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Let K be a convex subset of a normed linear space and let R1 denote the real line. We show that there
are many (in the sense of Baire category) strictly convex and totally convex functions f : K → R1. It is
known that the existence of such functions is crucial in numerous optimization algorithms.
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Introduction

Convergence analysis of many iterative algorithms for convex optimization in Banach
spaces shows that they produce bounded sequences of vectors the weak accumulation
points of which are optimal solutions of the problems these algorithms are supposed to
solve. Obviously, the identification of a convergent subsequence of a given sequence is dif-
ficult, if not even impossible. Thus, such algorithms can be used to compute approximate
solutions of the given problem only to the extent to which either the objective function of
the optimization problem is strictly convex (in which case the sequences those algorithms
generate converge weakly to the necessarily unique optimal solution of the problem), or
one can regularize the problem by replacing the objective function with a strictly convex
approximation of it in such a way that the optimal solution of the regularized problem
exist and be close to the optimal solution set of the original problem (see, for instance,
[1], [2], [4] [8], [9], [21], [26], [27]).

Keeping the optimal solution of the regularized problem close to the optimal solution set
of the original problem usually demands that the strictly convex approximation of the
objective function should be uniform on bounded sets. Also, the regularization process
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often requires the use of functions satisfying, among other conditions, a stronger form of
strict convexity, namely, total convexity. Total convexity of a function f , first studied in
[6], is a weaker form of local uniform convexity (cf. [16]) which is equivalent (see [24]) to
the requirement that the conditions

x ∈ Domf, {xk}k∈N ⊂ Domf, lim
k→∞

Df (x
k, x) = 0

imply that limk→∞ ||xk−x|| = 0, where Df : X×Domf → [0,∞] is the Bregman distance
defined by

Df (y, x) = f(y)− f(x)− f 0(x, y − x)

and f 0(x, ·) : X → R̄ is the right-hand directional derivative of f at x (see also (12)).

Because of this equivalence, for a large number of optimization algorithms, regularization
of the optimization problem using totally convex and sufficiently uniform (see Section
2 below) approximations of the objective function, which preserve some, if not all, of
its continuity properties, is an implicit guarantee of a better convergence behavior of the
computational procedure (see, for example, [4], [5], [9], [12], [22]). Thus, the abundance of
totally convex functions and the possibility of using them as good approximations of given
convex functions are crucial in numerous optimization algorithms. These facts naturally
lead to the following questions: (i) Given a convex real valued function f (the objective
function of an optimization problem) defined on a nonempty, closed and convex subset K
of a Banach space X (the feasible solution set), can we always find uniform (on bounded
sets) approximations of f by strictly convex functions? (ii) Given the convex function
f and the set K as above, are there totally convex approximations g of f on K which
preserve some desirable continuity features (like lower semicontinuity or continuity) of
f and such that the Bregman distances associated with f and g will be uniformly (on
bounded sets) close to each other? In the present paper we not only answer both questions
in the affirmative, but also show that such approximations are the typical elements in the
relevant function spaces. In particular, most perturbations of the given function f have
the required properties.

When we say that a certain property holds for most elements of a complete metric space
Y, we mean that the set of points which have this property contains a Gδ everywhere dense
subset of Y . Such an approach, when a certain property is investigated for the whole space
Y and not just for a single point in Y , has already been successfully applied in many areas
of Analysis. See, for example, [13-15, 20, 28, 29] and the references mentioned there.

In Section 1 we show (see Theorem 1.2) that the strictly convex functions form a Gδ

dense subset of the topological space of the real-valued convex functions on K endowed
with the topology of uniform convergence on bounded sets. Moreover, this is also true
for the space of lower semicontinuous convex functions on K and for the space of con-
tinuous functions on K provided with the same topology. This certainly means that any
convex (or lower semicontinuous and convex, or continuous and convex) function can be
approximated uniformly (on bounded sets) by strictly convex functions (respectively, by
lower semicontinuous strictly convex functions or continuous strictly convex functions).
Moreover, it shows that most elements (in the sense of Baire category) of the relevant
topological spaces are strictly convex.

In Section 2 we focus on the existence of totally convex approximations of convex func-
tions. We define two metric topologies on the set of real-valued convex functions on K,
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one stronger than the other. Two convex functions f and g are close to each other in the
strong metric when they and their variations are uniformly close on bounded subsets of
K. The convex functions f and g are close in the weak metric when they and the varia-
tions of their right-hand derivatives are close uniformly on bounded sets. We prove that,
whenever a function which is totally convex at each point of K and Lipschitz continuous
on bounded subsets of K exists, then the set of totally convex functions on K, the set of
lower semicontinuous totally convex functions on K, the set of continuous totally convex
functions on K, as well as the set of Lipschitz continuous totally convex functions on K
are large in the sense that they contain countable intersections of open (in the weak topol-
ogy) and everywhere dense (in the strong topology) subsets. This result is meaningful
because it implies the existence of large pools of totally convex functions. At the same
time, it guarantees that given a convex function f with some continuity features, one can
find uniform (on bounded sets) totally convex approximations of it which not only pre-
serve the continuity features of f , but also have corresponding Bregman distances which
are uniformly (on bounded sets) close to the Bregman distance corresponding to f itself.
More information on Bregman distances, totally convex functions and their applications
can be found, for instance, in [10, 11, 17-19, 23].

1. Strictly convex functions

Let K be a nonempty convex subset of a normed linear space (X, || · ||). We denote by
B(r) the closed ball of center zero and radius r > 0 in (X, || · ||). Let M be the set of
all convex functions f : K → R1. Denote by Ml the subset of all lower semicontinuous
functions f ∈ M and by Mc the subset of all continuous functions f ∈ M. We equip the
set M with the uniformity determined by the following base:

E(n) = {(f, g) ∈ M × M : |f(x)− g(x)| ≤ n−1, ∀x ∈ K ∩B(n)}, (1)

where n is a natural number for which K ∩ B(n) 6= ∅. It is not difficult to see that this
uniform space is metrizable and complete. Clearly, Ml and Mc are closed subsets of M.
We provide the topological subspaces Ml and Mc with the relative topologies inherited
from M.

Recall that a function f ∈ M is called strictly convex if for each x, y ∈ K such that x 6= y
and each β ∈ (0, 1),

f(βx+ (1− β)y) < βf(x) + (1− β)f(y). (2)

Fix θ ∈ K. Suppose that

K = {Km,n : m,n ≥ 1 are integers}

is a family of nonempty, bounded subsets of K ×K which do not intersect the diagonal
∆(K) := {(x, x) : x ∈ K} of the set K × K such that, for each natural number n, we
have

(K ∩B(n+ ||θ||))× (K ∩B(n+ ||θ||)) \∆(K) ⊂ ∪∞
m=1Km,n. (3)

A function f ∈ M is called strictly convex with respect to the family K if for each pair
of natural numbers m,n, there exists δ := δ(m,n) > 0 such that the following property
holds:
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(P1) For each (x, y) ∈ Km,n and each β ∈ [(2n)−1, 1− (2n)−1],

βf(x) + (1− β)f(y)− f(βx+ (1− β)y) ≥ δ.

It is easy to verify that strictly convex functions with respect to K are strictly convex
functions on K.

Denote by FK the set of all functions f ∈ M which are strictly convex with respet to K
and let F be the set of all strictly convex functions f : K → R1.

Theorem 1.1. Suppose that the set FK contains a function f∗ which is continuous and
bounded on bounded subsets of K. Then FK (respectively, FK∩Ml, FK∩Mc) is a countable
intersection of open everywhere dense subsets of M (respectively, Ml, Mc).

Proof. For each pair of natural numbers m,n, denote by Fm,n the set of all f ∈ M which
have property (P1) with some δ > 0. Clearly,

FK = ∩∞
m=1 ∩∞

n=1 Fm,n. (4)

Let m,n ≥ 1 be integers. Since the set Km,n is bounded and the space M is equipped
with the topology of uniform convergence on bounded subsets of K, we can easily see
that Fm,n is an open subset of M. In order to complete the proof of the theorem it is
sufficient to show that Fm,n (respectively, Fm,n ∩Ml, Fm,n ∩Mc) is an everywhere dense
subset of M (respectively, Ml, Mc).

Assume that f ∈ M . For each γ ∈ (0, 1), define

fγ(x) = f(x) + γf∗(x), x ∈ K. (5)

It is clear that for each γ ∈ (0, 1), fγ ∈ M and

f ∈ Ml (respectively, f ∈ Mc) =⇒ fγ ∈ Ml (respectively, fγ ∈ Mc). (6)

Since f∗ is bounded on bounded subsets of K, we deduce that

fγ → f in M as γ → 0+. (7)

Since f∗ is strictly convex with respect to K, there is δ∗ > 0 such that

βf∗(x) + (1− β)f∗(y)− f∗(βx+ (1− β)y) ≥ δ∗ (8)

for each (x, y) ∈ Km,n and each β ∈ [(2n)−1, 1−(2n)−1].We claim that whenever γ ∈ (0, 1)
it follows that fγ ∈ Fm,n. Indeed, assume that (x, y) ∈ Kmn and β ∈ [(2n)−1, (1− (2n)−1].
Using (8), (5), and the convexity of f , we deduce that

βfγ(x) + (1− β)fγ(y)− fγ(βx+ (1− β)y)

= βf(x) + (1− β)f(y)− f(βx+ (1− β)y)

+γ[βf∗(x) + (1− β)f∗(y)− f∗(βx+ (1− β)y)]

≥ γ[βf∗(x) + (1− β)f∗(y)− f∗(βx+ (1− β)y)] ≥ γδ∗.

This shows that property (P1) holds for f = fγ with δ = γδ∗. Hence fγ ∈ Fm,n, as
claimed. When combined with (7) and (6), this implies that Fm,n (respectively, Fm,n∩Ml

and Fm,n∩Mc) is an everywhere dense subset of M (respectively, Ml and Mc). Theorem
1.1 is proved.
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Remark. We assumed that each one of the sets Km,n was nonempty. This condition is
not necessary. We may allow Km,n to be empty for some pairs of integers (m,n). It is
clear that for such pairs Fm,n = M.

We now use Theorem 1.1 to prove the main result of this section.

Theorem 1.2. Suppose that there exists a strictly convex continuous function f∗ which is
bounded on bounded subsets of K. Then the set F (respectively, F∩Ml, F∩Mc) contains
a countable intersection of open everywhere dense subsets of M (respectively, Ml, Mc).

Proof. For each x, y ∈ K, define a function ψx,y : [0, 1] → R1 by

ψx,y(β) = βf∗(x) + (1− β)f∗(y)− f∗(βx+ (1− β)y), β ∈ [0, 1].

Let x, y ∈ K satisfy x 6= y and let n be a natural number. Since f∗ is strictly convex,
ψx,y(β) > 0 for all β ∈ [(2n)−1, 1 − (2n)−1]. It follows from the continuity of f∗ that the
function ψx,y is also continuous. Therefore

min{ψx,y(β) : β ∈ [(2n)−1, 1− (2n)−1]} > 0. (9)

For each pair of natural numbers m and n, set

Km,n = {(x, y) ∈ (K ∩B(n+ ||θ||))× (K ∩B(n+ ||θ||)) \∆(K) : (10)

ψx,y(β) ≥ m−1, ∀β ∈ [(2n)−1, 1− (2n)−1]}.

In view of (9) and (10), for each natural number n,

∪∞
m=1Km,n = {(x, y) : x, y ∈ K ∩B(n+ ||θ||)} \∆(K).

Denote by K the family {Km,n : m,n ≥ 1 are integers}. It is easy to see that f∗ is strictly
convex with respect to the family K. By Theorem 1.1, the set FK (respectively, FK ∩Ml,
FK∩Mc) is a countable intersection of open everywhere dense subsets of M (respectively,
Ml, Mc). In order to complete the proof of Theorem 1.2, it is now sufficient to note that
FK ⊂ F .

2. Totally convex functions

Let (X, || · ||) be a Banach space and let K be a nonempty, closed and convex subset of
X. Denote by M the set of all convex functions f : X → (−∞,+∞] such that K ⊂
Int(Dom f).

Let Mv be the subset of M consisting of all those functions in M which are everywhere
finite, i.e., with Dom f = X. Denote by Ml the subset of M consisting of all the lower
semicontinuous functions in M. Put Mvl = Mv ∩Ml and let Mc be the subset of Mv

consisting of all the continuous functions in M. We denote the collection of all those
f ∈ Mv which are Lipschitz on bounded subsets of X by ML.

With any function f ∈ M we associate the function Df : X ×Domf → [0,∞] defined by

Df (y, x) = f(y)− f(x)− f 0(x, y − x), (11)
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where f 0(x, ·) : X → R̄ is the directional derivative of f at x defined by

f 0(x, h) = lim
t→0+

t−1[f(x+ th)− f(x)] (12)

whenever x ∈ Domf . The function νf : (Domf)× [0,∞) → [0,∞] given by

νf (x, t) = inf{Df (y, x) : y ∈ X, ||y − x|| = t} (13)

was called in [6] the modulus of total convexity of f ∈ M. The function f ∈ M is called
totally convex at x ∈ Domf if νf (x, t) > 0 for all t > 0.

Fix θ ∈ K. For each natural number i and each pair of functions f, g ∈ M, first set

d̃i(f, g)

= sup{|f(x)− g(x)| : x ∈ B(i+ ||θ||)}
+sup{|f(x)− g(x)− (f(y)− g(y))|/||x− y|| : x, y ∈ Ω(f, g, i) and x 6= y},

where

Ω(f, g, i) = Dom(f) ∩ Dom(g) ∩B(i+ ||θ||),

and then let

di(f, g) = d̃i(f, g)(1 + d̃i(f, g))
−1. (14)

(Here we use the conventions that ∞−∞ = 0 and ∞/∞ = 1.) Finally, set

d(f, g) =
∞
∑

i=1

2−idi(f, g), f, g ∈ M. (15)

Clearly, d is a metric on M. For each natural number n, let E(n) be the subset of M×M
consisting of all pairs (f, g) such that

Dom(f) ∩B(n+ ||θ||) = Dom(g) ∩B(n+ ||θ||), (16)

|f(x)− g(x)| ≤ 1/n, ∀x ∈ B(n+ ||θ||) (17)

and

|(f(x)− g(x))− (f(y)− g(y))| ≤ n−1||x− y||, ∀x, y ∈ Ω(f, g, n).

The sets {E(n) : n = 1, 2, . . . } form a base of the uniformity induced by the metric d. It
is not difficult to see that the metric space (M, d) is complete, and that Mv, Ml, Mvl,
Mc and ML are all closed subsets of it. We call the metric topology of (M, d) the strong
topology of M. For each natural number i and each f, g ∈ M, we also define

d̃wi(f, g)

= sup{|f(x)− g(x)| : x ∈ B(i+ ||θ||)}+ sup{|f 0(x, y − x)− g0(x, y − x)/|||y − x|| :
x ∈ K, y ∈ D(f) ∩ D(g), x 6= y, x, y ∈ B(i+ ||θ||)}, (18)

and

dwi(f, g) = d̃wi(f, g)(1 + d̃wi(f, g))
−1.
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For each pair of functions f, g ∈ M, we put

dw(f, g) =
∞
∑

i=1

2−idwi(f, g). (19)

It is clear that dw is a metric on M and dw(f, g) ≤ d(f, g) whenever f, g ∈ M.

For each natural number n, denote by Ew(n) the subset of M × M consisting of those
pairs (f, g) satisfying (16), (17), and the following condition:

|f 0(x, y − x)− g0(x, y − x)| ≤ n−1||y − x|| (20)

for all x ∈ K ∩B(n+ ||θ||) and all y ∈ Dom(f) ∩Dom(g) ∩B(n+ ||θ||).

The family of sets {Ew(n) : n = 1, 2, . . . } forms a base of the uniformity induced on M
by the metric dw. The metric dw provides M with a topology which we will call the weak
topology. We consider the topological subspaces Mv, Ml, Mvl, Mc and ML with the
relative weak and strong topologies inherited from M. Let A be one of the spaces Mv,
Ml, Mvl, Mc and ML equipped with the weak and strong relative topologies.

We note that when the functions f and g are close in the metric dw, then not only are
they close uniformly on bounded subsets of K, but the Bregman distances determined by
them are also close in the same sense.

Theorem 2.1. Suppose that ML contains a function f∗ which is totally convex at each
point x ∈ K. Then there exists a set F ⊂ A which is a countable intersection of open (in
the weak topology) everywhere dense (in the strong topology) subsets of A such that each
f ∈ F is totally convex at each point of K.

Proof. Fix t > 0. We first show that there exists a set Ft ⊂ A which is a countable
intersection of open (in the weak topology) everywhere dense (in the strong topology)
subsets of A such that, for each f ∈ Ft and each x ∈ K, we have νf (x, t) > 0. To this
end, let f ∈ A. For each γ ∈ (0, 1), set

fγ(x) = f(x) + γf∗(x), ∀x ∈ X. (21)

It is clear that fγ ∈ A. Since f∗ ∈ ML, it follows that fγ → f as γ → 0+ in the strong
topology. For each natural number n, set

Kn = {x ∈ K : ||x|| ≤ n, νf∗(x, t) ≥ n−1}. (22)

Clearly,
∪∞

n=1Kn = K. (23)

Let f ∈ A, γ ∈ (0, 1), and let n ≥ 1 be an integer. By (13), (11), (12), (21) and (22), for
each x ∈ Kn, we have

νfγ (x, t) = inf{Dfγ (y, x) : y ∈ X, ||y − x|| = t}
= inf{fγ(y)− fγ(x)− f 0

γ (x, y − x) : y ∈ X, ||y − x|| = t}

= inf{f(y)− f(x)− f 0(x, y − x) + γ[f∗(y)− f∗(x)− f 0
∗ (x, y − x)] :

y ∈ X, ||y − x|| = t}
≥ γ inf{f∗(y)− f∗(x)− f 0

∗ (x, y − x) : y ∈ X, ||y − x|| = t}
= γνf∗(x, t) ≥ γ/n.
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Thus νfγ (x, t) ≥ γ/n for each x ∈ Kn. Choose a natural number q such that

q > n+ t+ (t+ 2)2n/γ. (24)

There exists an open neighborhood U(f, γ, n) of fγ in A equipped with the weak topology
such that

U(f, γ, n) ⊂ {g ∈ A : (fγ, g) ∈ Ew(q)}. (25)

Assume that
g ∈ U(f, γ, n), x ∈ Kn, y ∈ X, ||y − x|| = t. (26)

By (26), (25), (20), (24) and (22), we deduce that

max{|fγ(x)− g(x)|, |fγ(y)− g(y)|} ≤ q−1 (27)

and
|f 0

γ (x, y − x)− g0(x, y − x)| ≤ q−1||y − x||. (28)

It follows from (27), (28), (26), (11), (13) and (24) that

Dg(y, x) = g(y)− g(x)− g0(x, y − x)

≥ fγ(y)− fγ(x)− f 0
γ (x, y − x)− 2/q − q−1||y − x||

= Dfγ (y, x)− 2/q − t/q ≥ νfγ (x, t)− (t+ 2)/q

≥ γ/n− (t+ 2)/q ≥ γ/(2n).

Together with (13) this implies that

νg(x, t) ≥ γ(2n)−1, ∀x ∈ Kn and ∀g ∈ U(f, γ, n). (29)

Set
Ft = ∩∞

n=1 ∪ {U(f, γ, n) : f ∈ A, γ ∈ (0, 1)}. (30)

It is easy to see that Ft is a countable intersection of open (in the weak topology) evey-
where dense (in the strong topology) subsets of A. Let g ∈ Ft and x ∈ K. By (23), there
is a natural number n such that x ∈ Kn. By (30), there exist f ∈ A and γ ∈ (0, 1) such
that g ∈ U(f, γ, n). When combined with (29), this implies that νg(x, t) ≥ γ/(2n). Thus,
for each g ∈ Ft and for each x ∈ K, we have νg(x, t) > 0, as claimed.

Taking now t = 1/n, where n is a positive integer, we deduce that for each integer n ≥ 1,
there exists a set F1/n ⊂ A which is a countable intersection of open (in the weak topology)
everywhere dense (in the strong topology) subsets of A such that νg(x, n

−1) > 0 for each
g ∈ F1/n and each x ∈ K. Set

F = ∩∞
n=1F1/n.

Clearly, F is a countable intersection of open (in the weak topology) everywhere dense
(in the strong topology) subsets of A such that for each g ∈ F , each x ∈ K and each
t > 0, we have νg(x, t) > 0. In other words, each g ∈ F is totally convex at each point of
K. This completes the proof of Theorem 2.1.

Remarks. (i) According to Proposition 3.2 in [16], the square of the norm in any reflexive
Banach space with the Kadec-Klee property is an example of the function f∗ the existence
of which is the hypothesis of Theorem 2.1.

(ii) According to Proposition 2.13 in [16], any totally convex function is essentially strictly
convex in the sense of [25] and [3]. Thus Theorem 2.1 also shows that there are many (in
the sense of Baire category) essentially strictly convex functions.
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