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Abstract. This paper describes a method for enhancing the initial design pro-
cess, as well as the transfer of data, for the geometry of compound contact springs.
A force-length constrained model is developed around a cantilever beam section
which has short (less than 10% of the beam’s length) structural elements to facil-
itate proper positioning. The short elements are often considered insignificant in
deflection analysis, but are shown to contribute an additional 26% to the struc-
ture’s deflection. Once this is done, a mount position constrained model is devel-
oped which must be solved iteratively. The resulting geometry is smooth, precise,
and can be readily transferred to CAD to complete a robust design process.
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1. Introduction

Developing compound contact springs (i.e., several segments) is a process which appears sim-
ple on the surface but can be laden with sources of potential error. The problems result from
the steps which must be taken to define the final geometry of the spring. A basic understand-
ing of mechanics of materials is necessary to begin; and for simple cantilever designs, results
can come quite easily [5]. However, adding a short length with a bend to facilitate positioning
can make even this task quite daunting. The tendency is for the designer to ignore these short
segments, but this can result in errors of 20% or greater in predicted load or deflection [1].

Several factors need to be addressed during the design process. Loads are critical in
contact design. This is especially true when metal slides on metal. This type of contact
must be set heavy enough to break through incidental oxides and avoid electrical arcing. It
must also be set light enough to avoid undue wear and the resulting debris. High loads can
severely affect contact life [4]. Contact deflection is very important in that it must allow for
assembly tolerances [6]. Cylindrical mating geometry is very common in the case of rotating
contact assemblies and serves to compound the problem. Decreased mounting distance causes
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a change in contact angle which also results in a reduced effective beam length. The shorter
beam is much stiffer causing forces to rise rapidly. In addition, neighboring structure can
become points for electrical shorts if contact tips rise too high. The final problem is one of
data transfer. Once the theoretical geometry has been determined, a working CAD drawing
must be developed. If this transfer is not clean, proper fabrication is impossible.

The proposed methodology starts with the design constraints such as contact force, stiff-
ness, and material. Classic beam theory is then used to determine the geometry for a straight
section of the contact beam. The maximum stress condition of the beam is then imposed on
the rest of the short structural elements to determine their deflected shapes. Once the shapes
have been determined they are assembled to form the complete structure. Since circular arc
elements are involved, they must be sized at assembly. The result is a nonlinear equation that
must be solved iteratively to obtain the final deflected geometry.

The deflected geometry is useful for visualization and associated interference checking,
but has little use for fabrication. To obtain the fabrication geometry, the stressed geometry
is relaxed to a stress-free state [2]. Additional forms can then be determined to facilitate
intermediate steps of formation. Finally, all geometry can be formatted to integrate into a
CAD drawn file where it serves as the base for assembly and manufacturing tasks.

2. Initial analysis

The design of cantilever springs seems almost mundane at times. One needs only to pick up
any book dealing with strengths of materials and there is the familiar equation [3]:

y =
FL3

3EI
(1)

where:
y ≡ deflection
F ≡ force
L ≡ beam length
E ≡ Young’s Modulus
I ≡ area moment of inertia

which is illustrated in the diagram of Fig. 1.
Adding the constraint that the end of the beam lie tangent to a cylinder makes the

problem slightly more interesting since now the slope of the end must also be considered as
shown in Fig. 2. Here the slope of the beam end (y′) reasonably approximates the angle (θe)
when the deflection (y) is less than one tenth of the length (L). This angle represents the
angular deviation from vertical at which the tangent end touches the cylinder.

y

L

F

Figure 1: A typical cantilever beam diagram



M.J. Keil, J. Rodriguez: A Method for Generating Compound Spring Element Curves 69

y’


Figure 2: Deflected cantilever tangent to a cylinder

It is fairly common practice to make contact springs from beryllium copper wire which
has been insert molded into a plastic block. This often involves forming fixtures which cre-
ate additional features (sub-elements) used to facilitate a desired mounting position. One
configuration is shown in Fig. 3 with the resulting sub-elements labeled for clarity.

Designers frequently analyze this spring system by considering only the straight contact
member and arguing that the short base and transition arc contribute little to the deflection
characteristics of the system. They are considered too short to be significant, but they are
also in the zone of maximum bending moment.

L

Figure 3: Formed spring with labeled sub-elements

The rest of this paper will study the significance of these “short” elements in the total
deflection of the compound spring system. Further, a study of a mount point constraint
approach will be developed to show the challenge that this presents to the designer. Finally,
the role of a CAD integrated design approach will be presented along with an argument for
error minimization.

3. Short element contribution to deflection

The study of the significance of these short elements begins by specifying material and ge-
ometry. Beryllium copper wire with a diameter (d) of 0.020 inches is selected. The straight
contact member is 1.000 inches1 long (L). The base element is 0.050 inches long (Lb). The

1Editor’s note: 1 inch equals 25.4 mm (exactly), and 1 pound-mass (1 lbm avoirdupois) is defined in most
English-speaking countries as 0.453592370 kg. One pound-force (lbf avoirdupois) equals 4.448222 N.
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transition arc has a radius (ra) of 0.050 inches and a form angle (θa) of 45
◦. A contact force

of 0.0224 pounds is desired. The cylinder radius (R) is 1.500 inches.
The deflection of the spring system is then determined. First, the deflection of the contact

member is found using equation (2) to analyze the structure of Fig. 1. The deflection of the
contact member is then:

y =
FL3

3EI
=

(0.0224 lb) (1.000 in)3

3 (19.0× 106 lb/in2) (π (0.020 in)4/64)
(2)

= 0.050 in

The moment (M) applied to the other members is:

M = FL = (0.0224 lb) (1.000 in) (3)

= 0.0224 in-lb

The equation for curvature can be used to find the radius (rb) of the stressed base element:

rb =
EI

M
=

(19.0× 106 lb/in2) (π (0.020 in)4/64)

0.0224 in-lb
(4)

= 6.662 in

Knowing the radius and arc length (Lb), the angular deflection (θb) can be found:

θb =
Lb

rb

=
0.050

6.662
= 7.51× 10−3 radians (5)

The deflection of the transition arc is best handled by considering the curvature (ρ) which
is simply the inverse of the radius or:

ρ =
1

r
=

M

EI
(6)

Given the initial radius (ra) of 0.050 in, the stressed curvature (ρs) is:

ρs =
1

ra

+
M

EI
=

1

ra

+
1

rb

(7)

=
1

0.050
+

1

6.662
= 20.15 in−1

Thus, the stressed radius (rs) is:

rs =
1

ρs

=
1

20.15
= 0.0496 in (8)

The angle subtended by the stressed arc (θs) has also changed. Of course, the arc length
has remained constant. Thus, θs is found by equating stressed and unstressed arc lengths:

rs θs = ra θa
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therefore

θs =
ra θa

rs

=
(0.050) (45◦)

0.496
= 45.338◦ (9)

The angular change due to stress (∆θ) is:

∆θ = θs − θa = 0.338
◦ (10)

or

(0.338◦)
π

180◦
= 5.89× 10−3 radians

The additional rotation (θc) of the contact member is:

θc = ∆θ + θb = 7.38× 10−3 + 5.89× 10−3 (11)

= 13.27× 10−3 radians

This also adds a deflection (∆y) to the contact member:

∆y = L θc = (1.000 in) (13.27× 10−3) (12)

= 0.01327 in

Comparing this additional deflection to that predicted by equation (2), gives:

0.01327

0.050
× 100% = 26.5%

Even though the combined length of these sections is less than a tenth the length of
the contact member, they contribute significantly to the total end deflection. Of course, the
location of the fixed point of this compound spring system relative to the cylinder it touches
still needs to be determined.

4. Mount location

Locating the fixed point begins by constructing the diagram in Fig. 2. The end rotation (θe)
is found from the equation:

θe =
FL2

2EI
=

(0.0224 lb) (1.000 in)2

2 (19.0× 106 lb/in2) (π (0.020 in)4/64)
(13)

= 0.0751 radians or 4.300◦

This places the end of the deflected beam tangent to the cylinder. The beam is then
rotated θs = 45.338

◦ to mate up with the stressed transition arc. Finally this assembly is
rotated θb for an additional 0.438

◦. The total end rotation (θT ) is now:
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compound
spring

cylinder
profile

(0,0)

Figure 4: Compound spring positioned on cylinder

θT = θe + θb + θs = 50.068
◦ (14)

The result of these manipulations is shown in Fig. 4 with a mount point at x = −1.897
inches and y = 0.916 inches relative to the center of the cylinder.

Failure to take into account the contribution of the short elements alters θT to an angle
θT1 described by:

θT1 = θT − θe −∆θ = 45.292◦

The result is shown dashed in Fig. 5 as an overlay on the original system. This may
not appear to be significant to the casual observer, but it can have severe consequences if
the geometry is being used to design an electrical contact. Furthermore, designers will often
compensate in other ways with unpredictable results.

The end rotations being the greatest contributor to the error shown are often not consid-
ered at all. In fact, the end rotation of the contact member is often not considered as well.
This error is even more dramatic as shown in Fig. 6.

Figure 5: Position error from failure to consider short elements
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The reasons for these omissions are familiar to most design organizations. Engineers
perform the complex calculations and design draftsmen convert the results into graphics for
fabrication drawings. Many designers are not familiar with the spline functions necessary to
draw the deflected beam shapes. Another complication is that the design approach taken
here does not represent a typical design problem. Here the length of the contact member was
used to find a suitable mount position. Typically, the mount position is known. The length
of the base element and the radius of the transition arc are determined from fixturing, but
the length of the transition arc and the contact member are unknown.

Figure 6: Position error from failure to consider contact member end rotation and sub-element
rotations

5. Position constrained design

A designer is usually given an envelope and told to develop his design. For this problem, he
starts with a sketch such as that of Fig. 7. The mount point is known — given here by a
position vector (V 1).

known
mount
point

Figure 7: Constraints given to the designer
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Figure 8: Vector loop

Distorting the geometry, as in Fig. 8, helps to explain the analysis with vectors. Vector
V 2 locates the stressed center of curvature of the base element directly above the mount
point. Vector V 3 locates the deflected end of the base element. Vector V 4 locates the stressed
transition arc center which is colinear but opposite in direction with V 3. Vector V 5 connects
to the other end of the arc, and vector V 6 spans the ends of the contact member. Finally,
vector V 7 closes the loop. This can be expressed as a vector equation:

V 1 + V 2 + V 3 + V 4 + V 5 + V 6 + V 7 = 0 (15)

All of these vectors can be expressed as functions of the contact force and the contact
beam length. Since the force is known, only the length (L), and the angle between V 4 and
V 5 is unknown. Thus, there are two equations (the x− and the y− component equations)
which can be used to solve for the length L and the angle θs. Each equation contains second
and third order polynomials as well as trigonometric functions, so an iterative method can be
exploited. This can be done in two steps. First, guess a value for L and solve for θs directly
to satisfy the y− component of the vector loop equation. Then, a Newton-Raphson method
can be used to solve for L as follows:

Li+1 = Li −
f(L)

f ′(L)
(16)

where:

f(L) = V 1x + V 3x + V 4x + V 5x + V 6x + V 7x = 0 (17)

Note that the V 2 term was omitted since V 2x = 0. In terms of variables already discussed,
this expands to:

f(L) = V 1x + rb sin(θb)− rs sin(θb) + rs sin(θb + θs) + (18)

[Lm cos(θb + θs)− y sin(θb + θs)] +R sin(θT ) = 0

Fortunately, the function has proven to be well-behaved given a reasonable first guess for
L. A guess that has shown itself reasonable has been to strike a tangent line from the base
element to the cylinder as shown in Fig. 9. This gives a vector:
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R

first
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element
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line
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to

Figure 9: Approximation of the contact member

V a = (−1.897 + 0.050, 0.192) (19)

with magnitude:

∣

∣V a

∣

∣ = 1.957 inches (20)

This results in an estimated length for the contact member (L0) of:

L0 =

√

∣

∣V a

∣

∣

2 − R2 =
√
1.9572 − 1.5002 = 1.257 inches (21)

Starting with this value, equation (16) converges to L = 1.000 inches as expected since
the mount point was derived from this value.

6. Integration with CAD

Transforming the equations presented here into properly scaled and annotated drawings is a
daunting task for the average designer. Much of the drudgery of calculation can be handled
with computer programs, but this is not enough. The designer needs accurately scaled ge-
ometry. The deflected shape of the compound system involves the precise placement of arcs
and polynomial curves. This problem is overcome by integrating the design program with
a given CAD package through its native graphics interface. The geometry can also be used
to facilitate production. By “relaxing” the stressed shapes, the unstressed geometry can be
extracted, through the same interface, to develop forming and inspection fixtures.

Finally, the curves that are generated using this method are smooth (i.e., cusp free),
and precise. One might argue that Finite Element Analysis (FEA) could achieve the same
results, but this only adds another layer of difficulty. The FEA geometry is often rich with
cusped approximations, and the resulting graphics is not a precise extractable representation.
Transferring accurate geometry to CAD is important. Doing so gives to the designer and the
production team the confidence that parameters such as force, mount location, and others
have not been compromised for the sake of approximate geometry.



76 M.J. Keil, J. Rodriguez: A Method for Generating Compound Spring Element Curves

References

[1] A. Blake: Practical Stress Analysis in Engineering Design. 1st ed., Marcel Dekker,
Inc., New York 1982.

[2] H. Carlson: Spring Designer’s Handbook. 1st ed., Marcel Dekker, Inc., New York 1978.

[3] J.M. Gere, S.P. Timoshenko: Mechanics of Materials. 4th ed., PWS Publishing Co.,
Boston 1997.

[4] R. Holm: Electrical Contacts Handbook. Springer-Verlag OHG, Berlin 1958.

[5] E.P. Popov: Mechanics of Materials. 2nd ed., Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1976.

[6] Society of Automotive Engineers (SAE): Spring Design Manual. 2nd ed., SAE.
Warrendale, PA, 1996.

Received August 14, 1998


