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We propose the split common fixed point problem that requires to find a common fixed point of a
family of operators in one space whose image under a linear transformation is a common fixed point
of another family of operators in the image space. We formulate and analyze a parallel algorithm for
solving this split common fixed point problem for the class of directed operators and note how it unifies
and generalizes previously discussed problems and algorithms.

1. Introduction

In this paper we propose a new problem, called the split common fixed point problem
(SCFPP), and study it for the class of directed operators T such that T−I is closed at the
origin. These operators were introduced and investigated by Bauschke and Combettes in
[3, Definition 2.2] and by Combettes in [15], although not called by this name. We present
a unified framework for the study of this problem and class of operators and propose
iterative algorithms and study their convergence. The SCFPP is a generalization of the
split feasibility problem (SFP) and of the convex feasibility problem (CFP). The class of
directed operators is an important class since it includes the orthogonal projections and
the subgradient projectors, and we also supply an additional operator from this class.

The split common fixed point problem (SCFPP) requires to find a common fixed point of
a family of operators in one space such that its image under a linear transformation is a
common fixed point of another family of operators in the image space. This generalizes
the convex feasibility problem (CFP), the two-sets split feasibility problem (SFP) and the
multiple sets split feasibility problem (MSSFP).

Problem 1.1 (The split common fixed point problem). Given operators Ui : R
N

→ RN , i = 1, 2, . . . , p, and Tj : RM → RM , j = 1, 2, . . . , r, with nonempty fixed points

sets Ci, i = 1, 2, . . . , p and Qj, j = 1, 2, . . . , r, respectively, and a real M ×N matrix A,
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the split common fixed point problem (SCFPP) is

find a vector x∗ ∈ C := ∩p
i=1Ci such that Ax∗ ∈ Q := ∩r

i=1Qj. (1)

Such problems arise in the field of intensity-modulated radiation therapy (IMRT) when
one attempts to describe physical dose constraints and equivalent uniform dose (EUD)
constraints within a single model, see [9]. The problem with only a single pair of sets C
in RN and Q in RM was first introduced by Censor and Elfving [10] and was called the
split feasibility problem (SFP). They used their simultaneous multiprojections algorithm
(see also [14, Subsection 5.9.2]) to obtain iterative algorithms to solve the SFP. Their
algorithms, as well as others, see, e.g., Byrne [5], involve matrix inversion at each iter-
ative step. Calculating inverses of matrices is very time-consuming, particularly if the
dimensions are large. Therefore, a new algorithm for solving the SFP was devised by
Byrne [6], called the CQ-algorithm, with the following iterative step

xk+1 = PC

(

xk + γAt(PQ − I)Axk
)

, (2)

where xk and xk+1 are the current and the next iteration vectors, respectively, γ ∈
(0, 2/L) where L is the largest eigenvalue of the matrix AtA (t stands for matrix transpo-
sition), I is the unit matrix or operator and PC and PQ denote the orthogonal projections
onto C and Q, respectively.

The CQ-algorithm converges to a solution of the SFP, for any starting vector x0 ∈ RN ,
whenever the SFP has a solution. When the SFP has no solutions, the CQ-algorithm
converges to a minimizer of ‖PQ(Ac)− Ac‖ , over all c ∈ C, whenever such a minimizer
exists. A block-iterative CQ-algorithm, called the BICQ-method, is also available in
[6], see also Byrne [7] and his recent book [8]. The MSSFP, posed and studied in [11],
was handled, for both the feasible and the infeasible cases, with a proximity function
minimization approach, namely, if the MSSFP problem is consistent then unconstrained
minimization of the proximity function yields the value 0, otherwise, in the inconsistent
case, it finds a point which is least violating the feasibility by being “closest� to all sets,
as “measured� by the proximity function. Masad and Reich [18] is a recent sequel to [11]
where they prove weak and strong convergence theorems for an algorithm that solves
the multiple-set split convex feasibility problem in Hilbert space.

In the case of nonlinear constraints sets, orthogonal projections may demand a great
amount of work of solving a nonlinear optimization problem to minimize the distance
between the point and the constraint set. However, it can easily be estimated by linear
approximation using the current constraint violation and the subgradient at the current
point. This was done by Yang, in his recent paper [20], where he proposed a relaxed
version of the CQ-algorithm in which orthogonal projections are replaced by subgradient
projections, which are easily executed when the sets C and Q are given as lower level
sets of convex functions, see also [22]. In [12] Censor, Motova and Segal formulated a
simultaneous subgradient projections algorithm for the MSSFP.

Many common types of operators arising in convex optimization belong to the class of
directed operators. These operators were introduced and investigated by Bauschke and
Combettes in [3] (denoted there as T-class) and by Combettes in [15]. Using the notion
of directed operators we develop algorithms for the SCFPP. In Section 2 we present pre-
liminary material on the directed operators and discuss some particular cases. In Section
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3 we formulate the two operators split fixed point problem and study our algorithm for
it. In Section 4 we present our parallel algorithm for the SCFPP and establish its con-
vergence and, in Section 5, we note how it unifies and generalizes previously discussed
problems and algorithms.

2. Directed operators

The class T of operators was introduced and investigated by Bauschke and Combettes
in [3, Definition 2.2] and by Combettes in [15]. Operators in this class were named
directed operators in Zaknoon [21] and further employed under this name in [13]. We
recall definitions and results on directed operators and their properties as they appear
in [3, Proposition 2.4] and [15], which are also sources for references on the subject. Let
RN be the N -dimensional Euclidean space with 〈x, y〉 and ‖x‖ as the Euclidean inner
product and norm, respectively.

Given x, y ∈ RN we denote

H(x, y) :=
{

u ∈ RN | 〈u− y, x− y〉 ≤ 0
}

. (3)

Definition 2.1. An operator T : RN → RN is called a directed operator, if

FixT ⊆ H(x, T (x)) for all x ∈ RN , (4)

where FixT is the fixed points set of T , equivalently,

if q ∈ FixT then 〈T (x)− x, T (x)− q〉 ≤ 0 for all x ∈ RN . (5)

The class of directed operators is denoted by T, i.e.

T :=
{

T : RN → RN | FixT ⊆ H(x, T (x)) for all x ∈ RN
}

. (6)

Bauschke and Combettes [3] showed the following:

(i) That the set of all fixed points of a directed operator with nonempty FixT is closed
and convex because

FixT = ∩x∈RNH (x, T (x)) . (7)

(ii) That, denoting by I the unit operator,

If T ∈ T then I + λ(T − I) ∈ T for all λ ∈ [0, 1]. (8)

This class of operators is fundamental because many common types of operators arising in
convex optimization belong to the class and because it allows a complete characterization
of Fejér-monotonicity [3, Proposition 2.7]. The localization of fixed points is discussed in
[17, pages 43–44]. In particular, it is shown there that a firmly nonexpansive operator,
namely, an operator Ω : Rn → Rn that fulfills

‖Ω(x)− Ω(y)‖2 ≤ 〈Ω(x)− Ω(y), x− y〉 , for all x, y ∈ Rn, (9)

satisfies (7) and is, therefore, a directed operator. The class of directed operators, in-
cludes additionally, according to [3, Proposition 2.3], among others, the resolvents of
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maximal monotone operators, the orthogonal projections and the subgradient projec-
tors (see Example 2.3 below). Note that every directed operator belongs to the class of
operators F0, defined by Crombez [16, p. 161],

F0 := {T : Rn → Rn | ‖Tx− q‖ ≤ ‖x− q‖ for all q ∈ FixT and x ∈ Rn} , (10)

whose elements are called elsewhere quasi-nonexpansive or paracontracting operators.

The following definition of a closed operator will be required in the sequel.

Definition 2.2. An operator T : RN → RN is said to be closed at a point y ∈ RN if
for every x ∈ RN and every sequence

{

xk
}∞

k=0
in RN , such that, limk→∞ xk = x and

limk→∞ Txk = y, we have Tx = y.

For instance, the orthogonal projection onto a closed convex set is a closed operator
everywhere, due to its continuity.

In the next example and lemma we recall the notion of the subgradient projector ΠF (y)
and show that ΠF (y)− I is closed at 0.

Example 2.3. Let f : RN → R be a convex function such that the level set F :=
{

x ∈ RN | f(x) ≤ 0
}

is nonempty. The operator

ΠF (y) :=







y − f(y)

‖q‖2 q, if f(y) > 0,

y, if f(y) ≤ 0,
(11)

where q is a selection from the subdifferential set ∂f(y) of f at y, is called a subgradient

projector relative to f.

Lemma 2.4. Let f : RN → R be a convex function, let y ∈ RN and assume that the

level set F 6= ?. For any q ∈ ∂f(y), define the closed convex set

L = Lf (y, q) := {x ∈ RN | f(y) + 〈q, x− y〉 ≤ 0}. (12)

Then the following hold:

(i) F ⊆ L. If q 6= 0 then L is a half-space, otherwise L = Rn.

(ii) Denoting by PL(y) the orthogonal projection of y onto L,

PL(y) = ΠF (y). (13)

(iii) PL − I is closed at 0.

Proof. For (i ) and (ii ) see, e.g., [2, Lemma 7.3]. (iii ) Denote Ψ := PL−I. Take any x ∈
RN and any sequence

{

xk
}∞

k=0
in RN , such that, limk→∞ xk = x and limk→∞Ψ(xk) = 0.

Define f+(y) = max{f(y), 0}. Then Ψ(y) = f+(y)

‖q‖2
q, q ∈ ∂f(y). Since f+ is convex, its

subdifferential is uniformly bounded on bounded sets, see, e.g., [2, Corollary 7.9]. Using
this and the continuity of f+ we obtain that f+(x) = 0, and, therefore, Ψ(x) = 0.

Influenced by the framework established in Bregman et al. [4], and by Aharoni, Berman
and Censor’s (δ, η)-Algorithm [1] for solving convex feasibility problems, we define next
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another type of operators which we call “E-δ operators�. We need first the following
setup. Let E ⊂ RN be a nonempty closed convex set. We assume, without loss of
generality, that E is expressed as

E =
{

x ∈ RN | e(x) ≤ 0
}

, (14)

where e : RN → R is a convex function. Given a real number δ, 0 < δ ≤ 1, we define for
z /∈ E the ball

B(z, δe(z)) :=
{

x ∈ RN | ‖x− z‖ ≤ δe(z)
}

. (15)

For all pairs (y, t) ∈ RN ×RN we look at the half-spaces of the form

S(y, t) :=
{

u ∈ RN | 〈u, t〉 ≤ 〈y, t〉
}

, (16)

and define

Aδ(e(z)) :=
{

(y, t) ∈ RN ×RN | E ⊆ S(y, t) and intB(z, δe(z)) ∩ S(y, t) = ?
}

. (17)

We also need to impose the following condition.

Condition 2.5. Given a set E ⊂ RN , described as in (14), it is true that for every

z /∈ E
B(z, δe(z)) ∩ E = ?. (18)

Every convex set E can be described by (14) with e(z) = d(z, E), the distance function
between the point z and the set E, and in this case Condition 2.5 always holds.

Definition 2.6. Given a set E =
{

x ∈ RN | e(x) ≤ 0
}

where e : RN → R is a convex
function and a real number δ, 0 < δ ≤ 1, such that Condition 2.5 holds, we define the
operator TE,δ for any z ∈ RN , by

TE,δ(z) :=

{

PS(y,t)(z), if z /∈ E,

z, if z ∈ E,
(19)

where (y, t) is any selection from Aδ(e(z)), and call it an E-δ operator.

The fact that any E-δ operator is a directed operator follows from its definition.

Lemma 2.7. If TE,δ is an E-δ operator then TE,δ − I is closed at 0.

Proof. Let
{

zk
}∞

k=0
be a sequence with zk /∈ E for all k ≥ 0, such that limk→∞ zk = q ∈

RN and limk→∞

∥

∥TE,δ(z
k)− zk

∥

∥ = 0. For every k = 0, 1, 2, . . . we have

∥

∥TE,δ(z
k)− zk

∥

∥ ≥ δe(zk). (20)

Taking limits on both sides of the last inequality we obtain

lim
k→∞

e(zk) = 0, (21)

and from the continuity of e(z) follows that e(q) = 0 and, therefore, q ∈ FixTE,δ.
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Next we show that the subgradient projector of Example 2.3 is a TE,δ operator. To show
that an operator is a TE,δ operator one needs to guarantee (among other things) that,
given a set E, the intersection B(z, δe(z))∩E is empty for all z /∈ E, for some choice of
a real number δ, 0 < δ ≤ 1. This is done in the next lemma.

Lemma 2.8. Let e : Rn → R be a convex function such that the level set E :=
{

x ∈ RN | e(x) ≤ 0
}

is nonempty. Then there exists a real number δ, 0 < δ ≤ 1, such
that the subgradient projector ΠE(z) of Example 2.3 is a TE,δ operator.

Proof. If e(z) ≤ 0 then z ∈ E and, by definition, ΠE(z) = z. If e(z) > 0 then, using the
setup of (14)–(17), let

Le(z, t) = {x ∈ RN | e(z) + 〈t, x− z〉 ≤ 0}, (22)

where t ∈ ∂e(z). By Lemma 2.4 we have that E ⊆ Le(z, t). Now we need to show that
intB(z, δe(z)) ∩ Le(z, t) = ?. Denoting w = ΠE(z) ∈ Le(z, t), it follows from (22) that

e(z) ≤ 〈t, z − w〉 ≤ ‖t‖ ‖w − z‖ . (23)

By [2, Corollary 7.9] the subdifferential ∂e(z) is uniformly bounded on bounded sets,
i.e., there exists a K > 0, such that ‖t‖ ≤ K, hence, e(z) ≤ K ‖w − z‖ . Taking any
δ < 1/K we obtain

δe(z) ≤ ‖w − z‖ , (24)

which implies that

intB(z, δe(z)) ∩ Le(z, t) = ?. (25)

Aside from theoretical interest, the extension (of subgradient projectors) to TE,δ opera-
tors can lead to algorithms useful in practice, provided that the computational efforts of
finding hyperplanes S(y, t) are reasonable. Another special case (besides the subgradient
hyperplane) is obtained by constructing the S(y, t) via an interior point in the convex set
(using the assumption that in each set we know a point in its interior), see [14, Algorithm
5.5.2].

3. The two-operators split common fixed point problem

The split common fixed point problem for a single pair of directed operators is obtained
from Problem 1.1 with p = r = 1.

Definition 3.1. Let A be a realM×N matrix and let U : RN → RN and T : RM → RM

be operators with nonempty FixU = C and FixT = Q. The two-operators split common
fixed point problem is to find x∗ ∈ C such that Ax∗ ∈ Q.

Denoting the solution set of the two-operators SCFPP by

Γ ≡ Γ(U, T ) := {y ∈ C | Ay ∈ Q} , (26)

the following algorithm is designed to solve it.
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Algorithm 3.2.

Initialization: Let x0 ∈ RN be arbitrary.

Iterative step: For k ≥ 0 let

xk+1 = U
(

xk + γAt(T − I)(Axk)
)

, (27)

where γ ∈ (0, 2/L), L is the largest eigenvalue of the matrix AtA and I is the unit

operator.

We recall the definition of Fejér-monotone sequences, which will be useful for our further
analysis.

Definition 3.3. A sequence {xk}∞k=0 is called Fejér-monotone with respect to a given
nonempty set S ⊆ RN if for every x ∈ S,

∥

∥xk+1 − x
∥

∥ ≤
∥

∥xk − x
∥

∥ , for all k ≥ 0. (28)

To prove convergence of Algorithm 3.2 we need the following lemma.

Lemma 3.4. Given a real M × N matrix A, let U : RN → RN and T : RM → RM

be directed operators with nonempty FixU = C and FixT = Q. Any sequence
{

xk
}∞

k=0
,

generated by Algorithm 3.2, is Fejér-monotone with respect to the solution set Γ.

Proof. Taking y ∈ Γ we use (10) to obtain

∥

∥xk+1 − y
∥

∥

2
=
∥

∥U
(

xk + γAt(T − I)(Axk)
)

− y
∥

∥

2

≤
∥

∥xk + γAt(T − I)Axk − y
∥

∥

2

=
∥

∥xk − y
∥

∥

2
+ γ2

∥

∥At(T − I)(Axk)
∥

∥

2

+ 2γ
〈

xk − y, At(T − I)(Axk)
〉

=
∥

∥xk − y
∥

∥

2
+ γ2

〈

(T − I)(Axk), AAt(T − I)(Axk)
〉

+ 2γ
〈

xk − y, At(T − I)(Axk)
〉

. (29)

From the definition of L follows

γ2
〈

(T − I)(Axk), AAt(T − I)(Axk)
〉

≤ Lγ2
〈

(T − I)(Axk), (T − I)(Axk)
〉

= Lγ2
∥

∥(T − I)(Axk)
∥

∥

2
. (30)

Denoting Θ := 2γ
〈

xk − y, At(T − I)(Axk)
〉

and using (5) we obtain

Θ = 2γ
〈

A(xk − y), (T − I)(Axk)
〉

= 2γ
〈

A(xk − y) + (T − I)(Axk)− (T − I)(Axk), (T − I)(Axk)
〉

= 2γ
(

〈

T (Axk)− Ay, (T − I)(Axk)
〉

−
∥

∥(T − I)(Axk)
∥

∥

2
)

≤ − 2γ
∥

∥(T − I)(Axk)
∥

∥

2
. (31)
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From (29) and by using (30) and (31) follows

∥

∥xk+1 − y
∥

∥

2 ≤
∥

∥xk − y
∥

∥

2
+ γ(Lγ − 2)

∥

∥(T − I)(Axk)
∥

∥

2
. (32)

Then, from the definition of γ, we obtain

∥

∥xk+1 − y
∥

∥

2 ≤
∥

∥xk − y
∥

∥

2
, (33)

from which the Fejér-monotonicity with respect to Γ follows.

The next lemma describes a property of directed operators that will be used in our
convergence analysis.

Lemma 3.5. Let T : RN → RN be a directed operator with FixT 6= ?. For any

q ∈ FixT and any x ∈ RN ,

‖T (x)− q‖2 ≤ ‖x− q‖2 − ‖T (x)− x‖2 . (34)

Proof. Since T is directed, we use (5) to obtain

‖x− q‖2 = ‖T (x)− x− (T (x)− q)‖2

= ‖T (x)− x‖2 + ‖T (x)− q‖2 − 2 〈T (x)− x, T (x)− q〉
≥ ‖T (x)− x‖2 + ‖T (x)− q‖2 , (35)

from which the proof follows.

Now we present the convergence result for Algorithm 3.2.

Theorem 3.6. Given a real M × N matrix A, let U : RN → RN and T : RM → RM

be directed operators with nonempty FixU = C and FixT = Q. Assume that (U − I)
and (T − I) are closed at 0. If Γ 6= ?, i.e., the problem is consistent, then any sequence
{

xk
}∞

k=0
, generated by Algorithm 3.2, converges to a split common fixed point x∗ ∈ Γ.

Proof. From (32) we obtain that the sequence
{∥

∥xk − y
∥

∥

}∞

k=0
is monotonically decreas-

ing. Therefore,
lim
k→∞

∥

∥(T − I)(Axk)
∥

∥ = 0. (36)

From the Fejér-monotonicity of
{

xk
}∞

k=0
follows that the sequence is bounded. Denoting

by x∗ a cluster point of
{

xk
}∞

k=0
, let ℓ = 0, 1, 2, . . . be the sequence of indices, such that

lim
ℓ→∞

xkℓ = x∗. (37)

Then, from (36) and closedness of (T − I) at 0 we obtain,

T (Ax∗) = Ax∗, (38)

from which Ax∗ ∈ Q follows. Denote

uk := xk + γAt(T − I)(Axk). (39)
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Then

ukℓ = xkℓ + γAt(T − I)(Axkℓ) (40)

and, from (36) and (37), it follows that

lim
ℓ→∞

ukℓ = x∗. (41)

Next we show that x∗ ∈ C. Assume, by negation, that x∗ /∈ C, i.e., that Ux∗ 6= x∗. Then
from closedness of the operator (U − I) at 0 follows that

lim
ℓ→∞

∥

∥U(ukℓ)− ukℓ
∥

∥ 6= 0. (42)

Therefore, there exists an ε > 0 and a subsequence
{

ukℓs
}∞

s=0
of the sequence

{

ukℓ
}∞

ℓ=0
,

such that
∥

∥U(ukℓs )− ukℓs
∥

∥ > ε, s = 0, 1, . . . . (43)

Since U is directed, for any z ∈ Γ we have, by virtue of Lemma 3.5, that for s = 1, 2, . . . ,

∥

∥U(ukℓs )− z
∥

∥

2 ≤
∥

∥ukℓs − z
∥

∥

2 −
∥

∥U(ukℓs )− ukℓs
∥

∥

2

<
∥

∥ukℓs − z
∥

∥

2 − ε2. (44)

It can be shown, following the same lines as in the proof of Lemma 3.4, that for any
z ∈ Γ, we have

∥

∥

(

xk + γAt(T − I)(Axk)
)

− z
∥

∥ ≤
∥

∥xk − z
∥

∥ . (45)

Since xk+1 = U(uk), k = 0, 1, . . ., (10) implies that

∥

∥xk+1 − z
∥

∥ ≤
∥

∥uk − z
∥

∥ . (46)

Then (45) and (46) indicate that the sequence {x1, u1, x2, u2, . . .} is Fejér-monotone with
respect to Γ. Since U(ukℓs ) = xkℓs+1, we obtain, using (44), that the sequence

{

ukℓs
}∞

s=0
is also Fejér-monotone with respect to Γ. Moreover,

∥

∥ukℓs+1 − z
∥

∥

2
<
∥

∥ukℓs − z
∥

∥

2 − ε2, for s = 1, 2, . . . . (47)

and this cannot be true for infinitely many vectors ukℓs . Hence x∗ ∈ C and, therefore,
x∗ ∈ Γ.

Replacing y by x∗ in (32) we obtain that
{∥

∥xk − x∗
∥

∥

}∞

k=0
monotonically decreasing and

its subsequence
{∥

∥xkℓ − x∗
∥

∥

}∞

ℓ=0
converges to 0. Hence limk→∞ xk = x∗.

4. A parallel algorithm for the SCFPP

We employ a product space formulation, originally due to Pierra [19], to derive and
analyze a simultaneous algorithm for the SCFPP of Problem 1.1. Let Γ be the solution
set of the SCFPP. We introduce the spaces V =RN and W = RrN+pM , where r, p, N
and M are as in Problem 1.1, and adopt the notational convention that the product
spaces and all objects in them are represented in boldface type.
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Define the following sets in the product spaces

C: = RN and (48)

Q: =

(

r
∏

i=1

√
αiCi

)

×
(

p
∏

j=1

√

βjQj

)

, (49)

and the matrix

A : =
(√

α1I, . . . ,
√
αrI,

√

β1A
t, . . . ,

√

βpA
t
)t

, (50)

where αi > 0, for i = 1, 2, . . . , p, and βj > 0, for j = 1, 2, . . . , r, and t stands for matrix
transposition.

Let us define also the operator T : W → W by

T(y) =





















U1











y1
y2
...
yN





















t

,











U2











yN+1

yN+2
...

y2N





















t

, . . . ,











Ur











yN(r−1)+1

yN(r−1)+2
...

yrN





















t

,











T1











yrN+1

yrN+2
...

yrN+M





















t

,











T2











yrN+M+1

yrN+M+2
...

yrN+2M





















t

, . . . ,











Tp











yrN+M(p−1)+1

yrN+M(p−1)+2
...

yrN+pM





















t









t

,

(51)

We have obtained a two-operators split common fixed point problem in the product
space, with sets C =RN , Q ⊆ W, the matrix A, the identity operator I : C → C and
the operator T : W → W. This problem can be solved using Algorithm 3.2. It is also
easy to verify that the following equivalence holds

x ∈ Γ if and only if Ax ∈ Q. (52)

Therefore, we may apply Algorithm 3.2

xk+1 = xk + γAt(T− I)(Axk), k ≥ 0, (53)

to the problem (48)–(51) in order to obtain a solution of the original SCFPP. We translate
the iterative step (53) to the original spaces RN and RM using the relation

T(Ax) =
(√

α1U1(x), . . . ,
√
αrUr(x),

√

β1AT1(x), . . . ,
√

βtATp(x)
)t

(54)

and obtain the following algorithm,

Algorithm 4.1.

Initialization: Let x0 be arbitrary.

Iterative step: For k ≥ 0 let

xk+1 = xk + γ

(

p
∑

i=1

αi

(

Ui(x
k)− xk

)

+
r
∑

j=1

βjA
t
(

Tj(Ax
k)− Axk

)

)

. (55)
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Here γ ∈ (0, 2/L), with L =
∑p

i=1 αi + λ
∑r

j=1 βj, where λ is the largest eigenvalue of

the matrix AtA.

The following convergence result follows from Theorem 3.6.

Theorem 4.2. Let Ui : R
N → RN , i = 1, 2, . . . , p, and Tj : R

N → RN , j = 1, 2, . . . , r,
be directed operators with fixed points sets Ci, i = 1, 2, . . . , p and Qj, j = 1, 2, . . . , r,
respectively, and let A be an M × N real matrix. Assume that (Ui − I), i = 1, 2, . . . , p
and (Tj − I), j = 1, 2, . . . , r, are closed at 0. If Γ 6= ? then every sequence, generated by

Algorithm 4.1, converges to x∗ ∈ Γ.

Proof. Applying Theorem 3.6 to the two operators split common fixed point problem
in the product space setting with U = I : RN → RN , FixU = C and T = T : W → W,
FixT = Q the proof follows.

5. Applications and special cases

In this section we review special cases of the split common fixed point problem (SCFPP)
described in Problem 1.1, and a real-world application of algorithms for its solution.
SCFPP generalizes the multiple-sets split feasibility problem (MSSFP) which requires
to find a point closest to a family of closed convex sets in one space such that its image
under a linear transformation will be closest to another family of closed convex sets in the
image space. It serves as a model for real-world inverse problems where constraints are
imposed on the solutions in the domain of a linear operator as well as in the operator’s
range. MSSFP itself generalizes the convex feasibility problem (CFP) and the two-
sets split feasibility problem. Formally, given nonempty closed convex sets Ci ⊆ RN ,
i = 1, 2, . . . , p, in the N -dimensional Euclidean space RN , and nonempty closed convex
sets Qj ⊆ RM , j = 1, 2, . . . , r, and an M × N real matrix A, the multiple-sets split
feasibility problem (MSSFP) is

find a vector x∗ ∈ C := ∩p
i=1Ci such that Ax∗ ∈ Q := ∩r

i=1Qj. (56)

The algorithm for solving theMSSFP, presented in [11], generalizes Byrne’s CQ-algorithm
[6] and involves orthogonal projections onto the sets Ci ⊆ RN , i = 1, 2, . . . , p, and the
sets Qj ⊆ RM , j = 1, 2, . . . , r, and has the following iterative step

xk+1 = xk + γ

(

p
∑

i=1

αi

(

PCi
(xk)− xk

)

+
r
∑

j=1

βjA
t
(

PQj
(Axk)− Axk

)

)

, (57)

where xk and xk+1 are the current and the next iteration vectors, respectively, αi > 0,
i = 1, 2, . . . , p, and βj > 0, j = 1, 2, . . . , r, are user-chosen parameters, γ ∈ (0, 2/L),
where L =

∑p

i=1 αi + λ
∑r

j=1 βj and λ is the spectral radius of the matrix AtA. The

algorithm converges to a solution of the MSSFP, for any starting vector x0 ∈ RN ,
whenever the MSSFP has a solution. In the inconsistent case, it finds a point which is
least violating the feasibility by being “closest� to all sets, as “measured� by a proximity
function. Since the orthogonal projection P is a directed operator and P − I is closed
at 0, the algorithm (57) is a special case of our Algorithm 4.1.



598 Y. Censor, A. Segal / The Split Common Fixed Point Problem for Directed ...

Finding at each iterative step the orthogonal projections can be computationally inten-
sive and may affect the algorithm’s efficiency. In the relaxed CQ-algorithm for solving
the two-sets split feasibility problem, Yang [20] assumes, without loss of generality, that
the sets C and Q are nonempty and given by

C =
{

x ∈ RN | c(x) ≤ 0
}

and Q =
{

y ∈ RM | q(y) ≤ 0
}

, (58)

where c : RN → R and q : RM → R are a convex functions, respectively. And instead of
orthogonal projections he uses the subgradient projectors. In [12] we generalized Yang’s
result by formulating the following simultaneous subgradient projectors algorithm for the
MSSFP, which is also a special case of our Algorithm 4.1 (see Example 2.3 and Lemma
2.4). Assume, without loss of generality, that the sets Ci and Qj are expressed as

Ci =
{

x ∈ RN | ci(x) ≤ 0
}

and Qj =
{

y ∈ RM | qj(y) ≤ 0
}

, (59)

where ci : R
N → R, and qj : R

M → R are convex functions for all i = 1, 2, . . . , p, and all
i = 1, 2, . . . , r, respectively.

Algorithm 5.1 ([12]).

Initialization: Let x0 be arbitrary.

Iterative step: For k ≥ 0 let

xk+1 = xk + γ

(

p
∑

i=1

αi

(

PCi,k
(xk)− xk

)

+
r
∑

j=1

βjA
t
(

PQj,k
(Axk)− Axk

)

)

. (60)

Here γ ∈ (0, 2/L), with L =
∑p

i=1 αi + λ
∑r

j=1 βj, where λ is the spectral radius of AtA,
and

Ci,k =
{

x ∈ Rn | ci(xk) +
〈

ξi,k, x− xk
〉

≤ 0
}

, (61)

where ξi,k ∈ ∂ci(x
k) is a subgradient of ci at the point xk, and

Qj,k =
{

x ∈ Rm | qj(xk) +
〈

ηj,k, y − Axk
〉

≤ 0
}

, (62)

where ηj,k ∈ ∂qj(Ax
k).

A new possibility that follows from our present work is to solve the MSSFP with Al-
gorithm 4.1 and using E-δ operators. We present this in the framework of (14)–(17).
Choosing parameters {δi}p+r

i=1 , such that 0 < δi ≤ 1 for all i = 1, 2, . . . , p + r, define the
directed operators TCi,δi and TQj ,δp+j

as in Definition 2.6.

Algorithm 5.2.

Initialization: Let x0 be arbitrary.

Iterative step: For k ≥ 0 let

xk+1 = xk + γ

(

p
∑

i=1

αi

(

TCi,δi(x
k)− xk

)

+
r
∑

j=1

βjA
t
(

TQj ,δp+j
(Axk)− Axk

)

)

. (63)

Here γ ∈ (0, 2/L), with L =
∑p

i=1 αi + λ
∑r

j=1 βj, where λ is the largest eigenvalue of

the matrix AtA.
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Algorithm 5.1 is a special case of Algorithm 5.2 since, by Lemma 2.8, subgradient pro-
jectors are TE,δ operators.

Finally, we mention that our work is related to significant real-world applications. In
a recent paper [9], the multiple-sets split feasibility problem was applied to the inverse
problem of intensity-modulated radiation therapy (IMRT). In this field beams of pen-
etrating radiation are directed at the lesion (tumor) from external sources in order to
eradicate the tumor without causing irreparable damage to surrounding healthy tissues,
see, e.g., [11].

In addition to the physical and biological parameters of the irradiated object that are
assumed known for the dose calculation, information about the capabilities and speci-
fications of the available treatment machine (i.e., radiation source) is given. Based on
medical diagnosis, knowledge, and experience, the physician prescribes desired upper and

lower dose bounds to the treatment planning case. The output of a solution method for
the inverse problem is a radiation intensity function (also called intensity map). Its
values are the radiation intensities at the sources, as a function of source location, that
would result in a dose function which agrees with the prescribed dose bounds.

Recently the concept of equivalent uniform dose (EUD) was introduced to describe dose
distributions with a higher clinical relevance. These EUD constraints are defined for
tumors as the biological equivalent dose that, if given uniformly, will lead to the same
cell-kill in the tumor volume as the actual non-uniform dose distribution. They could
also be defined for normal tissues. We developed in [9] a unified theory that enables
treatment of both EUD constraints and physical dose constraints. This model relies
on the multiple-sets split feasibility problem formulation and accommodates the specific
IMRT situation.
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