Journal for Geometry and Graphics
Volume 3 (1999), No. 1, 17-38

A Data Model Architecture for Parametrics

Dago Agbodan, David Marcheix, Guy Pierra

Laboratory of Applied Computer Science (LISI),
National School of Engineers in Mechanics and Aeronautics (ENSMA)
Téléport 2 — Avenue 1, BP 109 Chasseneuil du Poitou
86960 Futuroscope cedex, France
emails: agbodan, marcheiz, pierra@ensma.fr

Abstract. In recent years, history-based, constraint-based and feature-based
CAD systems (often gathered under the generic name of parametrics), appeared
as a major progress both to express and to capture conceptual designs and design
intents. This deployment raise two major issues. The first one is to define a
data model that provides for exchange capabilities between heterogeneous CAD
systems and for archiving. The second one is the well known “topological naming”
problem.

The goal of this paper is to propose an unified modeling framework for para-
metric data, that addresses these two issues. This framework, defined in the
object-flavored EXPRESS data specification language, involves a three layers ar-
chitecture. Gathering the complete definition of a parametric object in the same
data model permits both to simplify the data-management, and to define a neu-
tral description of parametrics, enabling exchange between heterogeneous CAD
systems.

Key Words: CAD/CAM, geometric modeling, parametrics, constraint-based
model, formal specification

MSC 1994: 68U07

1. Introduction

In recent years, history-based, constraint-based and feature-based modelers (often gathered
under the generic name of parametrics), appeared as a major progress both to express and
to capture conceptual designs and design intents. Nowadays, most commercial CAD systems
support some of these capabilities and several research prototypes contribute to extend these
capabilities or to improve their reliability.

The very specific feature of the parametrics technology is that their data structure is
two-fold. On the one hand, they record, as a snapshot, the geometric shape of the currently
designed product, often as a B-rep model. We call this representation the current instance.

ISSN 1433-8157/$ 2.50 © 1999 Heldermann Verlag

18 D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics

On the other hand, they record the conceptual design of which the current instance results, its
parametric specification, which consists of constraints represented as expressions that reference
the current instance and involve various kinds of operators. The current instance and the
parametric specification being expressed apart from each other, an issue is to handle a complex
data-storage management.

Another major issue consists in modeling the relationships between the references as
they appear in the parametric specifications and the values as they appear in the current
instance. Parametric specifications always include some ordered processes where geometric
and topological entities have been modified. The current instance only contains a snapshot of
the result of this process. Therefore the parametric references cannot be mapped one-to-one
with the current instance. The reference mechanism shall therefore abstract from the low-level
geometric or topological entities (that may, or not, exist) to only reference the “invariants”
of the parametric object.

The goal of this paper is to propose a data model architecture that may be used to address
these two issues. This architecture is exemplified using the EXPRESS data specification
language developed by SCHENCK and WILSON [18]. But the same approach may be used
in any object oriented data base environment. To represent in the same framework the
values (of the current instance), the variables to which they correspond and the expressions
where these variables are involved, we propose to capture in the data model the abstract
syntax tree of these expressions and to use the entity relationship approach to model the
usual interpretation function that associates values to variables. To separate the references
intended to be used in the parametric specification and the physical entities that belong to
the current instance, we propose a three layers architecture where a reference layer, called
the dynamic context, enables to capture and to reference the abstract entities involved in
the parametric specification whatever be their physical representation in the snapshot of the
current instance. In this model, the current instance is represented using the EXPRESS
resources defined in ISO 10303 (STEP) for modeling explicit geometry. Our architecture may
therefore be used to extend the expressive power of ISO 10303 towards parametric geometry
modeling.

This paper is structured as follows. In section 2, we expose the major issues about
parametric data model exchange: data and expression management, entity naming and name
matching. The third section discusses some pre-existing works addressing those issues and the
fourth section enumerates the principles of our data model. In section five, we briefly outline
the main features of the EXPRESS specification language that is used in the remaining part
of the paper. In section six, we first refer to an already proposed taxonomy of parametric data
models [14] and we propose a structure that may support the different kinds of parametric
geometry, whether they follow a functional, a variational, or an hybrid approach. Then, we
discuss the relationships between a parametric reference, as it appears in a parametric spec-
ification, and the geometric entity(ies) to which it corresponds. Borrowing to programming
language compiling theory, we propose to associate to a parametric specification a context
that contains all the references used in this specification. But, unlike in compiling, where
such a context is built once and for all at compile time, this context is intended to be dy-
namically created during the design process. The role of this context is to model the names
which abstract the geometry as it is at any stage of this process and therefore provide for
referencing entities that disappear in a latter stage of the design process. Section seven, shows
how this context may be used both to structure the names of all the geometric entities that
may result from one unique constructive gesture and to provide an unambiguous name for

D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics 19

entities resulting from some collisions. In the last section, a model for representing variables
and expressions is proposed. Throughout this paper, we mainly use a simple 2D example to
illustrate the different parts of the data model and we represent the internal data structure of
the data base using the exchange format associated to the EXPRESS language. The complete
example is presented in appendix A.

2. Major issues

Exchanging the two-fold structure of a parametric model raise three major issues. The first
one is to define a data model that provides for the simultaneous exchange of expressions, of
variables involved in these expressions and of values of these variable. The two other issues,
known as the topological naming problem [9], are to assign persistent names to geometric and
topological entities that may not exist or that may cut into several pieces in the geometry
of the current instance. This topological naming issue hides in fact two different problems:
the entity naming problem (at design process) and the name matching problem (after re-
evaluation).

2.1. Expressions, variables and values

The parametric specification of a parametric data model contain algebraic expressions that
involve variables and various kinds of algebraic operators (equational systems for 2D, boolean
operations, arithmetic operations, ...). The current instance involves values of these variables.
Therefore, exchanging a parametric data model needs to represent in the same framework the
values (of the current instance), the variables to which they correspond and the expressions
where these variables are involved. HOFFMANN and JUAN [4] suggest to represent the expres-
sions as a string whose syntax may be “adopted from FORTRAN or some other programming
language”. In this paper, we propose to use the meta-programming approach [1]. We capture
in the data model the abstract syntax tree of expressions and we use the entity relationship
approach to model the usual interpretation function that associates values to variables. Hav-
ing the same information modeling structure for modeling numeric expression and for other
parts of the model (constraints, geometry, ...) allows to assert and to check the consistency
properties of the global exchange context.

2.2. Naming problems

The complete structure of a parametric data model gathers the geometric representation of
the current instance, and a composition of constructive functions (or a set of constraints in
an equality-based model). The simplest way to connect these two layers is to enable the
constraints to directly reference the geometric entities that constitute the current instance.
This approach has already been proposed [14] for functional parametric models where only
CSG entities were referenced. Unfortunately, this approach may no longer be followed when
the constructive gesture involve references to B-Rep entities as shown in Fig. 1.

In the example illustrated in Fig. 1 the initial model is designed by means of four successive
constructive gestures. The fourth one consists of rounding edge “e”. If the initial model is
exchanged after this fourth step, the current instance no longer contain edge “e”: it was
removed by the rounding function. Thus the function “round (e)” which has the edge “e” as
input parameter cannot any longer be represented in the parametric specification part of the
model. Therefore “names” are needed to represent the entities referenced in the parametric

20 D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics
Initial
model

2

swept block horizontal slot vertical slot round| edge e

Re-evaluated
model

Figure 1: Naming and name matching problems.

specification whether or not they exist in the model snapshot. Moreover each constructive
gesture creates several entities which have to be distinguished and therefore named, even if
all entities exist in the model snapshot

These names shall be defined in such a way that, when the parametric specification is
used to generate a new geometric model, the geometric entity referenced by a name in the
re-evaluated model is “the same” as the one referenced by the same name in the initial model.
To define such robust names, two different kinds of geometric and topological entities may be
distinguished.

2.2.1. Invariant entities

An invariant entity is a geometric or topological entity which can be, completely and unam-
biguously, characterized by the structure of a constructive gesture and its input parameters,
independently of involved values.

In Fig. 1, invariant entities includes the end face of the swept block, the lateral shell of
the horizontal slot with its begin and end faces (that may, or not exist), the face resulting
from the rounding gesture, etc.. To characterize, i.e., to “name”, such entities, information
models are to be defined that relate these entities to constructive gestures and to their input
parameters.

2.2.2. Contingent entities

Beside those invariant entities, there exist entities that depend on the context of a constructive
gesture. We call contingent entity a geometric or topological entity that results from an
interaction between the pre-existing geometric model and invariant entities resulting from
a particular constructive gesture. For example, in Fig. 1, the number of lateral faces of the
vertical slot in the initial model (step 3) and in the re-evaluated model (step 3’) is not identical.
A naming mechanism is also required to define how to name these contingent entities.

2.3. Name matching

If the topology of the current instance do not change when the parametric specification is
re-evaluated, the only issue is name robustness: to identify which entity in the re-evaluated

D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics 21

model correspond to every entity in the initial model. When re-evaluation leads to topology
changes a new issue is to match two different structures. For example let us come back to the
model presented in Fig. 1. At step 3" edge “e” has been split into edges “el” and “e2”. Thus
at step 4’ the problem is to determine which edge(s) has(ve) to be rounded. The problem is
to identify, i.e., to match, edge “e” with edges “el” and “e2” despite the different topology.

Note that the matching mechanism is system specific, but the data model shall contain
enough information enabling to run a matching algorithm.

3. Related work

Following the pioneer work of HOFFMANN and JUAN [4], over the last few years several authors
have analyzed the internal structure of parametric data models, proposing some editable
representations [4, 14, 19, 15, 10], discussing their underlying mathematical structures [14]
and proposing some naming scheme or mechanisms [9, 2]. Recently, several mechanisms
for persistent naming have been proposed. Most of the formats proposed to capture the
parametric specification are based on the programming language paradigm: either through
specific languages [4, 19], or through existing ones [10].

Our intend being to use a data model oriented approach for both the current instance
and the parametric specification, we just outline below two previous works that addressed the
naming issues and that we re-used in our own approach. The first one focuses on naming, the
second one focuses on name matching.

3.1. CHEN

CHEN [2] uses an editable representation, called Erep [4], which is an unevaluated, high-level,
generative, textual representation, independent of any underlying core modeler, to abstract
the design operation and to name all entities. CHEN defines a precise structure for invariant
entity naming, particularly, for sweep operation. Every entity in a sweep is named by reference
to the corresponding source entity of the swept 2D contour and the constructive gesture.
He also proposes a fine identification technique for contingent entities based on topological
adjacencies and feature orientation. In the CHEN approach every contingent entity is named.
Unambiguous names are generated by composition of topological adjacencies. No mechanism
is defined to handle name matching.

In our approach only the contingent entities that are referenced by some latter operations
are associated with a name. We use a similar approach to CHEN’s one for naming the invariant
faces that result from a sweep.

3.2. KrirAC

KRIPAC [9] focuses on the name matching. He proposes an interesting structure for identifi-
cation of contingent entities based on face history (creations, splits, merges and deletions of
faces) and a complex name matching algorithm.

KRIPAC’s Topological ID System consists of 3 parts. First a face graph structure allowing
both naming of all entities (edges and vertices are named in terms of their adjacent faces) and
name matching after re-evaluation. Second a table recording names for the only contingent
entities that are referenced together with pointers on the geometry more some informations
for the matching algorithm. Third the geometry of the designed object. At each re-evaluation
the old entities are matched with the new ones.

22 D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics

face graph table geometry
TTe e, (It

®<@/@ :
OIg

Figure 2: KRrRIPAC’s Topological ID System.

3.3. Current limitation

A first limitation, addressed in this paper, is that KRIPAC describes a prototype system, not
an exchange format. A second limitation is that the KRIPAC matching algorithm includes a
lot of heuristics and its domain of correctness is not clearly defined. An issue is to formalize
entity naming and name matching mechanisms. RAGHOTAMA and SHAPIRO [16] have given
a first answer to this issue.

4. Principle of the proposed data model

We summarize below the design principles used in the exchange model we propose.
1. Use of EXPRESS [18] for information modeling.

2. Any reference between parametric specification and geometric model is done by a name
level (three levels model).

3. Names are strongly typed: the name involved either as input or as output of each
parametric specification stand for entity whose data type are strictly defined.

4. Only those names that correspond to entities referenced in the parametric specification
shall be represented in the name level, other may or not be represented.

5. Invariant entities are identified from the structure of constructive gesture and the struc-
ture of its parameters independently of their values.

6. Contingent entities are identified trough their direct or indirect relationship with invari-
ant entities.

7. Variables and numeric expressions are represented in the data model by meta-programming.

8. The re-evaluation of geometry in case of change in topology is not specified : it is the
specificity of each CAD system.

5. The EXPRESS language

This section introduces the main features of the EXPRESS language. It gives a global overview
of this language and focuses on the constructs that will be used in the remainder of this paper.
EXPRESS is a specification language which has been designed in the context of the STEP
(STandard for the Exchange of Product model data, officially ISO 10303) project. Its main
objective is the description of models for exchanging product data and product data models
[18]. This language can be used for the specification of several applications in the computer
science area, and it has been proven to be well suited for a meta-programming purpose [1].

D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics 23

Following [5], an EXPRESS specification is defined by a set of entities (ENTITY) which
represent the objects to be modeled. Each entity is defined by a set of characteristics, namely
the attributes. Each attribute has a domain (TYPE) where it takes its value, and EXPRESS
allows to constraint this domain thanks to the domain constraint rule (WHERE clauses).
These entities have a hierarchical structure allowing multiple inheritance as in object oriented
languages. This part of the specification defines the structure of the data model.

Unlike most of the data modeling formalisms that mainly capture cardinality or set-
oriented constraints on the data conforming to the data model, EXPRESS enables to model
any kinds of constraints. Thanks to several built-in functions, and to a pascal-like procedural
language, functions may be defined. These functions in turn may be used to define constraints,
either in local WHERE clauses, on the data described in an entity type, or in global rules
(RULE clauses) that constraint the complete data model. This outstanding capability enables
for instance to specify all the constraints on our parametric data model to ensure that such a
model is consistent. At last, entities and functions are gathered in a common structure named
SCHEMA that provides for modularity. The following example shows the main features that
can be found in an EXPRESS specification.

SCHEMA Example ;

ENTITY A
ABSTRACT SUPERTYPE OF (B, C) ;
attl_a : REAL ;
END_ENTITY ;

ENTITY B

SUBTYPE OF (A) ;

att2_b : LIST [0:7] OF STRING ;

DERIVE

SELF\A.att1_a : INTEGER := O ;

att3_b : INTEGER := SIZEOF (SELF.att2_b) ;
INVERSE

att4_b : C FOR attd_c ;
END_ENTITY ;

ENTITY C
SUBTYPE OF (A) ;
att2_c : SET [0:7] OF REAL ;
att3_c : OPTIONAL INTEGER ;
att4d_c : B ;
WHERE
WR1 : f (SELF) ;
WR2 : attd4_c.att3_b = SIZEOF (SELF.att2_c) ;
END_ENTITY ;

FUNCTION f (x : C) : BOOLEAN ;
LOCAL res : REAL := 0.0 ; END_LOCAL ;
REPEAT i := 1 TO SIZEOF (x. att2_c) ;
res := res + x.att2_c[i] ;
END_REPEAT ;

24 D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics

RETURN (res = x\A.attl_a) ;
END_FUNCTION ;

END_SCHEMA ;
Figure 3: An EXPRESS schema example.

The previous schema example introduces three entities A, B, C. A is the parent of B and C;
both of them inherit all the characteristics from A. The keyword ABSTRACT SUPERTYPE
indicates that A is an abstract class and thus does not have instances. The following notations
have been used:

e . is the dot notation allowing to access the entity attributes.

e \ character allows to unambiguously reference an inherited attribute (it is used here for
illustration purpose).

e DERIVE indicates that the attribute value is computed by evaluating an expression
whose domain generally consists of other attribute values (some built-in EXPRESS
function enable to reference the complete set of entity instances that belongs to the
data model). Some inherited attributes may be derived (example of attl_a in B).

e INVERSE introduces an inverse attribute. In our example the entity C has established
a relationship with the entity B by way of the explicit attribute att4_c; so the inverse
attribute att4_b may be used to describe that relationship in the context of the entity
B.

e OPTIONAL keyword indicates that, in a given instance, the attribute needs not to have
a value.

e SIZEOF is one of the many EXPRESS built-in functions. It gives the length of any
aggregate data type (list, set, bag, ...).

e SELF is an EXPRESS keyword for a variable representing the current entity.

e WHERE introduces the WHERE clause which constraints the data corresponding to
each instance of an entity data type. It can be built by EXPRESS expressions as in the
WR2, or by an externally defined function as in WR1 where the function f is defined as
a boolean function.

To make easier the understanding or the design of the structure of such a schema, it
can be described (as shown in Fig. 4) graphically using the EXPRESS-G symbolism [5].
EXPRESS-G is a graphical notation for the display of a data specifications defined in the
EXPRESS language. This notation only supports the structural part of an EXPRESS model.
The constraint part needs to be stated textually.

Instances of a model defined in EXPRESS can be described and exchanged through
physical files. Their format is defined in [6] which specifies an exchange structure using a
clear text encoding for instances of EXPRESS defined models. The file format is suitable for
the transfer of instance data among computer systems.

Instances of the previous schema example would be written as follows (as an abstract
supertype, A has no instance):

#1

#2

D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics 25

B (33, /* the first attribute of entity B, inherited from A,
is redefined as an integer */
, / the asterisk represents a derived attribute as
redefined attribute attl_a */
(’abc’,’xyz’)); /* the aggregates are written into parentheses; here
a list of two strings */

c (1.2, /* the real attribute 1.2 (attl_a) inherited from
parent entity A */
(0.75, 0.45), /* set of two reals *x/
$, /* the dollar character represent an optional
non-evaluated attribute */
#1); /* the reference of an instance of entity B */

att1_a

(AES) o REAL

att4_c | att2_c
(INV) att4_b

(RT)
(DER) att1_a

INTEGER O---=--4

(DER) att3_b

att2_b
L[0:?]

STRING

Figure 4: EXPRESS-G representation of the schema example (Fig. 3).

The values of attributes of simple types (INTEGER, STRING, LIST, ...) are directly
represented into instances of entities. The values of entity data type attributes are repre-
sented by entity names (for example #1 in instance of entity C). Note that neither INVERSE
attribute nor DERIVE attribute are represented in an instance.

The goal of this paper is to propose a data model architecture. The definition of a data
model requires to use a data modeling language. EXPRESS is such a language, that we chose
for several reasons. They can be summarized in the following six points:

it is an international standard [5], extensively used in the CAD area (STEP),

it has a complete specification, allowing, with appropriate tools, nearly a one-to-one
map to an object oriented language like C++ or Java,

it can be represented either textually or graphically (EXPRESS-G); this capability
provides two levels of abstraction for designing data model,

through ISO 10303-21 [6], an EXPRESS model automatically defines an exchange for-
mat for instances of such a model,

thanks to its modularity, several standard resources schemas (for geometry, for expres-
sions, etc.) that can be re-used already exists and,

last but not least, it is used in STEP for the exchange of explicit geometry; an exchange
format for parametric geometry should be compatible with this standard.

26 D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics

Next sections make a large use of the EXPRESS language. This section has presented the
kernel of EXPRESS which is enough to understand the basic constructs presented in those
sections.

6. Data model structure

As discussed in [14], parametric models can be classified according to their underlying mathe-
matical structure, into two major approaches. First, the equality-based approach, also referred
to as variational geometry [12], captures a parametric specification as a set of non-oriented
constraints between geometric entities. This set of constraints is translated into a set of
equations. Second, the functional approach, also referred to as constructive approach [17],
captures each constraint as a function, and the whole model as a composition of functions.
Due to the intrinsic weakness of each approach [14], few commercial products are restricted
to only one of these approaches. Although all the known 3D systems follow a functional ap-
proach for 3D shape design, most of them support equality-based parametric definitions for
2D-contours, and some of them support equality-based parametric positioning of 3D shapes
[11].

6.1. Parametric specification

From a data modeling point of view, this means that no parametric systems use only non-
oriented constraints. Therefore, the generic structure of a parametric data model may be
defined as a set of constraints, each constraint requiring that some already existing entities
are available (modeled in Fig. 5 through the assumed attribute of the constraint entity) and
constraining a set of other entities (defined attribute). If different entities are involved in the
assumed or defined attribute of some constraints, their roles are, in general, non identical.
Therefore the assumed and the defined attributes shall correspond to a list (that may be
empty for the assumed list).

T current_instance))
| defined L[1:?] o
H constraints A4 (ABS)
equa"t‘y'based model parametric_model S[1:7] ™~ constraint .0
(generic structure) o assumed L[0°7] ¢
parameters L[0:?]
Q parameter
(INV) parameter of paramete
functional model (RT) constraints C (ABS)
functional_parametric_model L[1:7] parametric. function

Figure 5: EXPRESS data model of a parametric specification.

As shown in the Fig. 5 using the EXPRESS-G symbolism, a functional parametric data
model is a subtype of such a generic structure. For this subtype:
1. each constraint is a function, and
2. the constraints are ordered (composition of functions), and
3. some variables, clearly identified, define the domain (parameters) of the global paramet-
ric function.

D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics 27

The model shown in Fig. 5, thanks to its double-subtyping, allows to model the three ap-
proaches to parametrics (pure equality-based approach, functional approach or hybrid models
as they exist in commercial systems). First a geometric representation can be equality-based
by stating its model to be a parametric_model whose attribute constraints is restricted to be
a set composed only of constraint(s) (i.e., no parametric_function). This model may be used,
for example, for 2D variational contours. The second possibility for a parametric object is
to be functional. This is done by specifying that its model is a functional_parametric_model
where the constraints attribute is derived to be a list of parametric_function(s). Such a func-
tional model can be used both in 2D or in 3D for, e.g., recording a design process. The last
possibility is to have an hybrid geometric representation which is obtained by specifying its
model to be a parametric_model and its constraints to be a set of constraint(s), some of them
being parametric_function(s). For example, equality-based 2D profiles and (functional) 3D
extrusion of these profiles may be described with such an hybrid model. In our proposed data
model, both constraint(s) and parametric_function(s), which in fact constitute the parametric
specification layer, are defined as abstract supertypes. They shall be specialized for each
specific constraint or parametric function.

This data model only proposes a structure for the parametric specification part of a
parametric model. The relationship between this parametric specification and the current
instance is discussed in the next section.

6.2. Naming level

As illustrated in section 2.2, the direct link between parametric specification (constraints) and
current instance (geometric shape) compromise the support of entities modification (round in
this example). Therefore no direct reference shall take place.

6.2.1. Concept of dynamic context

Such a problem is well known in programming language from which we propose to borrow
the concept of context. In traditional programming, a program does not directly reference
variables by their values. It contains the names of the variables. The association name/value
is done by a symbol table, called a context. The role of the context, which is built at compile
time, is to ensure the indirect link between the (variant) example values and the (invariant)
program variables. Such a name/context/value association allows a program to unambigu-
ously reference a variable whatever be its current value.

Unfortunately, a parametric model has no declarative clause that may be used, like in
programming language, to create persistent names of the geometric or topological entities
involved in the design. This problem is similar with the one encountered in example-based
programming [13], also called programming-by-demonstration [3], where the user build an ex-
ample of a program, and the programming-by-demonstration manager is supposed to abstract
variable names from the example values. In such environment, the concept of context may
also be used as proposed in [14]. The only difference is that this context is not built once and
for all, at compile time, but is built dynamically throughout the design of the example. Fig. 6
shows an example of the use of a dynamic context to abstract from an (example) expression
onto a procedural program. Assume that a user uses a display calculator to input the ex-
pression ((11.0 - 4.5) + (3**2)). For each input value, a new entry is created in the dynamic
context of which the data type is defined by the example. The program (tree) references these
entries.

28 D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics

15.5 11.0 real_1 + {real |4}
9 4.5 real_2 /
6.5 6.5 real 3 {real 3} - ** {integer_3}
2 15.5 real 4
3 3 integer_1 / \ / \
4.5 2 integer_2
11.0 9 integer_3 {real 1} {real_2} {integer_1} {integer 2}
Example Dynamic context Program

Figure 6: Dynamic context management in programming-by-demonstration [14].

This dynamic context mechanism already proposed for programming-by-demonstration
systems seems to be well suited for recording a parametric data structure.

6.2.2. Parametric_reference

In the previous example (Fig. 6), the invariants to be represented in the program were numeric
variable names. In parametric geometry, these invariants mainly consist of persistent names
for geometric and topological entities. We still call this layer the dynamic context layer. This
dynamic context, modeled by a parametric_reference entity, is an abstraction mechanism of
the basic geometric entities. It is in fact a naming mechanism which characterizes a parametric
definition independently of its value. As presented in Fig. 7 the parametric_reference entity
shall be subtyped for each representation_items (i.e., points, curves, vertices, ...) intended to
be referenced by a constraint.

representation_item

Q
i current_value (ABS)
parametric_reference
l O l
‘ point_ref ‘ ‘ circle_ref ‘ ‘ segment_ref ‘

Figure 7: Simplified representation of the parametric_reference.

In the data model architecture we propose, all the constraints refer to parametric_reference(s)
that (possibly) refer to geometric entities. So, if we come back to our rounded block example
(Fig. 1), the constraint would be “round (eref)”. This constraint is always valid because,
even if the geometric entity (edge e) is deleted, its reference (e_ref) still exist. Now, our data
model architecture for parametrics, as shown in Fig. 8, is three layered:

e the current instance (explicit geometry, STEP-compliant),

e the parametric specification (constraints),

e the dynamic context (link between both).

D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics 29

|_items S[1:?] 5| representation_item

current representation
. —9 name
instance I Q
context_of items o
! current_value (ABS)
"""""""""" parametric_reference
; @}
dynamic current_
context instance
defined
_ constraints (ABS) L{1:7]
parametric_model S[1:7] constraint |_assumed
L[0:7]
parameters L[0:7]
parametric (INV) parameter of | parameter
specification
Q RT .
functional_ (RT) constraints (ABS)
parametric_model L[1:?] parametric_function

Figure 8: Simplified representation of a parametric data model.

An EXPRESS model being slightly abstract, in the following section we use a simple
2D example. This example is shown in Fig. 9, to illustrate the concepts of our data model.
The corresponding example of physical file compliant with our parametric data model is pre-
sented in Fig. 10 (the whole physical file is presented in Appendix A). It shows clearly the
three layers and how the link is made between the geometric representation items and the
constraints (here functions) in which they are involved. The constraints refer to the name
layer (dynamic context) which in turn refer to the geometric items. The geometric items are
compliant with the STEP geometry. Note that canonical functions, are particular subtypes
of parametric_function, where each attribute value is specified by means of an expression or
an existing parametric_reference. As an example, a canonical_cartesian_point_function defines
a cartesian_point_ref (DEFINED attribute) by means of two (in 2D) expressions. These ex-
pressions, in turn, may involve various parametric_reference(s). The assumed attribute is
therefore re-defined as a derived attribute whose value is computed by an EXPRESS func-
tion. A canonical_axis2_placement_2d_function defines an axis2_placement_2d_ref (DEFINED
attribute), from a cartesian_point_ref that constitutes its origin (ASSUMED attribute). Note
that the polylines indexed by #60 (D1) and #62 (D2) no more exist in the current model but
their name indexed by #600 and #620 still exist.

In this section, the concept of dynamic context was just presented as a means to isolate
the parametric specification from the low-level geometric entities referenced in the constraints.
We will show in the next section how a parametric_reference may be used represent structured
names.

30

D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics

P; (0.0,110.0) Dr

5____>P4 (250.0, 110.0)
B Dy
D2 Ct-b } D4 2L+10.0
P2 D3 Ps (250.0, 0.0)
5L

Figure 9: 2D example.

/* current instance layer */

#20

#30

#28

#50

#60

#62

/* dynamic context layer */

/* parametric specification layer */

= cartesian_point (’P1’, (0.0,110.0));
#200 = cartesian_point_ref (#20, ());

#2000 = canonical_cartesian_point_function ((#200), *, (#210,#220));

#210 = real_literal (0.0, *);
#220 = ... /* the expression 2L+10.0 will be described in
section 9 */

= cartesian_point (’P2’, (0.0,0.0));
#300 = cartesian_point_ref (#30, ());

#3000 = canonical_cartesian_point_function ((#300), *,
(#210,#210));

= axis2_placement_2d (’rectangle_axis’, #30, $, $);
#280 = axis2_placement_2d_ref (#28, (), $, $);

#2800 = canonical_axis2_placement_2d_function ((#280), *, (#300));

cartesian_point (’P4’, (250.0,110.0));

= polyline (’D1’, (#20,#50)); /* does not exist */
#600 = polyline_ref ($, (), $);

#6000 = canonical_polyline_function (#600, *, (#200,#500));

= polyline (’D2’, (#20,#30)); /* does not exist */

Figure 10: Beginning of the exchange file.

7. Naming invariant entities

When a constructive gesture recorded as a parametric function, creates a single geometric
entity (for instance in Fig. 10, function #2000 that created #20), this geometric entity is
unambiguously characterized by a parametric_reference (#200) entity defined as the output of
the parametric function. In fact, most of the parametric functions create an highly structured
set of entities. For instance, inserting a slot in a B-rep block creates a structured set of new

faces, edges and vertices.

D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics 31

7.1. Structuring the name

A parametric_reference may be used as a structuring mechanism and therefore allows functions
to create more than one simple geometric object. Even in 2D, geometric items are, most of
the time, structured entities, so that their creation involves other geometric or topological
entities which are, if they don’t already exist, automatically created. For example in a STEP-
compliant 2D representation, a circular_arc relies on the construction of a basis circle and
two trimming points. The circle, in turn, requires a reference axis2_placement, which, in turn,
requires an origin cartesian_point. Note that, in such cases, one construction gesture created
a structured entity of which every item is well known. Therefore its structure can be hard
coded. This is a first case of the naming mechanism, where several created geometric or
topological entities may be related unambiguously to an unique construction function.

An example where one function (arc_fillet_2entities) creates several geometric objects is
presented below in Fig. 11. In this example, the function (#7900), rounds the corner between
edges D1 (#600) and D2 (#620) from Fig. 9. The created circular_arc (#79), directly creates
the references of the trimming points A and B (#730 and #740) and the reference of the
basis circle (#720) which in turn creates the placement coordinate system reference (#710)
which in turn creates the point reference (#700).

#70 = cartesian_point (’C’, 40.0, 70.0);
#700 = cartesian_point_ref (#70, ());
#71 = axis2_placement_2d (’circle_axis’, #70, $);
#710 = axis2_placement_2d_ref (#71, (), #700, $);

#72 = circle (’basis_circle’, #71, 40.0);
#720 = circle_ref (#72, (), #710);

#73 = cartesian_point (’A’, 0.0, 70.0);
#730 = cartesian_point_ref (#73, ());

#74 = cartesian_point (’B’, 40.0, 110.0);
#740 = cartesian_point_ref (#74, ());

#79 = circular_arc (’round’, #72, (#73), (#74));
#790 = circular_arc_ref (#79, (...), #720, #730, #740);
/* the collision (...) is discussed in section 8 */
#7900 = arc_fillet_2entities (#790, (#600, #620), *, #800);
#800 = real_literal (40.0, *);

Figure 11: Illustration of the parametric_reference mechanism for the creation of structured
invariants.

7.2. Referencing input parameters of constructive functions

The second mechanism to generate name (i.e., parametric_reference) of invariant entities con-
sists in referencing input parameters of a constructive function. For example, in a sweep
operation, large number of topological and geometrical entities are created. These entities
may be categorized in two sets. First the invariant entities that exist for any sweep. These
invariant entities are: an initial face, a final face and a lateral shell and they may be identified
as defined in section 7.1. Second the invariant entities specific of this particular sweep that
result from sweeping a particular item of the swept contour.

In our model we just use this capability to identify the different invariant faces of the
lateral shell. Then, unlike in the CHEN approach, these faces are used to identify all the

32 D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics

edge and vertex. For instance sweeping one edge of the swept contour defines a face (part of
the lateral shell). Such an implicitly created element may be defined by (see Fig. 12 for an
example) :

e the sweep constructive gesture,

e the “input” item of the sweep,

e the type of the result which may be either geometric (e.g. a surface) or topological (e.g.

a face).
final_face j

sweeping lateral_shell

=

resulting item
(type: geometry)

Input item of

initial_face the sweep

Figure 12: Characterization of a sweep.

In the previous examples, we have shown how parametric_reference(s) may be used to
unambiguously identify those entities that systematically result from the creation of another
entity. But there exist another kind of geometric entities in the current instance of a paramet-
ric data model, namely contingent entities which are entities that result from the interaction
between a new invariant entity and the pre-existing geometric model where this entity is
inserted.

8. Naming contingent entities

The identification structure of the entities that result form collisions shall reference both the
new invariant entity and the existing entities that were involved in the collision. This link
identification structure is represented in our dynamic context layer in which we implement
KRIPAC’s face graph. Each split or merge of faces reference both the old face(s) and the new
one(s) and the faces adjacent to the new one. This mechanism is exemplified in this paper in
our 2D example by the collision entity. The data model shown in Fig. 13 enables to capture
this local history for 2D

Using this data model, each new edge (D'l and D’2 see Fig. 9) is now unambiguously
named by referring to the pre-existing entity it modified. The physical file of our rounded
rectangle can be completed as below with the new lines (#75 and #76) and the collision
mechanism (#770 and #780).

#75 = polyline (’new_D1’, (#74,#50)); /* called D1’ in the paper */
#750 = polyline_ref (#75, (), $);
#76 = polyline (’new_D2’, (#73,#30)); /* called D2’ in the paper */

#760 = polyline_ref (#76, (), $);

#770 = collision (#600, #750);

D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics 33

representation_item

©
current_value :
(ABS) R e
parametric_reference collision_creation
S[0:7]
creates .
with collision

Figure 13: Complete model of a parametric_reference.

#780 = collision (#620, #760);

#79 = circular_arc (’round’, #72, (#73), (#74));
#790 = circular_arc_ref (#79, (#770,#780), #720, #730, #740);
#7900 = arc_fillet_2entities (#790, (#600, #620),* , #800);
#800 = real_literal (40.0, *);

To complete the description of the physical file (except the expression which are described
in next section) all the representation_items (in our example geometric items: #20, ..., #80)
that constitute the current instance shall be recorded in a representation (#1) associated
with a 2D representation_context (#3). This current instance is referenced by a functional
parametric model (#2) that records the set of constraints (#2000, ..., #7900) and the list of
parameters (here the length L: #1000).

#1 = representation (’2D_example’, (#20,#28,#30, ... ,#77,#78,#79,#80), #3);
#2 = functional_parametric_model (’modell’, #1, (#2000,#2802,#3000, ..., #7900), (#1000));
#3 = representation_context (’local_context’, ’2d’, 2);

In the next section we show briefly how the expressions can be modeled in our proposed
data model.

9. Modeling expressions

As shown in Fig. 9, a parametric data model shall contain algebraic expressions that involve
variables and various kinds of algebraic operator (equational systems for 2D, boolean opera-
tions, arithmetic operations, ...). The first problem is to model a variable. A variable consists
of three parts:
(i) a syntactical representation that provides a name that enables the variable to be refer-
enced and that specifies its type of allowed values,

(ii) a mechanism, usually termed a context (in imperative programming) or an environment
(in functional programming) that generates by some means (it may be, e.g., stored) the
value of this syntactical representation,

(iii) a function, usually called interpretation function, which bounds the value mechanism
to the syntactical representation.

34 D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics

Following ISO IS 13584-20 [8], this threefold concept may be modeled by a threefold data
model presented in Fig. 14.
(i) A wariable entity captures the syntactical representation of a variable and defines, by
subtyping, its allowed type of value. This entity is referenced by e.g., expression, func-
tions, etc..

(ii) A wvariable_semantics entity captures the mechanism that generates a value.

(iii) A relationship, termed environment, associates a variable_semantics with a variable.
In parametric data models, we want to capture two semantics:
1. the concept of the internal_variable; the value of such a variable results from the con-
straints (or parametric functions) that contain its syntactical representation in their
defined attribute, and

2. the concept of the formal parameter of a functional parametric model; such a variable
should not belong to the defined attribute of any (internal) constraint; its value results
from an external mechanism that assigns an actual value to a formal parameter when
and where the (functional) parametric model is involved.

environment

syntactic_ (INV) .
representation | interpretation semantics
s[0:1]
(ABS) | Mame 4 idetifier
(ABS) || primitve_ 1its_value | parametric_model_ -
variable | valee variable_semantics | description - o

1 1|

l O l o) <I>
numeric_ boolean string internal_variable

. . . parameter .
variable variable variable semantics

Figure 14: Simplified model of variables in parametric modeling

Such a mechanism enable to capture complex expressions by representing their abstract
syntax tree. As an example, the expression 2L.+10.0 (needed in Fig. 9) may be represented as
defined in Fig. 15. The environment entity (#1001) is used to associate the generic variable
real_numeric_variable (#100) to its value carried by the parameter (#1000).

#220 = plus_expression (#230, #260);

#230 = mult_expression (#240, #100);
#240 = int_literal (2, *);
#260 = real_literal (10.0, *);

#100 = real_numeric_variable ();
#1000 = parameter (’L’, 50.0, $);
#1001 = environment (#100, #1000);

Figure 15: Modeling expression

D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics 35

The complete description of the example defined in Fig. 9 is described in appendix A.

10. Conclusion

With the development of commercial CAD systems that support various parametrics capabil-
ities, a strong requirement is emerging from the CAD user community to be able to exchange
or to archive parametrics in a neutral way. Such a parametric data model should be able to
represent both the current instance of the parametric object and the parametric specification
from which this current instance results. It should support a robust naming mechanism al-
lowing to record constraints on entities that are no longer present in the current instance and
providing for name matching during re-evaluation.

The current instance is an explicit geometric shape. Therefore, following ISO 10303, it
may be modeled in EXPRESS and exchanged as a file compliant with ISO 10303-21. In the
paper we have proposed to use the same data specification language, and the same exchange
format, for the parametric specification.

The architecture we have proposed involves three layers :

e the current instance is modeled according to the specifications defined for explicit ge-

ometry by ISO 10303,

e the parametric specification is modeled by capturing, in the data model, the abstract
syntax tree that defines the recorded constraints, and by modeling explicitly values,
variables and the interpretation function that assign values to variables,

e the dynamic context is an in-between layer, that provides persistent names for con-
strained geometric entities whatever or not these geometric or topological entities still
exist in the current instance.

The naming scheme we proposed distinguishes invariant entities and contingent entities.
Invariant entities associated with a particular constructive gesture need to be defined for each
category of constructive gesture. Invariant entities may be structured and we have shown
how to access to their internal structure by structuring the names or by referencing input
parameters of the constructive gesture. Various kinds of topological naming may be used for
contingent entities. We have shown how an approach similar to the one defined by KRIPAC
might be used within the context of our model.

Our data model has already been partially implemented. We plan to use it to experiment
the exchange between two different parametric CAD systems.

References

[1] Y. AIT-AMEUR, F. BESNARD, P. GIRARD, G. PIERRA, J-C. POTIER: Formal Speci-
fication and Metaprogramming in the EXPRESS Language. International Conference on
Software Engineering and Knowledge Engineering SEKE’95 (IEEE — ACM Sigsoft),
Rockville, USA, 181-189 (1995).

[2] X. CHEN: Representation, Evaluation and FEditing of Feature-Based and Constraint-
Based design. Ph.D. thesis, Department of Computer Sciences, Purdue University, West
Lafayette, Indiana, 1995.

3] A. CYPHER: Watch what I do, Programming by demonstration. MIT Press. 1993.

36
[4]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]
[18]

[19]

D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics

C.M. HOFFMANN, R. JUAN: EREP: an editable high-level representation for geometric
design and analysis. Technical Report CER-92-24, Department of Computer Sciences,
Purdue University, West Lafayette, Indiana, 1993.

ISO 10303-11: Industrial Automation Systems and Integration, Product Data Represen-
tation and Exchange, “The EXPRESS language reference manual”. ISO, Geneva 1994.

ISO 10303-21: Industrial Automation Systems and Integration, Product Data Repre-
sentation and Exchange, “Clear text encoding of the exchange structure”. ISO, Geneva
1994.

ISO 10303-42: Industrial Automation Systems and Integration, Product Data Repre-
sentation and Exchange, “Integrated gemeric resources: Geometric and topological repre-
sentation”. ISO, Geneva 1994.

ISO IS 13584-20:1998: Industrial Automation Systems and Integration, Parts library,
Part 20: “Logical ressource: Logical model of expressions”. ISO, Geneva 1998.

J. KRripac: A mechanism for persistently naming topological entities in history-based
parametric solid models (Topological ID System). Proceedings of Solid Modeling ’95, Salt
Lake City, Utha, USA, 21-30 (1995).

T. LAAKKO, M. MANTYLA: Incremental constraint modelling in a feature modelling
system. Computer Graphics forum 15, no. 3, EUROGRAPHICS’96, Poitiers, France,
366-376 (1996).

K. LEE, G. ANDREWS: Inference of the positions of components in an assembly: Part
2. Computer Aided Design 17, 1, 20-24 (1985).

R. LicgHT, D. GOSSARD: Modification of geometric models through variational geometry.
Computer Aided Design 14, 4, 209-214 (1982).

B. MYERS: Taxonomies of Visual Programming and Program Visualization. J. Visual
Lang. and Comp. 1, 97-123 (1990).

G. PIERRA, J-C. POTIER, P. GIRARD: The EBP system: Example Based Programming
for parametric design. Workshop on Graphic and Modelling In Science and Technology,
Coimbra, 27-28 June 1994, in Springer Verlag Series, 1994.

G. PIERRA, Y. AIT-AMEUR, F. BESNARD, P. GIRARD, J-C. POTIER: A general
framework for parametric product model within STEP and Part Library. European Con-
ference Product Data Technology, London, 18-19 April, 1996.

S. RAGHOTAMA, V. SHAPIRO: Boundary Representation Variance in Parametric Solid
Modeling. Report SAL 1997-1, Spatial Automation Laboratory, University of Wisconsin-
Madison 1997.

D. ROLLER, F. SCHONEK, A. VERROUST: Dimension-driven geometry in CAD: a
survey. In Theory and practice on Geometric Modelling, Springer Verlag, 509-523 (1989).
D. ScHENCK, P. WILSON: Information Modelling The EXPRESS Way. Oxford Uni-
versity Press, 1994.

L. SorLAaNO, P. BRUNET: Constructive Constraint-based model for parametric CAD
systems. Computer-Aided Design 26, no. 8, 614-621 (1994).

D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics 37

Appendix A

In this section we present the whole physical file of the rounded rectangle example (Fig. 9)
discussed in this paper.

#1

#2 =

#3

/*

#20

#28

#30

#40

#50

#60

#62

#64

#66

#70

representation (’2D_example’, (#20,#28,#40,#50,#60,#62,#64,#66,#68,#70,#71,#72,#73,
HTA,#T5,#76 ,#77 ,#78,#79,#80), #3);

functional_parametric_model (’modell’, #1,(#2000,#2800, ..., #7900), (#1000));

representation_context (’local_context’, ’2d’, 2);

#100 = real_numeric_variable ();
#1000 = parameter (’L’, 50.0, $);
#1001 = environment (#100, #1000);

current instance layer */
/* dynamic context layer */
/* parametric specification layer */

/* POINTS */
= cartesian_point (’P1’, (0.0,110.0));
#200 = cartesian_point_ref (#20, ());
#2000 = canonical_cartesian_point_function ((#200), *, (#210,#220));

#210 = real_literal (0.0, *);

#220 = plus_expression (#230, #260);

#230 = mult_expression (#240, #100);

#240 = int_literal (2, *);

#260 = real_literal (10.0, *);

= axis2_placement_2d (’rectangle_axis’, #30, $);

#280 = axis2_placement_2d_ref (#28, (), $, $);
#2800 = canonical_axis2_placement_2d_function ((#280), *, (#300));

= cartesian_point (’P2’, (0.0,0.0));
#300 = cartesian_point_ref (#30, ());
#3000 = canonical_cartesian_point_function ((#300), *, (#210,#210));

cartesian_point (’P3’, (0.0,250.0));

cartesian_point (’P4’, (250.0,110.0));

/* RECTANGLE */
= polyline (’D1’, (#20,#50)); /* does not exist */
#600 = polyline_ref (§, *, (), $);
#6000 = canonical_polyline_function (#600, *, (#200,#500));
polyline (’D2’, (#20,#30)); /* does not exist */

polyline (’D3’, (#30,#40));

polyline (’D4’, (#40,#50));

/* ROUND */
= cartesian_point (’C’, 40.0, 70.0);
#700 = cartesian_point_ref (#70, ());

38

#71
#72
#73

#74

#75

#76

#79

D. Agbodan, D. Marcheix, G. Pierra: A Data Model Architecture for Parametrics

= axis2_placement_2d (’axis’, #70, $);

#710 = axis2_placement_2d_ref (#71, (), #700, $);
= cartesian_point (’A’, 0.0, 70.0);

#720 = cartesian_point_ref (#72, ());

= cartesian_point (’B’, 40.0, 110.0);

#730 = cartesian_point_ref (#73, ());

= circle (’basis_circle’, #71, 40.0);

#740 = circle_ref (#74, (), #710);

/* NEW LINES x*/

= polyline (’new_D1’, (#73,#50)); /* called D1’ in the paper */
#750 = polyline_ref (#75, (), $);
= polyline (’new_D2’, (#72,#30)); /* called D2’ in the paper */

#760 = polyline_ref (#76, (), $);

/* COLLISIONS */
collision (#600, #750);
collision (#620, #760);

#770
#780

/* ROUNDING FUNCTION */
= circular_arc (’round’, #74, (#72), (#73));
#790 = circular_arc_ref (#79, (#770,#780), #740, #720, #730);
#7900 = arc_fillet_2entities (#790, x, (#600, #620), *, #800);
#800 = real_literal (40.0, *);

Received August 14, 1998

