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A general framework for computing polytopic robust controllable sets of constrained nonlinear uncertain
discrete-time systems as well as controlling such complex systems based on the computed polytopic robust
controllable sets is introduced in this paper. The resulting one-step control approach turns out to be
a robust model predictive control scheme with feasible unit control horizon and contractive constraint.
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innerly by one polytope.

Keywords: Nonlinear discrete-time systems, model predictive control, robust controllable sets, interval
analysis, polytope geometry

1991 Mathematics Subject Classification: 65G40, 93B05, 93B51

1. Introduction

A fundamental control problem is to determine the subset of the state space that can be
steered to a given terminal set via an admissible control sequence, while guaranteeing that
the state constraint be satisfied for all uncertain cases. Such a subset is referred to as a ro-
bust controllable set and it is a more general interpretation of the classical controllability
problem of unconstrained deterministic linear systems [6]. The analytical determination
of robust controllable sets as well as the controllability of constrained discrete-time sys-
tems is extremely hard. A numerical approach is to compute robust controllable sets
geometrically and any initial state within the computed maximal robust controllable set
is robustly controllable to the selected terminal set in finite steps. In [12], robust con-
trollable sets were computed geometrically via a set of set differences and projections for
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constrained discrete-time systems with additive uncertainty. Such an approach is quite ef-
fective for discrete-time linear or piecewise-affine systems with polytopes as their terminal
sets, where the set computations can be performed efficiently through polyhedral algebra,
linear programming and computational geometry software. However, the computation
of robust controllable sets for general constrained nonlinear discrete-time systems is not
straightforward and efficient. In [2, 3], a branch-and-bound algorithm based on interval
arithmetic was introduced to compute the inner approximations of control invariant sets
for constrained nonlinear systems with a given bound of error tolerance. This algorithm
was extended in [9] to compute robust controllable sets of constrained nonlinear systems
with additive uncertainty, where the computed robust controllable sets were utilized as a
contractive sequence of sets to formulate a robust model predictive control scheme. How-
ever, intervals encountered here have two modalities: there exists a value in [a, b] that
possesses a property or some given properties, for example, there exists a control input
u ∈ [a, b] that can drive the system state x to the terminal set; all values in [c, d] possess
a property or some given properties, for example, for all system states x ∈ [c, d], they can
be driven to the terminal set by an admissible control input u. The branch and bound of
the state space with universal modality and the control space with existential modality
were mixed in their approaches, where extra treatments of the subboxes of the admissible
state space are needed after each branch and bound of the admissible state space.

This paper deals with the computation of polytopic robust controllable sets for general
constrained nonlinear uncertain discrete-time systems in a semantic way, where the branch
and bound of the admissible state space with universal modality and the control space
with existential modality are separated by two nested loops. The computed polytopic
robust controllable sets are also utilized as a contractive sequence of sets to formulate
a one-step model predictive control scheme for simplifying traditional multi-step mini-
max optimizations underlying robust model predictive control. The simplified one-step
minimax optimizations are fulfilled by an interval-based solver of constrained minimax
optimization. The paper is organized as follows: the problem statement is illustrated in
Section 2; the basics of interval analysis and polytope geometry are introduced in Section
3; the computation of polytopic robust controllable sets is addressed in Section 4; nonlin-
ear contractive model predictive control via the computed polytopic robust controllable
sets is described in Section 5; an illustrative example is demonstrated in Section 6; and
finally, some conclusions are drawn in Section 7.

2. Problem Statement

The system to be considered is described by the following constrained nonlinear uncertain
discrete-time state-space model:

x(k + 1) = f(x(k),w(k),u(k)), k = 0, 1, . . . , (1)

where x(k) ∈ X ⊂ Rn is a vector of n state variables and X is a compact set containing
the origin; w(k) ∈ W ⊂ Rl is a vector of l uncertain parameters and (or) additive
disturbances; u(k) ∈ U ⊂ Rm is a vector of m control inputs and U is a compact set
containing the origin. The domains of X,W and U are assumed to be described by boxes
of their proper dimensions, i.e., every component of the vectors is an interval. Such a
model represents a general class of physical systems with constrained state and control
as well as uncertainty. The control target is to drive the system from the initial state x0
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to a sufficiently small region around the origin asymptotically. The dual-mode approach
of model predictive control is adopted here: at first, the one-step control deriving from
contractive model predictive control drives the system state into a designed terminal
robust control invariant set T; and then the related local stabilizing feedback control law
is applied instead to drive the system state to a sufficiently small region around the origin
asymptotically.

The one-step robust controllable set Pre(T) is the set of states in X within which an
admissible control input u(k) ∈ U exists that guarantees to drive the system to the
terminal set T in one step for every allowable uncertainty w(k) ∈W, i.e.,

Pre(T) = {x(k) ∈ X | ∃u(k) ∈ U, ∀w(k) ∈W : x(k + 1) ∈ T}. (2)

The terminal set T is a robust control invariant set if and only if T ⊆ Pre(T) [6]. If the
terminal set T is selected to be a robust control invariant set, then the one-step robust
controllable set Pre(T) is an enlarged robust control invariant set and it can also be
referred to as the one-step robust stabilisable set [6, 11]. The ith-step robust controllable
set Prei(T) can be obtained by computing one-step robust controllable sets recursively,
i.e.,

Prei(T) = Pre(Prei−1(T)), (3)

where Pre0(T) = T and the maximal robust controllable set Pre∞(T) within the con-
strained state space X is reached when PreN+1(T) = PreN(T) for certain N .

Once the maximal robust controllable set PreN(T) is obtained, the controllability of the
nonlinear uncertain discrete-time system (1) is obvious: the system is robustly controllable
to the terminal set T in finite steps if the initial state is within the maximal robust
controllable set. The control inputs can be obtained through the strategy of robust model
predictive control with feasible unit control horizon and contractive constraint when the
system state is outside the terminal set T, i.e., the one-step control inputs are obtained
by solving the following constrained minimax optimization iteratively:

u∗(x(k)) = arg min
u(x(k))∈U

max
w(k)∈W

[xT (k + 1)Qx(k + 1) + uT (x(k))Ru(x(k))] (4)

subject to

x(k + 1) ∈ Prei−1(T), (5)

where x(k) ∈ Prei(T), but x(k) does not belong to Prei−1(T); Q and R are weighted pos-
itive definite matrices; and u∗(x(k)) is the optimal one-step control input. This one-step
control scheme differs from traditional minimax configurations of robust model predictive
control, in which control horizons are usually selected to be large enough for satisfying
the imposed terminal constraints and the resulting multi-step minimax optimizations are
usually time-consuming. The feasibility and stability of the closed-loop system with the
unit control horizon can be guaranteed since the system state is driven contractively along
the computed robust controllable sets to the designed terminal set [9]. Once the system
state enters the terminal set T, the related local stabilizing feedback control law is ap-
plied instead to drive the system state to a sufficiently small region around the origin
asymptotically [4].
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3. Interval Analysis and Polytope Geometry

This section gives a brief introduction of interval analysis and polytope geometry, espe-
cially those concepts and manipulations used in the following sections.

3.1. Interval Analysis

The initial idea of interval analysis is to enclose real numbers in intervals and real vectors
in boxes as a method of considering the imprecision of representing real numbers by finite
digits in numerical computers. Interval analysis has become a fundamental numerical tool
for representing uncertainties or errors, proving properties of sets, solving sets of equations
or inequalities and optimizing globally via interval arithmetic. The key concepts of interval
analysis are interval arithmetic, inclusion function and subpaving, whose definitions are
as follows [5]:

Interval Arithmetic. Interval arithmetic is a special case of computation on convex
sets, which includes real compact intervals [a, b] = {a ≤ x ≤ b, a ≤ b, x, a, b ∈ R},
real compact interval vectors and real compact interval matrices. The four elementary
arithmetic operations (+,−,×,÷) are extended to intervals. Concretely, for any such
binary operator, denoted by ⋄, performing the operation associated with ⋄ on the intervals
[a, b] and [c, d] means computing X ⋄Y = convh({x⋄ y ∈ R | x ∈ [a, b], y ∈ [c, d]}), where
convh(·) denotes the convex hull of {x ⋄ y ∈ R | x ∈ [a, b], y ∈ [c, d]}. Correspondingly,
the set of all interval vectors in Rn is denoted to be I(Rn).

Inclusion Function. Consider a function f from Rn to Rm, the interval function F from
I(Rn) to I(Rm) is an inclusion function for f if ∀X ∈ I(Rn), f(X) ⊆ F(X). The natural
inclusion function of f(X) can be obtained by replacing each occurrence of every variable
with the corresponding interval variable, by executing all operations according to interval
arithmetic, and by computing ranges of the standard functions.

Subpaving. A subpaving of a box X ∈ I(Rn) is a union of non-overlapping subboxes
with non-zero width, where every subbox is a subset of the box X. A subpaving of X is
regular if each of its subboxes can be obtained from X by a finite succession of branches.

The fundamental concepts of interval analysis can be integrated to set up various algo-
rithms for solving set inversion, global optimization and minimax optimization problems
in a guaranteed numerical way [5]. A basic operation within these solvers is to bisect
or branch an interval vector into two sub-interval vectors. Taking the interval vector
X = [a1, b1]× . . .× [an, bn] as an example, its width is denoted to be:

Width(X) = max
i=1,...,n

|ai − bi|, (6)

and the index j is denoted to be:

j = min
i=1,...,n

{i | (|ai − bi|) = Width(X)}, (7)

then the bisection Bisect(X) returns two sub-interval vectors LX and RX:

{

LX := [a1, b1]× . . .× [aj,
(aj+bj)

2
]× . . .× [an, bn]

RX := [a1, b1]× . . .× [
(aj+bj)

2
, bj]× . . .× [an, bn].

(8)
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3.2. Polytope Geometry

Polytope is a bounded polyhedron P ⊂ Rn, which can be described as:

P = {x ∈ Rn | P xx ≤ P b}, (9)

where P x is a matrix of dimension m×n and P b is a column vector of dimension m. Basic
polytope manipulations are to compute the complement of a polytope, the intersection
of two polytopes, the set difference of two polytopes and the convex hull of a union of
polytopes, whose definitions are as follows [8, 1]:

Complement. The complement of a polytope P = {x ∈ Rn | P xx ≤ P b} relative to
X ⊂ Rn is a union of polytopes PC := ∪mi=1{x ∈ X | P x

i x > P b
i }, where P x

i and P b
i are

the ith row of P x and P b, respectively.

Intersection. The intersection of two polytopes P = {x ∈ Rn | P xx ≤ P b} and
Q = {x ∈ Rn | Qxx ≤ Qb} is a polytope P ∩Q := {x ∈ Rn | P xx ≤ P b, Qxx ≤ Qb}.

Set Difference. The set difference of two polytopes P = {x ∈ Rn | P xx ≤ P b} and
Q = {x ∈ Rn | Qxx ≤ Qb} is a union of polytopes P \ Q := P ∩QC .

Convex Hull. The convex hull of a union of polytopes Pi ⊂ Rn(i = 1, . . . , p) is a
polytope convh(∪pi=1Pi) := {x ∈ Rn | x =

∑p

i=1 αixi,xi ∈ Pi, 0 ≤ αi ≤ 1,
∑p

i=1 αi = 1}.

4. The Computation of Polytopic Robust Controllable Sets

Interval analysis and polytope geometry are applied to compute polytopic robust control-
lable sets of constrained nonlinear uncertain discrete-time systems in this section.

4.1. The First-step Robust Controllable Set Approximation Algorithm

Assume that the terminal set T is designed to be a robust control invariant polytope
for the system (1), then an inner approximation of the first-step robust controllable set
can be computed on the basis of the solver of set inversion via interval analysis [5]. The
detailed first-step robust controllable set approximation algorithm is listed in Algorithm
I, where ε is the bound of error tolerance and ΣX is to store the computed first-step robust
controllable set.

Algorithm I. The First-step Robust Controllable Set Approximation

In: X,W,U,T, ε; Out: Σx

1. Initialize Stack 1 = X, Σx = ∅;

2. while Stack 1 6= ∅

3. Pop out a Xi from Stack 1;

4. Compute f(Xi,wLocal,U);

5. if f(Xi,wLocal,U) ∩ T = ∅

6. Discard Xi and return to 2;

7. endif

8. Initialize Stack 2 = U;

9. while Stack 2 6= ∅

10. Pop out a Uj from Stack 2;

11. Compute f(Xi,wLocal,Uj);

12. if f(Xi,wLocal,Uj) ∩ T = ∅
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13. Discard Uj and return to 9;

14. elseif f(Xi,W, (uj)Local) ⊆ T
15. Σx ← Xi ∪ Σx and return to 2;

16. elseif Width(Uj) ≤ ε, discard Uj and return to 9;

17. else

18. Bisect Uj, push them on Stack 2 and return to 9;

19. endif

20. endwhile

21. if Width(Xi) ≤ ε, then discard Xi and return to 2;

22. else

23. Bisect Xi, push them on Stack 1 and return to 2;

24. endif

25. endwhile

As shown in Algorithm I, wLocal in Step 4 and 11 relates to a local search of a concrete
value wLocal ∈W: if there exists such a value wLocal that renders f(Xi,wLocal,U)∩T = ∅,
then for all u ∈ U, it is impossible to drive the state subbox Xi to the terminal set T in
case of wLocal at the next time instance, so Xi does not belong to the first-step robust
controllable set and it is discarded in Step 6; however, only a part of U is tested in
Step 12, i.e., f(Xi,wLocal,Uj) ∩ T = ∅, so for the whole Uj, it is impossible to drive
the state subbox Xi to the terminal set T in case of wLocal at the next time instance,
then Uj is discarded instead in Step 13 and other parts of U are to be tested further.
On the contrary, if there exists a concrete control input (uj)Local ∈ Uj that renders
f(Xi,W, (uj)Local) ⊆ T, then for all uncertain cases w(k) ∈W, the state subbox Xi can
be driven to the terminal set T via the admissible control input (uj)Local at the next time
instance, which signifies that Xi belongs to the first-step robust controllable set and it is
stored in ΣX. If no semantic judgement can be made for Xi or Uj and the widths of them
are smaller than the selected bound of error tolerance ε, just as in Step 16 and 21, they
are to be discarded as well; otherwise, Xi or Uj is to be bisected further for a finer test,
just as shown in Step 18 and 23. Obviously, the computed first-step robust controllable
set Σx is an inner approximation of Pre(T) because of the bound of error tolerance ε,
i.e., Σx ∈ Pre(T). In order to simplify the computation, wLocal and (uj)Local are usually
selected to be the center of the subbox W and the center of the subbox Uj, respectively.
It can be seen that the bisection and selection of the state space with universal modality
and the control space with existential modality are performed separately by two nested
loops, where a clear semantic interpretation exists. Thus the computation of controllable
sets in Algorithm I is different from the corresponding algorithm in [2, 3], where the
admissible domain L = (X,U) was the combination of the admissible state space X and
the admissible control space U and extra treatments of the subboxes of the admissible
domain were needed after each bisection and selection of the admissible state space: if
the action for Zi = (Xi,Ui) was to insert to the solution set, then the algorithm in [2, 3]
needed to erase from the set L all subboxes Zj = (Xj,Uj) with Xj = Xi; if the action
for Zi = (Xi,Ui) was to bisect Xi, then the algorithm in [2, 3] also needed to bisect
all subboxes Zj = (Xj,Uj) with Xj = Xi in the set L. The extra treatments of the
subboxes of the admissible domain were time-consuming since the members of the set L
were numerous and the action of bisection and selection was frequent. Furthermore, there
was no semantic interpretation for discarding the subbox of the admissible state space: if
the action for Zi = (Xi,Ui) was to discard, this did not mean that Xi could not be a part
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of the one-step controllable set because Xi was likely to be controllable to the selected
terminal set by other parts of the admissible control space U.

4.2. The Revised Polytopic Approximation Algorithm

According to the first-step robust controllable set approximation algorithm in Algorithm

I, the computed inner approximation of the first-step robust controllable set ΣX is a union
of boxes, which is also a union of polytopes as boxes are a specific class of polytopes. The
union of polytopes can be further approximated innerly by one polytope according to
the one-step set polytopic approximation algorithm proposed in [2, 3]. The benefits of
representing a robust controllable set by one polytope rather than by a union of boxes
range from less memory resources to easier synthesis of real-time constrained control.
The convex hull of the union of polytopes is used in the following revised polytopic
approximation algorithm for obtaining a possibly reduced number of complementary sets
and separating a complementary set and the contracted convex hull instead of separating
a complementary set and the contracted union of boxes.

Assume that the convex hull of the union of polytopes H = convh(ΣX) as well as its
vertices has been obtained via vertex enumeration [8], i.e., H = {x ∈ Rn | Hxx ≤
Kb} and its vertices are {vH

k }
nh

k=1, where nh is the number of vertices on H. Then the
complementary sets C of ΣX relative to its convex hull H are a union of polytopes and
they can be obtained by the set difference C = H\ΣX = ∪nc

m=1Cm, where nc is the number
of polytopes in C. The vertices of each polytope Cm in C can be obtained as well and they
are assumed to be {vCm

j }
ncm

j=1 , where ncm is the number of vertices on Cm. The α−support
hyperplane for Cm is a hyperplane cTmx = 1 such that [2, 3]: cTmx > 1 for every x ∈ Cm
and α · cTmx ≤ 1 for every x ∈ H, where α ∈ [0, 1]. The computation of the α−support
hyperplane for each Cm can be transformed to be a linear programming problem [2, 3]:

min
{cm,γ}

γ (10)

subject to










cTmv
Cm
j > 1, j = 1, . . . , ncm

cTmv
H
k ≤ γ, k = 1, . . . , nh

γ ≥ 1.

(11)

Once the α-support hyperplane for Cm is obtained, those {Cr|c
T
mv

Cr
j > 1, j = {1, . . . , ncr},

r ∈ {m + 1, . . . , nc}} should be discarded to avoid redundant separations from their
corresponding contracted convex hull. So the resulting polytopic approximation Pa for
ΣX is to be:

Pa = ∩
ncf

m=1{x ∈ Rn | cTmx ≤ 1}, (12)

where ncf is the number of all processed complementary sets in C. The detail of the
revised polytopic approximation algorithm is shown in Algorithm II. It is worthy to
note that the polytopic approximation algorithm is guaranteed to result in a non-empty
Pa with the assumption of 0 ∈ ΣX since the constraints in (11) are then guaranteed to be
feasible.

Algorithm II. The Revised Polytopic Approximation

In: Σx; Out: Pa



912 J. Wan, J. Veh́ı, N. Luo / Nonlinear Contractive Model Predictive ...

1. H = convh(Σx);

2. Pa = H;

3. C = H \ Σx = ∪nc

m=1
Cm;

4. for m = 1 : 1 : nc

5. if Cm ∩ P
a 6= ∅

6. cm = argmin{cm,γ} γ subject to (11);

7. Pa = Pa ∩ {x ∈ Rn | cTmx ≤ 1};

8. end

9. end

4.3. The Following-step Robust Controllable Set Approximation Algorithm

Once the inner approximation of the first-step robust controllable set ΣX has been ap-
proximated innerly by one polytope Pa via the revised polytopic approximation algorithm,
the following-step robust controllable sets can be computed recursively by renewing the
terminal set T with Pa

i in Algorithm I, where Pa
i is the polytopic approximation of the

ith-step robust controllable set and Pa
1 = Pa. If the terminal set T is designed to be

robust control invariant, then theoretically the computed first-step robust controllable
set should contain it. However, the limitation of the bound of error tolerance ε of the
interval-based algorithm in Algorithm I and the conservativeness of the revised polytopic
approximation algorithm in Algorithm II might lead to:

T " Pa
1 , (13)

which signifies that the obtained first-step polytopic robust controllable set Pa
1 is not

robust control invariant. A remedy for this problem is to replace Pa
1 by the union Pa

1 ∪T
in the computation of the second-step robust controllable set and obviously Pa

1 ∪ T is
a robust control invariant set for the system (1). Obtaining a union of polytopes as a
robust controllable set also happens in piecewise-affine and hybrid systems [6]. Generally,
the terminal set for computing Prei(T) recursively is renewed to be ∪i−1

j=0P
a
j at each step,

where Pa
0 = T. Corresponding inclusion test and exclusion test between a box and a union

of polytopes are concerned instead in Step 5, 12 and 14 of Algorithm I, respectively.
To judge whether a box is included in a union of polytopes can be transformed to judge
whether their set difference is empty, which can be further transformed to be a linear
programming problem [6], i.e., a polytope H = {x ∈ Rn | Hxx ≤ Hb} is empty if and
only if ζ > 0 where ζ = argmin ζ subject to Hxx ≤ Hb + ζ · 1. To judge whether a box is
excluded in a union of polytopes can be transformed to judge whether their intersections
are empty, which is a similar linear programming problem. The polytopic approximation
of the maximal robust controllable set Pre∞(T) within the constrained state space is
reached when Pa

N = Pa
N+1 for certain N . Nevertheless, the polytopic robust controllable

set approximation algorithm can be simplified if Pa
i−1 j Pa

i for all i = 1, . . . , N , where
corresponding inclusion tests and exclusion tests are fulfilled just between a box and a
polytope.

5. Nonlinear Contractive Model Predictive Control via Polytopic Robust

Controllable Sets

Once all the polytopic robust controllable sets Pa
j (j = 1, . . . , N) have been obtained,

robust controllability of any initial state can be judged accordingly. Assume that x0 ∈
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∪Nj=0P
a
j , i.e., the initial state is robustly controllable to the selected terminal set T in finite

steps, then the dual-mode approach of the nonlinear contractive model predictive control
via polytopic robust controllable sets is illustrated in Algorithm III.

Algorithm III. Nonlinear MPC via Polytopic Robust Controllable Sets

In: x(0), Pa
j (j = 0, . . . , N); Out: u∗(x(k)),x

1. Get the current state x(k);

2. if x(k) ∈ T
3. Switch to a local stabilizing feedback control law;

4. else

5. Find the i: i = minj=1,...,N{x(k) ∈ P
a
j };

6. Compute u∗(x(k)) with the contractive constraint (5);

7. Apply u∗(x(k)) to the system;

8. end

9. Return to 1 and repeat.

According to Algorithm III, the control algorithm measures the current state in Step

1 and then judges whether the system state has arrived into the terminal set T in Step

2. The related local stabilizing feedback control law is applied if the state has arrived
into the terminal set T; otherwise, the algorithm finds the smallest polytopic robust
controllable set to which the current state belongs in Step 5; the one-step control scheme
is formulated according to the strategy of robust model predictive control with feasible unit
control horizon and contractive constraint in Step 6, where Prei(T) is denoted to ∪ij=0P

a
j

according to the addressed algorithm for computing polytopic robust controllable sets. It
can be seen that any feasible solution that satisfies the imposed contractive constraint
is an effective control input because such a control input is sufficient to guarantee the
feasibility and stability of the closed-loop system [9]. A feasible control input can be
obtained as well via an interval-based solver of constrained minimax optimization in a
guaranteed numerical way [5].

6. An Illustrative Example

The addressed nonlinear contractive model predictive control via polytopic robust con-
trollable sets is applied to control a highly nonlinear model of a Continuous Stirred-Tank
Reactor (CSTR) [9, 10]. Assuming constant liquid volume, the CSTR for an exothermic,
irreversible reaction, A → B, is described by the following dynamic model based on a
component balance for the reactant A and an energy balance:

{

�CA = q

V
(CAf − CA)− k0 exp(−

E
RT

)CA + w1,

�T = q

V
(Tf − T ) + (−MH)

ρCp
k0 exp(−

E
RT

)CA + UA
V ρCp

(Tc − T ) + w2,
(14)

where CA is the concentration of A in the reactor, T is the reactor temperature, Tc is the
temperature of the coolant stream, and w1 ∈ [−0.02, 0.02], w2 ∈ [−2, 2] are assumed to
be additive disturbances. The constraints are 280 K ≤ Tc ≤ 370 K, 280 K ≤ T ≤ 370 K
and 0 ≤ CA ≤ 1 mol/l. The objective is to regulate CA and T by manipulating Tc. The
nominal operating conditions, which correspond to an unstable equilibrium Ceq

A = 0.5
mol/l, T eq = 350 K, T eq

c = 300 K are: q = 100 l/min, CAf = 1 mol/l, Tf = 350 K,
V = 100 l, ρ = 1000 g/l, Cp = 0.239 J/g K, △ H = −5 × 104 J/mol, E/R = 8750 K,
k0 = 7.2 × 1010 min−1, UA = 5 × 104 J/min K. The nonlinear discrete-time state-space
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model is obtained by defining the state vector x = [CA − Ceq
A (T − T eq)/100]T as well as

the manipulated input u = (Tc − T eq
c )/100 and by discretizing the ODE with a sampling

time △ t = 0.03 min using the Euler method.

A local feedback control law u = [−0.0690 −4.3387]x is designed in advance according to
the linearized model and the LQ method [10]. With the designed local feedback control
law, the terminal set is selected to be the following polytope:

























0.31623 −0.94868
−0.31623 0.94868
−0.70711 −0.70711
0.70711 0.70711
−1 0
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







. (15)

The selected polytope can be demonstrated geometrically to be robust control invariant
for the discretized system with the related local feedback control law. The geometric
demonstration of robust control invariance for the selected polytope is shown in Fig. 1,
where the polytope is actually a zonotope [7]. The zonotope is bisected into sub-zonotopes
and the evolutions of all sub-zonotopes under the related local feedback control law are
within the original zonotope.
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(b) The evolution of every sub-zonotope of the bisected terminal set

(a) The bisections of the selected terminal set
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Figure 6.1: The geometric demonstration of robust control invariance

The first-step robust controllable set to the selected robust control invariant polytope
can be computed via Algorithm I and the obtained first-step robust controllable set
can be approximated innerly by one polytope via Algorithm II. The computed first-
step robust controllable set and its polytopic approximation are shown in Fig. 2, where
the bound of error tolerance is ε = 0.002. It is worthy to note that the computation
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time for the first-step robust controllable set is 2.14 hours and the computation time for
the following polytopic approximation is 13 seconds using the addressed algorithms on a
Pentium Centrino 1.4GHz Notebook while the corresponding computation times for the
simplified system without consideration of uncertainty are respectively 19.79 hours and
15 seconds using the published algorithms in [3].
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Figure 6.2: The first-step robust controllable set and its polytopic approximation

The following-step robust controllable sets can be computed accordingly by renewing the
terminal set. The computed polytopic robust controllable sets of the discretized system
are shown in Fig. 3. The resulting robust control process of the dual-mode approach
of nonlinear contractive model predictive control via polytopic robust controllable sets
for the discretized system with the initial state (0.4 mol/l,326 K) is shown in Fig. 4,
where Q = R = 1 and the coordinates are transformed to be the original values of the
controlled system. The underlying minimax optimizations for the one-step control inputs
are performed by the solver of constrained minimax optimization via interval analysis [5].

7. Conclusion

This paper discusses the application of interval analysis and polytope geometry to compute
polytopic robust controllable sets offline and compute one-step control inputs online for
constrained nonlinear uncertain discrete-time systems. The union of the obtained poly-
topic robust controllable sets is guaranteed to be robust control invariant at each step
and such a scenario is more general in practice, especially for piecewise-affine and hybrid
systems. The proposed approach provides a general framework for computing polytopic
robust controllable sets of constrained nonlinear uncertain systems with an initial robust
control invariant polytope as well as controlling such complex systems with guaranteed
feasibility and stability. However, the burden of computing polytopic robust controllable
sets via the interval-based algorithm grows exponentially with the total dimension of the
state space and the control space and thus structures of various constrained nonlinear
discrete-time systems are needed to be explored further to improve the efficiency.
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