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We consider the problem of minimizing a smooth convex function over the set of constrained minimizers
of another smooth convex function. We show that this problem can be solved by a simple and explicit
gradient descent type method. Standard constrained optimization is a particular case in this framework,
corresponding to taking the lower level function as a penalty of the feasible set. We note that in the case
of standard constrained optimization, the method does not require solving any penalization (or other
optimization) subproblems, not even approximately, and does not perform projections (although explicit
projections onto simple sets can be incorporated).
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1. Introduction

We consider the bilevel problem

minimize f1(x)
subject to x ∈ S2 = argmin{f2(x) | x ∈ D},

(1)

where f1 : ℜn → ℜ and f2 : ℜn → ℜ are smooth convex functions and D is a closed
convex subset of ℜn.

The above is a special case of the mathematical program with generalized equation (or
equilibrium) constraint [11, 8], which is

minimize f1(x)
subject to x ∈ {x ∈ ℜn | 0 ∈ F (x) +Q(x)},

where F : ℜn → ℜn and Q is a set-valued mapping from ℜn to the subsets of ℜn. The
bilevel problem (1) is obtained by setting F (x) = f ′

2(x) and Q(x) = ND(x), the normal
cone of the set D at the point x ∈ ℜn. In the formulation of the problem considered here,
there is only one (decision) variable x ∈ ℜn, and we are interested in identifying specific
solutions of the generalized equation 0 ∈ F (x) + Q(x) (equivalently, of the lower level
minimization problem in (1)), see [8].
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Note that, as a special case, (1) contains the standard constrained optimization problem

minimize f1(x)
subject to x ∈ {x ∈ D | Ax = a, g(x) ≤ 0},

(2)

where g : ℜn → ℜm is a smooth convex function, A is an l×n matrix and a ∈ ℜl. Indeed,
(2) is obtained from (1) by taking f2(x) = p(x), where p penalizes functional constraints,
e.g.,

f2(x) = p(x) = ‖Ax− a‖2 + ‖max{0, g(x)}‖2, (3)

where the maximum is taken coordinate-wise.

In this paper, we show that the bilevel problem (1) can be solved by a very simple
gradient projection method (where projection is onto the set D), iteratively applied to
the parametrized family of functions

ψσ(x) = σf1(x) + f2(x), σ > 0, (4)

where σ varies along the iterations. Specifically, if xk ∈ D is the current iterate and σk is
the current parameter, it is enough to make just one projected gradient step for ψσk

from
the point xk, after which the parameter σk can be immediately updated. For convergence
of the resulting algorithm to the solution set of (1), it should hold that

lim
k→∞

σk = 0,
∞
∑

k=0

σk = +∞. (5)

In some ways, our proposal is related to [6], where a proximal point method for (non-
smooth) two-level problem has been considered, and (5) is referred to as slow control.
However, as any proximal method, the method of [6] is implicit: it requires solving non-
trivial subproblems of minimizing regularized functions ψσk

at every iteration, even if
approximately. Computationally, proximal point iterations are impractical, unless accom-
panied by numerically realistic approximation rules (e.g., such as [16, 17]) and specific
implementable schemes for satisfying those rules (e.g., such as [18, 14]). By contrast, the
method proposed in this paper is completely explicit. Furthermore, it has a very low cost
per iteration, especially when projection onto D can be computed in closed form. We em-
phasize that the latter property can always be achieved in the important case of standard
optimization (2), by choosing appropriately the constraints to be handled directly via the
set D and constraints to be penalized by (3). In fact, although D may be of arbitrary
structure in our convergence analysis, we prefer to (implicitly) assume that all “hard�
constraints in (2) are represented by Ax = a and g(x) ≤ 0, while D is a “simple� set, in
the sense that projection onto D can be computed explicitly (e.g., D is defined by bound
constraints, such as the nonnegative orthant ℜn

+; D is a ball; or perhaps, the whole space
ℜn).

It should be noted that gradient methods are certainly not competitive for many classes
of problems. Nevertheless, it is now realized (see, e.g., [1]) that in extremely large-scale
problems gradient-based methods are sometimes the only computationally viable choice,
as more advanced methods (e.g., those requiring solving linear systems of equations,
optimization subproblems, etc.) are simply not applicable at all [1]. The method to be
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presented can be considered as another step in the direction of revival of simple gradient
methods, motivated by extremely large problems. In this respect, we stress once again
that the method does not require solving any general optimization subproblems or systems
of equations. Furthermore, at least in the case of standard optimization (2), it does not
perform any projections which are not explicit.

The special case of the optimization problem (2) deserves some further comments. We
believe that, in this case, our method is closely related to the one in [13], if all the
constraints are being penalized. We note, however, that the possibility of treating simple
constraints (such as bounds) directly rather than through penalization is a well recognized
necessity for efficient computational methods. This feature gives an advantage to our
proposal as compared to [13]. It is also interesting to comment on the relation between
our method (and that of [13]) and the classical [9, 12] penalty approximation scheme.
The penalty scheme consists of solving a sequence of subproblems

minimize ψσ(x)
subject to x ∈ D,

(6)

where ψσ is given by (4) with f2 being the penalty term p, such as (3) (in the literature,
it is more common to minimize f1(x) + σ−1p(x), but the resulting subproblem is clearly
equivalent to (6)). As is well-known, under mild assumptions optimal paths of solutions
x(σ) of penalized problems (6) tend to the solution set of (2) as σ → 0. We note that
the requirement that penalty parameters should tend to zero is, in general, indispensable.
Even if nonsmooth penalty is used, to guarantee exactness of the penalty function (i.e., to
guarantee that a solution of (6), for some fixed σ > 0, is a solution of the original problem
(2)), some regularity assumptions on constraints are needed (e.g., see [5, Section 14.4]). No
assumptions of this type are made in this paper. The fundamental issue is approximating
x(σk) for some sequence of parameters σk → 0. It is clear that approximating x(σk)
with precision is computationally expensive and is one of the limitations of basic forms of
penalty methods in general. Another drawback is ill-conditioning of subproblems (6) for
small values of σ. To deal with the first issue, it is attractive to trace the optimal path
in a loose (and computationally cheap) manner, while still safeguarding convergence.
In a sense, this is what our method does: instead of solving subproblems (6) to some
prescribed accuracy, it makes just one steepest descent step for ψσk

from the current
iterate xk, and immediately updates the parameter. We emphasize that this results
in meaningful progress (and ultimately produces iterates converging to solutions of the
problem) for arbitrary points xk, and not just for points close to the optimal path, i.e.,
points close to x(σk). We therefore obtain a very simple and computationally cheap
algorithm for tracing optimal paths of penalty schemes. Of course, it still does not solve
the problem of ill-conditioning of (6) in the limit. However, ill-conditioning is more of
a problem for sophisticated (Newton-type) methods, where systems of equations need to
be solved. For our method, we show that the stepsize stays uniformly bounded away
from zero in the limit, which means that the cost of iterations (which is here the cost of
the linesearch procedure) does not increase. Thus, in the context of the given method,
ill-conditioning does not seem to make iterations increasingly more difficult, although it
may affect the speed of convergence in the limit. In any case, the presented proposal
can be interesting as a cheap global scheme for approaching the solution set, while more
sophisticated techniques can come into play locally, if needed.
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For the standard optimization setting (2), this paper is also somewhat related to [7], where
interior penalty schemes are coupled with continuous-time steepest descent to produce a
family of paths converging to solution set. However, concrete numerical schemes in [7]
arise from implicit discretization and, thus, result in implicit proximal-point iterations,
just as in [6]. Nevertheless, it was conjectured in [7] that “an economic algorithm per-
forming a single iteration of some descent method for each value of σk could be enough to
generate a sequence of iterates converging to a solution of the problem�. This is what the
presented method does, although we use exterior rather than interior penalties. Finally,
we note that the idea of making some descent step for a penalty function and then chang-
ing the penalty parameter is certainly not new in itself. For example, globalizations of
the sequential quadratic programming [4, 2, 5] and sequential quadratically constrained
quadratic programming [10, 15] methods do precisely that. However, in those methods
descent directions are computed by solving optimization subproblems. Also, some reg-
ularity of constraints (sometimes assumed in the form of boundedness of the multiplier
estimates) is needed for showing convergence.

Our notation is quite standard. By 〈x, y〉 we denote the inner product of x and y, and
by ‖ · ‖ the associated norm, where the space is always clear from the context. For a
differentiable function φ, its gradient is denoted by φ′. If D is a closed convex set, PD(x)
stands for the orthogonal projection of the point x onto D, and dist(x,D) = ‖x−PD(x)‖
is the distance from x to D.

We conclude this section with stating some well-known facts, to be used in the sequel.

Theorem 1.1. Let D 6= ∅ be a closed convex set.

(i) It holds that y = PD(x) if, and only if, 〈x− y, z − y〉 ≤ 0 for all z ∈ D.

(ii) A point x̄ is a minimizer for a convex function φ on the set D if, and only if,
x̄ = PD(x̄− αφ′(x̄)), where α > 0.

Lemma 1.2. If φ is a differentiable function whose derivatives are Lipschitz-continuous
(with modulus L > 0) on the set Ω, then

|φ(y)− φ(x)− 〈φ′(x), y − x〉| ≤
L

2
‖y − x‖2 ∀x, y ∈ Ω.

Lemma 1.3. If {ak} and {bk} are two sequences of nonnegative real numbers satisfying

ak+1 ≤ ak + bk ∀ k,
∞
∑

k=0

bk < +∞,

then the sequence {ak} converges.

2. The algorithm

As already outlined above, the algorithm is very simple. Each iteration is just a step
of one of the standard variants of the gradient projection method, e.g., [2, Section 2.3],
applied to the function ψσk

at the point xk, with D being the set onto which the iterates
are projected.

Algorithm 2.1. Choose parameters ᾱ > 0, θ ∈ (0, 1) and η ∈ (0, 1). Choose starting
values x0 ∈ D and σ0 > 0; set k := 0.
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Given xk, compute xk+1 = zk(αk), where

zk(α) = PD(x
k − αψ′

σk
(xk)), (7)

and αk = ηmkᾱ, with mk being the smallest nonnegative integer m satisfying

ψσk
(zk(ηmᾱ)) ≤ ψσk

(xk) + θ〈ψ′

σk
(xk), zk(ηmᾱ)− xk〉. (8)

Choose 0 < σk+1 ≤ σk; set k := k + 1 and repeat.

We note that there is certain freedom in updating or not the parameter σk after every
iteration. While our goal is to show that we can update it after a single descent step, note
that in principle, we are not obliged to do so (σk+1 = σk is allowed). For convergence, it
would be required that σk does not go to zero too fast, in the sense of condition (5) stated
above.

Consider, for the moment, the case of standard optimization (2). Condition (5) would
certainly have been undesirable if imposed on the classical penalty scheme (6). Indeed,
since σ should be changing relatively slowly, a lot of optimization subproblems (6) would
need to be solved, making the penalty method even less attractive. In the setting of
Algorithm 2.1, however, this does not seem to be such a drawback, since every iteration
is extremely cheap. It is only natural that in order to be able to trace the optimal path
with such a relaxed precision and simple tools, we should not be jumping too far from the
target x(σk) on the path to the next target x(σk+1) as we move along. On the other hand,
if σk is kept constant over a few iterations, this opens space for a more rapid change in
the parameter for the next iteration, while still guaranteeing the second condition in (5).
This is also intuitively reasonable: if we get closer to the optimal path then the target
can be moved further.

Another observation is that it is formally possible that at some iteration k, it may happen
that xk = zk(α) = PD(x

k − αψ′

σk
(xk)) for α = ᾱ. In this case, by Theorem 1.1(ii), xk is

a minimizer of ψσk
on D (and in fact, xk = zk(α) for all α > 0). In the setting of penalty

schemes, this means that the current iterate is exactly on the optimal path: xk = x(σk).
Naturally, in this case there is nothing more that needs to be done. We just decrease
the parameter and proceed. Note that there is no need to specify this case in Algorithm
2.1 explicitly. Indeed, when xk is a minimizer of ψσk

on D, the stepsize condition (8) is
trivially satisfied for m = 0 (as an equality), so that we declare xk+1 = zk(ᾱ) = xk and
proceed. This case, however, is very unlikely to occur, since for no iteration k the function
ψσk

is being minimized on D with any prescribed precision.

3. Convergence Analysis

In our convergence analysis, we assume that the objective function f1 is bounded below
on the set D, i.e.,

−∞ < f̄1 = inf {f1(x) | x ∈ D}.

Since we also assume that the problem is solvable, the function f2 is automatically
bounded below on D, and we define

−∞ < f̄2 = min {f2(x) | x ∈ D}.
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Observe that Algorithm 2.1 would generate the same iterates when “applied� to the
function

ψσ(x) = σ(f1(x)− f̄1) + (f2(x)− f̄2), (9)

as when applied to the function ψσ(x) given by (4) (as stated originally). This is because
the two functions have the same gradient and the same difference for function values at
any two points (hence, the relations in (7) and (8) do not change). From now on, we
consider that the method is “applied� to function ψσ(x) defined by (9) (even though the
function from (4) is used in reality, of course). This is convenient for the subsequent
analysis and should not lead to any confusion.

The proof of the fact that the stepsize procedure is well-defined is essentially standard. We
include it here for completeness, and because some intermediate relations will be needed
later on.

Proposition 3.1. Suppose that D is a closed convex set and that f1 and f2 are differ-
entiable functions with locally Lipschitz-continuous derivatives around xk (with modulus
Lk > 0).

Then the stepsize procedure of Algorithm 2.1 terminates with some finite integer mk such
that

αk = ηmkᾱ ≥ min

{

ᾱ ;
2(1− θ)

(1 + σk)Lk

}

> 0.

In particular, Algorithm 2.1 is well-defined.

Proof. By Theorem 1.1(i), since xk ∈ D, for any α > 0 it holds that

〈xk − αψ′

σk
(xk)− zk(α), xk − zk(α)〉 ≤ 0,

implying that
‖zk(α)− xk‖2 ≤ α〈ψ′

σk
(xk), xk − zk(α)〉. (10)

By the hypothesis, ψ′

σk
is locally Lipschitz-continuous with modulus (1 + σk)Lk. We

shall assume, for simplicity, that ᾱ is small enough, so that zk(ᾱ) belongs to the relevant
neighbourhood Ωk of xk. Then zk(α) ∈ Ωk for all α ≤ ᾱ. Using Lemma 1.2, we obtain
that for all α ≤ ᾱ, it holds that

ψσk
(zk(α)) ≤ ψσk

(xk) + 〈ψ′

σk
(xk), zk(α)− xk〉+

(1 + σk)Lk

2
‖zk(α)− xk‖2

≤ ψσk
(xk) + (1− Lk(1 + σk)α/2)〈ψ

′

σk
(xk), zk(α)− xk〉,

where (10) was used for the second inequality. The relation above shows that condition
(8) is guaranteed to be satisfied whenever 1 − Lk(1 + σk)α/2 ≤ θ. Taking into account
also the fact that αk ≤ ᾱ by construction, we obtain the assertion.

We proceed to prove convergence of the algorithm.

Theorem 3.2. Let f1 and f2 be convex differentiable functions, whose derivatives are
Lipschitz-continuous on bounded sets. Suppose that f1 is bounded below on the closed
convex set D, and that the solution set S1 of problem (1) is nonempty and bounded.

Then for any sequence {xk} generated by Algorithm 2.1 satisfying condition (5), it holds
that dist(xk, S1) → 0 as k → ∞.
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Proof. By (8), it holds that

θ〈ψ′

σk
(xk), xk − xk+1〉

≤ ψσk
(xk)− ψσk

(xk+1)

= σk(f1(x
k)− f̄1)− σk(f1(x

k+1)− f̄1) + (f2(x
k)− f̄2)− (f2(x

k+1)− f̄2).

Summing up the latter inequalities for k = 0, . . . , k̄, we obtain that

θ
k̄

∑

k=0

〈ψ′

σk
(xk), xk − xk+1〉 ≤ σ0(f1(x

0)− f̄1) +
k̄−1
∑

k=0

(σk+1 − σk)(f1(x
k+1)− f̄1)

−σk̄(f1(x
k̄+1)− f̄1) + (f2(x

0)− f̄2)− (f2(x
k̄+1)− f̄2)

≤ σ0(f1(x
0)− f̄1) + (f2(x

0)− f̄2),

where we have used the facts that, for all k, f1(x
k) ≥ f̄1 and f2(x

k) ≥ f̄2 (because x
k ∈ D),

and 0 < σk+1 ≤ σk.

Letting k̄ → ∞, we conclude that

∞
∑

k=0

〈ψ′

σk
(xk), xk − xk+1〉 ≤ θ−1(σ0(f1(x

0)− f̄1) + (f2(x
0)− f̄2)) < +∞. (11)

In particular,

〈ψ′

σk
(xk), xk − xk+1〉 → 0 as k → ∞. (12)

We next prove that if {xk} is bounded, then all of its accumulation points belong to the
set S2, the set of solutions of the lower-level problem in (1) (boundedness itself will be
established later, considering certain cases separately).

Taking instead of Lk a uniform Lipschitz constant L > 0 (valid for the bounded set
containing {xk}) in Proposition 3.1, and recalling also that σk ≤ σ0, we conclude that

αk ≥ min

{

ᾱ ;
2(1− θ)

(1 + σ0)L

}

= β > 0 ∀ k. (13)

Using (12) and (10), we obtain that (xk − xk+1) → 0, i.e.,

xk − PD(x
k − αk(σkf

′

1(x
k) + f ′

2(x
k))) → 0 as k → ∞. (14)

Let x be any accumulation point of {xk}. Taking into account the continuity of the
projection operator and the facts that σk → 0 and 0 < β ≤ αk ≤ ᾱ for all k, and
extracting appropriate subsequences (if necessary), we conclude from (14) that

x = PD(x− αf ′

2(x)), α > 0.

By Theorem 1.1(ii), this means that x is a minimizer of f2 on the set D, i.e., x ∈ S2.
We have established therefore that whenever {xk} is bounded, all its accumulation points
belong to the set S2.
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Take any x̄ ∈ S1 6= ∅. By the convexity of ψσk
, we obtain that

〈ψ′

σk
(xk), x̄− xk〉 ≤ ψσk

(x̄)− ψσk
(xk)

= σk(f1(x̄)− f̄1) + (f2(x̄)− f̄2)

−σk(f1(x
k)− f̄1)− (f2(x

k)− f̄2)

≤ σk(f1(x̄)− f1(x
k)), (15)

where we used the facts that f2(x̄) ≤ f2(x
k), since x̄ ∈ S1 ⊂ S2 and xk ∈ D.

We further have that

‖xk+1 − x̄‖2 = ‖xk − x̄‖2 + 2〈xk+1 − xk, xk − x̄〉+ ‖xk+1 − xk‖2

= ‖xk − x̄‖2 − ‖xk+1 − xk‖2 + 2〈xk+1 − xk, xk+1 − x̄〉. (16)

Note that

〈xk+1 − xk, xk+1 − x̄〉 = 〈xk+1 − xk + αkψ
′

σk
(xk), xk+1 − x̄〉 − αk〈ψ

′

σk
(xk), xk+1 − x̄〉

≤ −αk〈ψ
′

σk
(xk), xk+1 − x̄〉

= αk〈ψ
′

σk
(xk), xk − xk+1〉+ αk〈ψ

′

σk
(xk), x̄− xk〉

≤ ᾱ〈ψ′

σk
(xk), xk − xk+1〉+ αkσk(f1(x̄)− f1(x

k)),

where the first inequality follows from Theorem 1.1(i), and the last is by (15) and the
facts that 〈ψ′

σk
(xk), xk − xk+1〉 ≥ 0 (by (10)) and αk ≤ ᾱ.

Combining the last relation with (16), we obtain

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 + 2ᾱ〈ψ′

σk
(xk), xk − xk+1〉+ 2αkσk(f1(x̄)− f1(x

k)). (17)

We next consider separately the following two possible cases:

Case 1. There exists k0 such that f1(x̄) ≤ f1(x
k) for all k ≥ k0.

Case 2. For each k, there exists k1 ≥ k such that f1(x̄) > f1(x
k1).

Case 1. For k ≥ k0, we obtain from (17) that

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 + 2ᾱ〈ψ′

σk
(xk), xk − xk+1〉.

Recalling (11) and using Lemma 1.3, we conclude that {‖xk − x̄‖2} converges. Hence,
{xk} is bounded.

We next show that lim infk→∞ f1(x
k) = f1(x̄). Assume the contrary, i.e., that there exists

ε > 0 such that f1(x̄) ≤ f1(x
k) − ε for all k ≥ k2. Recalling (13) (which holds by

boundedness of {xk}, already established), we then obtain from (17) that for k > k2, it
holds that

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 + 2ᾱ〈ψ′

σk
(xk), xk − xk+1〉 − 2βεσk

≤ ‖xk2 − x̄‖2 + 2ᾱ
k

∑

i=k2−1

〈ψ′

σi
(xi), xi − xi+1〉 − 2βε

k
∑

i=k2−1

σi.
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Passing onto the limit when k → ∞ in the latter relation, we obtain

2βε
∞
∑

i=k2−1

σi ≤ ‖xk2 − x̄‖2 + 2ᾱ
∞
∑

i=k2−1

〈ψ′

σi
(xi), xi − xi+1〉,

which is a contradiction, due to (11) and (5).

Hence, lim infk→∞ f1(x
k) = f1(x̄). Since {xk} is bounded, it must have an accumulation

point x such that f1(x) = f1(x̄). Taking into account that x ∈ S2 (as already established
above), this means that x ∈ S1. Now choosing x̄ = x in the preceding analysis, we obtain
that {‖xk− x‖} converges. Since it has a subsequence converging to zero, this means that
the whole sequence {‖xk − x‖} converges to zero, i.e., {xk} → x ∈ S1.

Case 2. For each k, define

ik = max{i ≤ k | f1(x̄) > f1(x
i)}.

In the case under consideration, it holds that ik → ∞ when k → ∞.

We first show that {xik} is bounded. Observe that

S1 = {x ∈ S2 | f1(x) ≤ f1(x̄)}

= {x ∈ D | max{f2(x)− f̄2, f1(x)− f1(x̄)} ≤ 0}.

By assumption, the set S1 is nonempty and bounded. Therefore, the convex function

φ : D → ℜ, φ(x) = max{f2(x)− f̄2, f1(x)− f1(x̄)}

has a particular level set {x ∈ D | φ(x) ≤ 0} which is nonempty and bounded. It follows
that all level sets of φ are bounded (e.g., [3, Proposition 2.3.1]), i.e., L(c) = {x ∈ D |
φ(x) ≤ c} is bounded for any c ∈ ℜ.

Since f1(x)− f̄1 ≥ 0 for all x ∈ D and σk+1 ≤ σk, it holds that ψσk+1
(x) ≤ ψσk

(x) for all
x ∈ D. Hence,

0 ≤ ψσk+1
(xk+1) ≤ ψσk

(xk+1) ≤ ψσk
(xk),

where the third inequality follows from (8). The above relations show that {ψσk
(xk)}

is nonincreasing and bounded below. Hence, it converges. It then easily follows that
{f2(x

k)− f̄2} is bounded (because both terms in ψσk
(xk) = σk(f1(x

k)− f̄1)+(f2(x
k)− f̄2)

are nonnegative).

Fix any c ≥ 0 such that f2(x
k)− f̄2 ≤ c for all k. Since f1(x

ik)− f1(x̄) < 0 ≤ c, we have
that xik ∈ L(c), which is a bounded set. This shows that {xik} is bounded.

By the definition of ik, it holds that

f1(x̄) ≤ f1(x
i), i = ik + 1, . . . , k (if k > ik).

Hence, from (17), we have that

‖xi+1 − x̄‖2 ≤ ‖xi − x̄‖2 + 2ᾱ〈ψ′

σi
(xi), xi − xi+1〉, i = ik + 1, . . . , k.
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Therefore, for any k, it holds that

‖xk − x̄‖2 ≤ ‖xik − x̄‖2 + 2ᾱ
k−1
∑

i=ik+1

〈ψ′

σi
(xi), xi − xi+1〉

≤ ‖xik − x̄‖2 + 2ᾱ
∞
∑

i=ik+1

〈ψ′

σi
(xi), xi − xi+1〉. (18)

Recalling that ik → ∞, by (11) we have that

∞
∑

i=ik+1

〈ψ′

σi
(xi), xi − xi+1〉 → 0 as k → ∞. (19)

Taking also into account boundedness of {xik}, (18) implies that the whole sequence {xk}
is bounded.

Since all accumulation points of {xk} belong to S2 (as established above), and for any
accumulation point x of {xik} we have that f1(x̄) ≥ f1(x), it must be the case that all
accumulation points of {xik} are solutions of the problem. In particular,

dist(xik , S1) → 0 as k → ∞. (20)

For each k, define x̄k = PS1
(xik). Using (18) with x̄ = x̄k gives

dist(xk, S1)
2 ≤ ‖xk − x̄k‖2

≤ dist(xik , S1)
2 + 2ᾱ

∞
∑

i=ik+1

〈ψ′

σi
(xi), xi − xi+1〉.

Passing onto the limit in the latter relation as k → ∞, and using (19) and (20), we obtain
that dist(xk, S1) → 0.
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