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Abstract. In the 3-dimensional Euclidean space (the model of the 3-dimensional
projective space) among the surfaces of 4th order with a nodal line those through
the absolute conic are extracted as a special class which contains the pedal surfaces
of (1,2)-congruences. One class of these surfaces is classified with regard to the
number and types of their real singular points. These surfaces have been visualized
using the program Mathematica 3.0.

Key Words: (1,2)-congruences, pedal surfaces of congruences, quartic surfaces

1. Introduction

Among the surfaces in the Euclidean space those which contain the absolute conic are of
special interest. The cyclides are examples of such surfaces as they are 4th order surfaces
(quartics) which contain the absolute conic as a nodal curve. But the quartics with a nodal
line which contain the absolute conic as an ordinary curve have interesting properties, too. In
this paper we combine methods of synthetic and analytical geometry and we make use of the
highly developed graphics facilities of the system Mathematica 3.0 in order to enumerate one
class of symmetric quartics through the absolute conic with a nodal line. For some of these
surfaces also the shapes are displayed.

2. Quartics with a nodal line

According to [8, p. 315] the quartics with a nodal line d belong to the class of nth order
surfaces with a multiple line of multiplicity n − 2 . According to [6, p. 1575], they form one
of the four basis types in Kummer’s classification of quartics which pass through conics [5].
These surfaces contain sixteen simple lines in eight planes of the pencil [d] [10, p. 250], eight
nodal points which do not lie on the line d [7, p. 218], four pinch-points on the nodal line d
and, besides ∞1 conics in the planes of the pencil [d], other 128 conics which lie in 64 planes
[6, p. 1633].
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Salmon [7] considered quartics with a nodal line as a special class of quartics with nodal
curves. According to [7, p. 217], the general equation of these surfaces in the homogeneous
Cartesian coordinates (x : y : z : w) may be written as

u4 + z u3 + w u3 + z2 t2 + z v u2 + w2 v2 = 0 (1)

where ui, vi, ti are homogeneous polynomials in x and y of order i, and the z-axis is a nodal
line. Merely in view of the variety of u2, v2, t2 Salmon indicated some of the cases which
would need to be considered in the complete classification of quartics with a nodal line [7,
p. 217].

3. Quartics through the absolute conic and with a nodal line

We do not intend to give here a complete list of different kinds of these surfaces, but we
merely indicate the first step towards their complete classification.

Lemma 1 In homogeneous Cartesian coordinates (x : y : z : w) the general equations of the
intersection between the plane at infinity and the quartics through the absolute conic and
with the z-axis as nodal line are as follows:

(x2 + y2 + z2)(a2x2 − b2y2) = 0, w = 0

(x2 + y2 + z2)(ax− by)2 = 0, w = 0 (2)

(x2 + y2 + z2)(a2x2 + b2y2) = 0, w = 0

Proof: Since the point at infinity of the z-axis is a nodal point of the surface, the plane at
infinity cuts the surface along the absolute conic and two lines through the point (0 : 0 : 1 : 0).
Therefore, the formulas (2) are direct consequences of the following facts:

- (x2 + y2 + z2) = w = 0 are the equations of the absolute conic, and

- a2x2 − b2y2 = 0 or (ax − by)2 = 0 or a2x2 + b2y2 = 0, each combined with w = 0,
are the equations of two real, of one two-fold or of a pair of imaginary lines through the
point (0 : 0 : 1 : 0).

In analogy to the affine types of conics we can call a quartic passing through the absolute
conic and with a nodal line hyperbolic, parabolic or elliptic, if it has two, one or no real lines
at infinity, respectively.

Theorem 1 Equation (1) defines a quartic through the absolute conic and with the z-axis
as a nodal if and only if

u4 = (x2 + y2)t2, u3 = 0 and t2 = a2x2 − b2y2 or t2 = (ax− by)2 or t2 = a2x2 + b2y2.

Proof: For w = 0 equ. (1) takes the form u4 + zv3 + z2t2 = 0. New we apply Lemma 1.

4. Pedal surfaces of (1,2)-congruences

The locus of the feet of perpendiculars drawn from any fixed finite point P , called the pole,
to the rays of an (n,m)-congruence is called the pedal surface of this congruence.
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4.1. (1,2)-congruences

According to [9, p. 37] each 1st order and 2nd class congruence of lines K12 may be regarded as
the system of lines meeting two directing curves, a conic c and a straight line d with only one
common point O. In two planes (the plane of the conic c and the plane spanned by the line d
and the tangent of the conic c at O) the rays of the congruence form two pencils of lines (O).
All other lines of the bundle of lines {O} are not regarded as the rays of the congruence.

A point is called a singular point of a congruence if ∞1 rays are passing through it.
Similarly, a plane is called a a singular plane of a congruence if it contains∞1 rays [4, p. 262].
The singular points of K12(c, d, O) lie on the conic c or on the line d, and the singular planes
of K12(c, d, O) are the planes of the pencil [d] and the plane of the conic c [1, p. 10].

According to the intersection of a congruence with the plane at infinity the congruences
K12(c, d, O) may be classified into six types:

I: c is an ellipse, d is a finite line, O is a finite point. K12(c, d, O) has a pair of imaginary
rays through one real singular point at infinity.

II: c is a parabola, d is a finite line, O is a finite point. K12(c, d, O) has coinciding rays
through two real singular points at infinity.

III: c is a hyperbola, d is a finite line, O is a finite point. K12(c, d, O) has two real rays
through three real singular points at infinity.

IV: c is a parabola, d∞ is a line at infinity, O∞ is a point at infinity. K12(c, d∞, O∞) has the
singular line d∞ and the pencil of rays (O∞) at infinity.

V: c is a hyperbola, d∞ is a line at infinity, O∞ is a point at infinity. K12(c, d∞, O∞) has the
singular line d∞ and the pencil of rays (R∞) at infinity, where R∞ ∈ c and R∞ 6= O∞.

VI: c∞ is a conic at infinity, d is a finite line, O∞ is a point at infinity. K12(c∞, d, O∞) has
the singular conic c∞ and the pencil of rays (O∞) at infinity.

4.2. Quartic inversion

The quartic inversion iΨ : P
3 → P 3, defined in [2], is a transformation of the projective space

into itself where corresponding points A and iΨ(A) are conjugate with respect to a regular
quadric Ψ and lying on the rays of a congruence K12(c, d, O).

This is a Cremona transformation with singular points on the curves d, c and e6, where
e6 is the curve of contact between the quadric Ψ and a 6th order ruled surface which is the
intersection of K12(c, d, O) and the complex of lines tangent to Ψ [2].

In [2, p. 191-194] it is proved that for every plane φ the image iΨ(φ) is a quartic with a
nodal line d, which contains c and e6.

There are two special cases where this quartic is reducible:
1. If φ is any plane of the pencil [d], then iΨ(φ) splits into the cubic surface iΨ(d) and the

plane φ.

2. If φ is the plane of the conic c, then iΨ(φ) splits into the ruled cubic iΨ(c) with a nodal
line d and the plane φ.

For all other planes iΨ(φ) is an irreducible quartic cutting φ along two rays of K12(c, d, O) and
along the conic of intersection between φ and Ψ.

4.3. Pedal surfaces

Theorem 1.1 of [1, p. 10] says that the pedal surface of K12(c, d, O) for the pole P is the image
of the plane at infinity under the quartic inversion with respect to K12(c, d, O) and any sphere
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centered at P .

It is clear that the pedal surface is a quartic with the nodal line d containing c and the
absolute conic. It is also clear, according to the properties of the quartic inversion, that the
pedal surface splits into the plane at infinity and a cubic surface if the congruence K12(c, d, O)
belongs to types IV, V or VI.

If we exclude the two special cases ([1, p. 15]), which will be mentioned in the subsection
5.5. of this paper, then the pedal surfaces for all other types of (1,2)-congruences are irreducible
quartics with nodal line d which contain the absolute conic. If K12(c, d, O) is of the type I, II
or III then this quartic is elliptic, parabolic or hyperbolic in the sense of section 3.

Figure 1: The illustration of Theorem
1.2 in [1]

Figure 2: Generation of the pedal surfaces

The basis for the constructive treatment of pedal surfaces is Theorem 1.2 in [1, p. 10]. It
says that each plane δ ∈ [d], which cuts the conic c in the point C, cuts the pedal surface
along the double line d and the circle with the diameter CP ′, where P ′ is the foot of P in the
plane δ (see Fig. 1).

Now we can comprehend the generation of the pedal surfaces as it is shown in Fig. 2: k
is the circle in the plane through the pole P perpendicular to the line d. One of its diameters
is enclosed by P and by the foot of P on the line d.

If the congruence belongs to the types IV or V, i.e. K12(c, d∞, O∞), then the circle k splits
into two lines. One is the line at infinity in the polar plane of O∞ (the polarity is determined
by any sphere with the center P ), and the other is the perpendicular from P to the planes
of the pencil [d∞]. One example of the pedal surface for a congruence of type IV is shown in
Fig. 3.

If the congruence belongs to type VI, i.e. K12(c∞, d, O∞), then the circles in the planes of
the pencil [d] split into two lines. In each plane one of these lines is the perpendicular from
the point P ′ to the rays of the pencil (C∞), and the other is the line at infinity. One example
of the pedal surface for a congruence of type VI is displayed in Fig. 4.
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Figure 3: The line d∞ is determined by one directing plane parallel to the axis of the directing
parabola c. The pedal surface is the cubic through the curves d∞ and k and the parabola c

Figure 4: The conic c∞ is determined by a one-sheet hyperboloid which contains the line d
as a generator. The pedal surface is the conoid of 3rd degree with the nodal line d and it
contains the circle k and the conic c∞.

5. Classification and construction of the pedal surfaces of (1,2)-con-
gruences with a one-parameter set of ellipses

For the pedal surfaces which will be the topic of this section the directing conic of K12 is an
ellipse e, different from a circle. e lies in a plane perpendicular to the directing line d which
intersects e at a given point O (see Fig. 5). These surfaces have the special property that
they are symmetric with respect to a plane which is not contained in the pencil [d].

In the Cartesian coordinate system (O, x, y, z) the directrices e and d and point P can be
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given in the following way:

e . . . b2(x− xE)
2 + (y − b

√

1− x2E)
2 = b2, z = 0, (0 < b ≤ 1, 0 ≤ xE ≤ 1)

d . . . x = 0, y = 0

P . . . (p, q, r).

Here b is the minor semi-axis and xE the abscissa of the center E of the ellipse e (see Fig. 5).
Without loss of generality we assumed that the major semi-axis a of the ellipse e is 1.

Since the pedal surface of K12(e, d, O) for the pole P is uniquely determined by the five
numbers b, xE, p, q, r, we will denote it by FE[b, xE , p, q, r].

Figure 5 Figure 6

5.1. The equations of FE[b, xE, p, q, r]

Between the pencil of planes [d] and the half-closed interval [−π/2, π/2) there is a one-to-one
mapping u ↔ δ(u) (Fig. 6). According to Theorem 1.2 of [1, p. 11], each plane δ(u) cuts
FE [b, xE , p, q, r] along the circle c(u) with diameter CP ′. In the plane δ(u) we introduce the
Cartesian coordinate system (O, t, z): The t-axis is the intersection of δ(u) and the xy-plane
and its positive orientation points into the semiplane x ≥ 0 (Fig. 6).

It is clear that in the cylindrical coordinate system (O, t, u, z) the equation of the surface
FE [b, xE , p, q, r] can be written as

(t− tS(u))
2 +

(

z − r

2

)2

= R2(u), u ∈ [−π
2
,
π

2
) (3)

where tS(u) is the t-coordinate of the center and R(u) is the radius of the circle c(u) in the
plane δ(u). tS(u) and R(u) depend on the t- and z-coordinates of C and P ′ according to

tS(u) =
1

2
(tC(u) + tP ′(u)), (4)

R(u) =
1

2

√

(tC(u)− tP ′(u))2 + r2 . (5)
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Figure 7: The circle k is the normal projection of the circle k into the xy-plane

tC(u) is a function of b and xE and it is given by

tC(u) =
2b(b xE cosu+

√

1− x2E sin u)

b2 cos2 u+ sin2 u
. (6)

tP ′(u) depending on p and q (see Fig. 7) obeys

tP ′(u) = p cosu+ q sin u . (7)

After the substitution of t =
√

x2 + y2 and u = arctan y

x
into equation (3) we can write the

equation of FE[b, xE , p, q, r] in the homogeneous Cartesian coordinates (x : y : z : w) in the
following Salmon form:

(x2 + y2)(b2x2 + y2)− [(px+ qy)(b2x2 + y2) + 2b(b xEx+
√

1− x2E y)(x
2 + y2)]w +

+ z2(b2x2 + y2)− r(b2x2 + y2)zw + 2b(b xEx+
√

1− x2E y)(px+ qy)w2 = 0 (8)

Since

t(v) = R(u) sin v + tS(u), z(v) = R(u) cos v +
r

2
, v ∈ [0, 2π) (9)

are parametric equations of the circle c(u) ⊂ δ(u) in the coordinate system (O, t, z) and
x = t cosu, y = t sin u, we obtain

x(u, v) = cosu (R(u) sin v + tS(u))

y(u, v) = sin u (R(u) sin v + tS(u))

z(u, v) = R(u) cos v +
r

2
, u ∈ [−π

2
,
π

2
], v ∈ [0, 2π)

(10)

as the parametric equations of the surface FE [b, xE, p, q, r] in the coordinate system (O, x, y, z).
It is clear that the v-curves are the circles c(u) in the planes δ(u) of the pencil [d].
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5.2. Singular points of FE[b, xE, p, q, r] on the nodal line

A point on the nodal line d is a binode, a pinch-point or an isolated double point of FE[b, xE,
p, q, r], if there exist two real, coinciding or imaginary tangent planes, respectively.

It was mentioned earlier that a quartic surface with a nodal line has four pinch-points
([6], [7]), but these need not be real and distinct points.

Theorem 2 The pinch-points of the surface FE[b, xE , p, q, r], r 6= 0, are pairwise coinciding
if and only if p = q = 0.

Proof: According to [7, p. 218] the pinch-points are pairwise coinciding if and only if the
polynomials t2, u2, v2 in equation (1) have a common factor. For the surface FE[b, xE , p, q, r]
equ. (1) takes the form (8). Since the polynomial b2x2+ y2 is irreducible, the polynomials t2,
u2, v2 in (8) may have a common factor only if v2 is equal to zero.

Because of the assumed values for the numbers b and xE the polynomial v2 in (8) vanishes
only in the case p = q = 0.

From the construction of the pedal surfaces it is clear that all circles c(u) on such a surface
are passing through the points P (0, 0, r) and O(0, 0, 0) (see Fig. 12).

Corollary 1 The four pinch-points of the surface FE [b, xE, p, q, r] coincide if and only if
p = q = r = 0.

Proof: For r = 0 it is a direct consequence of Theorem 3 (see Fig. 13).

Now, let us consider the other cases, i.e., p 6= 0 ∨ q 6= 0:

Lemma 2 The circles of the system c(u), u ∈ [−π
2
, π
2
), intersect the nodal line d in pairs

(B1, B2) of a symmetric involution.

Proof: For each binode B1 on the line d there are two circles of the system c(u), u ∈ [−π
2
, π
2
),

passing through ([2, p. 192]). Since the surface FE[b, xE , p, q, r] is symmetric with respect to
the plane z = r

2
(z-coordinate of the centers of the circles c(u)) these two circles intersect

once more in the binode B2 which is symmetric to B1 with respect to the plane z = r
2
.

Lemma 3 The parameters u1, u2 of circles c(u1), c(u2) sharing the binodes (B1, B2) on d
obey the equations:
(a) if p = 0, xE = 0, q 6= 0 or q = 0, xE = 1, p 6= 0 then

tanu1 = − tanu2 , (11)

(b) in other cases

tanu1 · tanu2 − A(tanu1 + tanu2)− b2 = 0, (12)

where A = b(bq
√

1− x2E − pxE)/(bqxE + p
√

1− x2E).

Proof: For t = 0 equation (3) gives the z-coordinates of the binodes (B1, B2):

z1,2 = ±
√

R2(u)− t2(u) +
r

2
. (13)
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Figure 8: FE [0.4, 0.5,−1, 1,−3/4], u1 =
−0.0785, u2 = 0.4357

Figure 9: FE [0.4, 0.5, 1, 1, 3.5]

According to the relations given in (4), (5), (6) and (7) the equation z2(u1) = z2(u2) may be
written as

(p+ q tanu1)
2b(b xE +

√

1− x2E tanu1)

b2 + tan2 u1
= (p+ q tanu2)

2b(b xE +
√

1− x2E tanu2)

b2 + tan2 u2
.

If the trivial case u1 = u2 and the case p = 0 ∧ q = 0 are excluded, then the above equation
takes the form (11) or (12).

This property is illustrated in Fig. 8.

Lemma 4 The pair of tangent planes of the surface FE[b, xE , p, q, r] at the corresponding
points B1, B2 ∈ d are δ(u1), δ(u2), where u1, u2 are determined by the circles of the system
c(u), u ∈ [−π/2, π/2), meeting at the points B1, B2.

Proof: At any point B on the nodal line d each of the two tangent planes is spanned by d
and by the tangent of any curve which lies on the surface and passes through B.

Theorem 3 The surface FE[b, xE , p, q, r]
(a) has four real pinch-points if p = 0, xE = 0, q < 0 or q = 0, xE = 1, p < 0, and it has two

real pinch-points if p = 0, xE = 0, q > 0 or q = 0, xE = 1, p > 0.

(b) In all other cases it has four, three or two real pinch-points if and only if

r2 T 4(bq +
√

1− x2E
√

p2 + b2q2)2
√

b2q2 + p2 + bq
√

1− x2E − pxE
.

Proof: The pinch-points of a surface are points on its double curve at which two tangent
planes coincide. Therefore, according to Lemma 4, the pair (P1, P2) will be the pair of pinch-
points if the planes δ(u1), δ(u2) coincide. Now, according to Lemma 4 and Lemma 3, by
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substituting u1 = u2 into the equations (11) and (12) we get the angles uI, uII

uI = 0, uII = −
π

2
for (a) (14)

uI,II = arctan(A±
√
A2 + b2) for (b) (15)

which determine the circles c(uI), c(uII) meeting the line d in the pinch-points. For the values
uI, uII the equations (13) give the z-coordinates of the pinch-points.
(a) For p = 0, xE = 0, q 6= 0: z1,2 =

r
2
± r
2
, z3,4 =

r
2
±
√
−2bq.

For q = 0, xE = 1, p 6= 0: z1,2 =
r
2
±√−2p, z3,4 = r

2
± r
2
.

(b) For all other cases

z1,2 =
r

2
±
√

r2

4
+

(bq − ξ)2
√

p2 + b2q2 − η
; z3,4 =

r

2
±
√

r2

4
− (bq + ξ)2
√

p2 + b2q2 + η

with ξ =
√

1− x2E
√

p2 + b2q2 and η = bq
√

1− x2E − pxE.

The denominator
√

p2 + b2q2−η in the first of the above equations is positive. Namely,

it is clear that the function f(b, xE , p, q) =
√

p2 + b2q2 − bq
√

1− x2E + pxE is equal to
zero only in the cases (p = q = 0) or (p = 0, xE = 0) or (q = 0, xE = 1) which in case
(b) are excluded.
For other values, it follows from ∂f/∂b = ∂f/∂xE = ∂f/∂p = ∂f/∂q = 0 that xE =
−p/

√

p2 + b2q2 and that the extremum of the function f is (b2q2 − |bq|bq)/
√

p2 + b2q2 ≥
0.

Now, we can conclude that the points P1, P2 are always real and that the points P3,
P4 are real and distinct, real and coinciding or a pair of imaginary points if and only if
r2 T (4(bq + ξ2)/(

√

b2q2 + p2 + η) (see Fig. 9, Fig. 10, Fig. 11).

5.3. Singular points of FE[b, xE, p, q, r] not lying on the nodal line

Before we start to analyze the singular points of FE [b, xE, p, q, r] which do not lie on the nodal
line we will cite some of Salmon’s considerations:

A quartic with a nodal line may have also double points. Two of the eight planes which
meet the surface in straight lines will coincide with the plane joining the nodal line with one
of the nodal points. Each such plane intersects the surface twice in the nodal line and in two
lines meeting at the nodal point. But any such plane may meet the surface besides the nodal
line in a two-fold line containing two nodal points; the surface may thus have eight nodal
points ([7, p. 218]).

Accepting these general considerations we can formulate the following

Theorem 4 An elliptic quartic passing through the absolute conic and with a nodal line may
have three real nodal points which do not lie on the nodal line.

Proof: Two of the eight planes which meet the surface in straight lines are the pair of
imaginary planes determined by the nodal line and the pair of imaginary lines at infinity.
Since only six of the eight planes which meet the surface in straight lines may coincide in
pairs, for such a surface there exist at most three planes through the nodal line and the nodal
points. Every such plane must meet the surface in the nodal line twice, and in the pair of
isotropic lines (split circle) intersecting at the real nodal point.
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Corollary 2 Only in the case r = 0 the pedal surfaces FE[b, xE , p, q, r] can have nodal points,
which are not located on the nodal line. At most three real nodal points of the surface are
points of intersection between the ellipse e and the circle k and different from O.

Proof: Each plane through the nodal line cuts the surface in the circle with radius

R(u) =
1

2

√

(tC(u)− tP ′(u))2 + r2.

Since the circle splits only if R(u) = 0, the surface has nodal points only if r2 = 0 and
tC(u) = tP ′(u).

According to Cor. 2 the surface FE[b, xE , p, q, 0] has at most three real nodal points not
lying on the nodal line. In these cases the circle k and the ellipse e, on which the end points
of the diameters of the circles c(u) are lying, belong to the xy-plane. The circle k and the
ellipse e are intersecting at point O and at three other points. Since these points may be all
real and distinct or coinciding or they may be pairwise coinciding or imaginary, the surfaces
FE[b, xE , p, q, 0] have different numbers and different types of real nodes.

5.4. The classification of the surfaces FE[b, xE, p, q, r]

According to the subsections 5.2. and 5.3. we can classify the surfaces FE [b, xE, p, q, r] with
regard to the number and type of their real singular points in the following way:

Type 1 (Fig. 9) 4 pinch-points, binodes and isolated double points on the line d

Type 2 (Fig. 10) 3 pinch-points, binodes and isolated double points on the line d

Type 3 (Fig. 11) 2 pinch-points, binodes and isolated double points on the line d

Figure 10: FE [0.4, 0.5, 1, 1, 2.774] Figure 11: FE [0.4, 0.5, 1, 1, 2]

Type 4 (Fig. 12) 2 pinch-points and isolated double points on the line d

Type 5 (Fig. 13) 1 pinch-point and isolated double points on the line d

Type 6 (Fig. 14) 2 pinch-points, binodes and isolated double points on the line d, 3 conical
points
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Figure 12: FE [0.4, 0.5, 0, 0, 2] Figure 13: FE [0.8, 0, 0, 0, 0]

Type 7 (Fig. 15) 2 pinch-points, binodes and isolated double points on the line d 1 conical
point, 1 point of double contact

Type 8 (Fig. 16) 2 pinch-points, binodes and isolated double points on the line d, 1 point of
triple contact

Type 9 (Fig. 17) 2 pinch-points, binodes and isolated double points on the line d, 1 conical
point

Figure 14: FE [0.4, 0.5, 1, 1, 0] Figure 15: FE [2/3, 0.38, 1, 1.78, 0]

Type 10 (Fig. 18) 1 point of double contact and isolated double points on the line d, 2 conical
points

Type 11 (Fig. 19) 1 point of double contact and isolated double points on the line d, 1 point
of double contact

Type 12 (Fig. 20) 2 pinch-points, binodes and isolated double points on the line d, 1 point of
double contact on the line d
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Figure 16: FE [2/3, 0.8, 1.95, 0.1, 0] Figure 17: FE [2/3,
√

3/7,−1, 1, 0]

Figure 18:
FE [2/3, 1/4, 1/4, 0.375.

√
15, 0]

Figure 19:
FE [2/3, 1/4, 2/9,

√

5/3, 0]

Type 13 (Fig. 21) 1 point of double contact and isolated double points on the line d

Type 14 (Fig. 22) 1 point of triple contact and isolated double points on the line d, 1 conical
point

Type 15 (Fig. 23) 1 point of fourfold contact and isolated double points on the line d

5.5. Special cases of FE[b, xE, p, q, r]

The special class of the surfaces FE [b, xE, p, q, r] is obtained for b = 1, xE = 1. In this case
the ellipse e is a circle. Since the circles e and k lie in parallel planes, the absolute points of
the xy-plane are double points of the surface, and any plane parallel to the xy-plane cuts it
into a bicircular quartic. These surfaces are elaborated in [1] and [3].

The surface FE[b, xE , p, q, r] degenerates only in two cases:

1. FE[1, 1, 0, 0, r] splits into the sphere and the pair of isotropic planes through the line d,
and

2. FE[1, 1, 2, 0, 0] degenerates into the circle e and the line d. Namely, each plane through
d cuts the surface in d and in the pair of isotropic lines through a point on the circle e.
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Figure 20:
FE [2/3,

√

3/7,−0.6,−0.6
√

3, 0]
Figure 21:
FE [2/3,

√

3/7, 0.4, 0.4
√

3, 0]

Figure 22:
FE [2/3, 2/3, 1, 0.75

√
5, 0]

Figure 23: FE [0.75, 0, 0, 8/3, 0]

6. Conclusion

According to the facts that the surfaces FE [b, xE, p, q, r] (classified in the subsection 5.4) have
a higher number of singular points than the general pedal surfaces of the type I, and that
most of the theorems are valid or analogous theorems can be easily derived for the pedal
surfaces of types II and III, the same procedure of classification could be applied also for the
pedal surfaces of these (1,2)-congruences. It is still open whether all quartics passing through
the absolute conic and containing a nodal line can be classified in this way.
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[5] E.E. Kummer: Ueber die Flächen vierten Grades, auf welchen Schaaren von Kegel-
schnitten liegen. J. reine angew. Math. 64, 66–76 (1865).

[6] W.F. Meyer: Spezielle algebraische Flächen. Encyklopädie der Mathematischen Wis-
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