Pa(t)] < KJt], Vt € R, with K = ([ A75)7/7.

If A(0) = 0, we use the Condition (d) to get [P (t)] < [fot (Cf)rl/p]p/ — (Cp)/pt for ¢ > 0, which

gives the same estimate.

To prove that the function ® 4 is globally Lipschitian, it suffices to write

15" vl

where K and C’ are positive constants.

@4 (1) = < (', VtER,

2.1. Examples of functions in F,

It is easy to see that ®4(t) = In?(t 4+ /12 + 1) (t > 0), the function determined by A(t) = t>+1,
is in Fo. Also, it is easy to check that the function ®4 determined by A(t) = ¢ for 0 < ¢t < 1
and A(t) = t* for t > 1, with 1 < a < p, is in F,. Here ®4 is equivalent at infinity to the
function Ct(P—®)/(P=1)  The previous functions do not give any improvement for the smoothness
of solution given in [3].

Let us now present some important examples which improve the smoothness of the solution.
But, due to the difficulty to calculate the integrals involved, instead of giving the function A
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and then determine ® 4, we mention merely the functions ® 4, where the index A is replaced by
an numerical one.

The case studied by Boccardo-Gallouét corresponds to the function ®¢ defined, for ¢ > 0, by
Do(t) = t/[In%(ko + t)]"/®=Y, with kg = 2 and « > 1 a real number.

This last example is the weakest one of the family {®,,}men where ®,, is the function defined
for t > 0 by ®,,,(t) =t/ D, (t) with

1

Dy, (t) = |In(km + t) In(In(kpy + 1)) - - In(In- - - In(Kp, + ¢)) In*(In - - - In(Ky, + t)) Pt ,

m times m-+1 times

where @ > 1 and Ky, is chosen greater enough to have In(In - - - In(k,,)) > 0. By direct calculation,
—_———

m+1 times
one can see that the function ®,, is in F,, Vm € N. The function A,, associated to ®,, is
equivalent at the infinity to the function

Ctln(km +t) In(In(kp, +¢)) -+ - In(In- - - In(kpm +t)) In“(In - - - In(ky, +t)), C = const.
—_——— —_—————

m times m+1 times

Notice that tlim Q;(t)/®;(t) =0, Vi < j.

3. Summability of solution of Problem (F)

Theorem 3.1. If Conditions (1-3) are satisfied, for 2—1/N < p < N, the Problem (E)
has a solution u such that

Da(u) € LU(Q) and Vda(u) € LY(Q), VO, € Fp,

where gqo = N(p—1)/(N —1) and ¢ = Nqo/(N — qo), the Sobolev exponent of qo.

Proof. The proof needs four steps.

Step 1: Approximation. We replace the given Problem (E) by the family of approximate
ones:

(Ep) {—diV(&(w,uk,Vuk)) — u in Q

u, = 0 on 90N

where {1}, is a sequence of function in L>(2) converging to p in the weak-x topology of
M (2) and there exists a positive constant Cp such that [|uxl[z1 ) < Co, Vk > 1. The classical
theory of monotone operators, see [7], shows that the problem (Ej) admits a solution in the
space W' P(Q).

Step 2: Uniform estimates on {Vu;}7°,.

Lemma 3.2. Let A a function satisfying Conditions (a)—(d) of Definition 2.1. Then,
there exists a constant C7 > 0 such that

p
Vurl” b < o ks 1, (6)
A
{luxl>no} Alur)

where {Jug| > no} = {x € Q| |ug(z)| > no} and ng = [to] + 1, [to] being the integral part of
to.
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Proof of Lemma 3.2. For n € N, let ¢, be the real function defined on R by ¢,(s) =
min{(|s| — n)™, 1}signs, the superscript “+” stands for positive part, and put B, = {n <
|lug] < m 4+ 1} Taking ¢, (ug) as a test function in the variational formulation of Problem
(E)), using Condition (1), and noticing that |¢,| < 1 and its derivative equals one on the set
[-n —1,—n] U [n,n + 1] and zero elsewhere, we get:

ao/ |Vuk|pd$§/|,uk|d$§00.
B Q

Putting now ng = [to] + 1 and using the monotony Condition (c), we can write

|Vu|P / |Vuk:|p
dr =
/{|uk|2n0} Aug) 2

n>ng

|Vuk|p Co
< X A S mp X A

n>ng

The convergence of this last series is a consequence of Conditions (a) and (c).
In the remainder of this paper, we denote by C;, ¢ = 2,.. ., various positive constants.

Step 3: Uniform estimates on {®4(ux)}72, and {V®4(ug)}32,. Using Sobolev inequality,
we can write

)qo/qS

o7 (/ @ 4 (uy,)|% dr / IV 4 (ug)|© da
Q Q

= [ @)V do = 1+ 12
Q
where

I = / |y (up) || Vuy|® dw and  If = / | () | [ Vg | da.
{lu|<no} {

|ug|>n0}

Here Cg,' stands for a Sobolev constant. 2 being bounded, the estimate of the term [ B, |VuglP dx
seen in the proof of Lemma 3.2, the fact that gy < p, and the boundedness of the derivative of
®’,, permit us to show that the sequence {I ,1}20:1 is bounded by a positive constant Cs.

To estimate the term I2, we use Holder inequality, Lemma 3.2, and Equation (5) to write:

Vuk|
12 — / ‘7 P (1) A q0/p da
' {lu|>no} A(uk)QO/p‘ ( k)| ( k)

P k() Pq a 1-%
< [/ [V ]’ {/ () 750 A )75 ]
{ugl=not Aluk) {Jux|>n0}

q0 q0

_4q0 1= _40 >
e / [a(m)[70 da] 7 < 0y / ) 75 ] 7
{luk|>no} Q

IN

Now, using the above estimates, we get

_%0

N /45 "
( / Ba(w)® )" < / [aCm)fBdz] 7 v €N
Q Q
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Finally, because Z—g =p—qo>"L _pqo =1- %07 we deduce that

/ |® 4 (ug)|% dz < O and / |V® 4 (ug)|? do < Cr, Yk € N*. (7)
Q Q

Step 4: Passage to the limit. To this end, we use a pointwise compactness result (see [4]
or [10]) on the sequence {uy}7°, of approximate solutions and their gradients to construct a

function u in W, 9(2), Yq € [1, gol, solution of Problem (E). Using this convergence, we can make
k goes to infinity in the estimate (7) to conclude that ®4(u) € L% () and V® 4(u) € LO(1Q).

Remark 3.3. For p = N, we have only u € Wol’q(Q), Vg € [1,N[. The smoothness result
Dy(u) € Wol’qo () is not true here for all &4 in Fy. In fact, for p = N = 2, denoting by U

the unit Euclidian ball of R?, it is easily seen that the function w(x,y) = —% In /22 +9y? is
solution of —Awu = ¢ in U with u = 0 on dU, § is the Dirac distribution supported by the origin,
and that ®g(u) = u/?(2 + |u|) (8 > 1), is not in H(U) = W, > (U).

4. Summability of solution of Problem (P)

Our approach to the parabolic Problem (P), will follows the one of Feng-Quan and Guang-
Wei [6]; we will merely replace the function ®y by a more general one ® 4 belonging to the class
Fp-

Theorem 4.1. If Conditions (1-3) are satisfied, for 2 —1/(N + 1) < p, the Problem (P)
has a solution u such that

®4(u) € LO(0, T; Wy (), Vb4 € Fp,
where §o =p— N/(N +1).

Proof. As in the elliptic case, the proof needs, here also, four steps.

Step 1: Approximation. The given problem is replaced by a family of approximate ones:

up, — div (a(x, t,ug, Vug)) = .  in Q
(Pr) u, = 0 on 90x]0,T]
ug(-,0) = wop in  Q,

where {;}72, ({uor}3e,) is a sequence of function in L*°(Q) (L*°(€2)) converging to u (o)
in the weak-x topology of M(Q) (M(2)) and there exists a positive constant Cp such that
el @) < Co (lluokllzi@) < Co), Yk > 1 (respectively). The existence of a weak solution
uy, to the Problem (Py) is guaranteed by classical results, see [8]. This solution is in the space
LP(0,T; W, P () N C([0, T]; L2(5)).

Step 2: Uniform estimates on {u;}7° ;.

Lemma 4.2. Let A a function satisfying Conditions (a)—(d) of Definition 2.1. Then,
there exists a constant C > 0 such that

/ |Vug|P dedt < C,)Vk >1, By, ={(z,t) €Q|n < |ug(z,t)| <n+1}; (8)
p

/ Vurl® et < 0, vk s 1. (9)
{Jup|>no} Alur)

[kl Lo (0,1 () < C5 VE > 15 (10)

[P a(ur)l| oo o,rs0 () < Cs VEk > 1. (11)
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Proof of Lemma 4.2. To prove the Estimate (8), we take ¢, (ug), ¢, being the real function
used above in the elliptic case, as a test function in the variational formulation of Problem (Py).
Integrating by parts the term containing the time derivative, using the Condition (1) and the
boundedness of {y}32; in L'(Q) and of {ugx}2, in L}(Q), we get the result.

The Estimate (9) can be proved in the same way as in the proof of Lemma 3.2.

The proof of Estimate (10) can be performed in a classical way by taking, for 7 €]0, 77, as test
function ¢ = T1(ug)xqo,- With T1(t) = H{jt+1— |t —1[} (t € R) and X]o,+| the characteristic
function of the open interval |0, 7[, and then use an integration by parts formula.

The Estimate (11) is a consequence of the Estimate (10) and the fact that |®4(t)] < K¢,
vt € R.

Step 3: Uniform estimates on {V®4(uz)}72,. We have
/Q|V<I>A(uk)\% dodt = /Q\fl);‘(uk)|q°|Vuk]‘70 dadt = J}, + J¢,

where

J,ﬁ:/ D, (ug,)| % | Vug, | dedt and J,?:/ @, (ug,) || Vug, | dadt.
{Jux|<no} {

|ug|>no}

To see the boundedness of sequence {J}}2° |, we note first that o < p, then use the Estimate (8),
and boundedness of the derivative ®’,.

To estimate the term J?, we use Hélder inequality, Lemma 4.2, and Equation (5) to write:

VUM% ~ )
J2 = / ‘7~|(I)/ (uk)|q0A(uk)q0/p dl’dt
' {Jug|>no} Aluy)@o/P A
g ’ d q 1_do
< [/ |V dxdt} » {/ ’(I)/A(Uk)\%A(uk)p%b da:dt} i
(2o} AL {uil>no)

1-%

< C’l[/ 1®A(uk)|ﬁ%d;¢dt] P <C3/y<I>A ()70 dxdt] v
{lurl=no}

Thus, we have

_ T 1
9@t det < Co+ 01 [ [ st oy ] (12)

Now, using Gagliardo-Nirenberg embedding theorem (see [9] or [6]), we can write
1@ A (ur (D)l a0/ 0-d0) () < C2||V(I)A(uk(t))|}£qoqo 1@a(ur®))r(y, ae t€]0,T[

This, with Estimates (12) and (11), allow us to write

_ _ 1-%
/ [VP 4 (ug)|% dedt < Coy+ Cs (/ VP4 (uy)|% dmdt) v
Q Q

As 0 < %0 < 1, the above estimate implies the existence of a constant C4 > 0 such that

/ IV® 4 (up)|® dedt < Cy, Vk > 1.
Q
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Now, the application of Poincaré inequality gives

T -
/O )2 g 1 < C 98> 1. (13)

Step 4: Passage to the limit. As in the elliptic case, we use a pointwise compactness result
(see [11]) on the sequence {uy}3° of approximate solutions and their gradients to construct a

function u in L2(0, T Wol’q(Q)), Vg € [1, o[, solution of Problem (P). Using this convergence, we
can make k goes to infinity in the Estimate (13) to conclude that ®4(u) € L%(0, T} VVol’(j0 (Q)).
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