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1. Introductory considerations

1.1. On arbitrary space antipodal point

All spheres, from those infinitesimally small to the largest spherical ‘planes’, are harmonically
equivalent, i.e., they can be bijectively and conformally inverted into each other. Therefore
one can study everything that takes place in a ‘plane’ also on an inversely corresponding
sphere, and vice versa. In such a ‘plane’, the most distant point from an observer is his
antipodal point A, and all the circles and all the spheres in the universe which pass through
this unique geometrical point A are the observer’s ‘straight lines’ and ‘planes’.

Wherever we imagine that our space antipodal point A is positioned, it will always be at
a finite, however great distance r, so that its inversely corresponding point A can never be
at the geometrical centre I of the sphere sI of inversion, for the reciprocal distance r = 1/r
must also be finite, however tiny (Fig. 1).

It seems that there is no limit as to how closely A can approach the centre I, but A
can never attain it. First, geometrically, no sphere orthogonal to the sphere sI can ever pass
through its centre I, and, second, according to the fundamental principle Ex nihilo nihil,
the minimal sphere (r = IA) must exist so that it could be inverted into the corresponding
maximal sphere (r = IA). This is in accordance with the ancient Pythagorean system (“The
universe is spherical in shape and finite in size. Outside it is infinite void which enables
the universe to breathe, as it were”), as well as with the modern theory of Big Bang (from
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Figure 1: Arbitrary direction and arbitrary distance of the observer’s antipodal point in space

the singular ‘primal egg’ ) and Friedman’s model of a closed and pulsating universe. The
‘breathing’ of the universe is harmonical, for any two state-spheres are mutually symmetrical
with respect to an intermediate state-sphere.

From Fig. 1 it is now clear that there are non-enumerable pairs of diametrically opposite
positions of the point A on the minimal sphere, and because of this point-like sphere, the
contour circles of all the greatest self-inverted spheres (A ↔ A) seemingly coincide with the
‘rectilinear’ diametrical rays “through” the pole I.

1.2. On the parallelism of ‘straight lines’ and ‘planes’

The observer’s most distant ‘straight lines’ in a ‘plane’ (= sphere) in all geodesical directions
are antipodal infinitesimal circles through A, which fill up an infinitesimal circle (or rather a
calotte) with A as its centre. Parallel ‘planes’ touch each other in this calotte, i.e., they have
all the antipodal ‘straight lines’ in common. In fact, observing micro geometrically, we could
say that through a given point S (Fig. 2) there can be imagined two opposite parallels with
the given ‘line’ (or ‘plane’) o: the westward parallel w and the eastward parallel e; they touch
o at the common segments W -A and E-A respectively, and eventually w and e are coincident
at the single ‘straight line’ s through S, parallel to the ‘line’ (or ‘plane’) o, having a common
segment between the geometrical points W and E. The reader can observe in Fig. 2 two
similar procedures for the genesis of the common segment of two parallel ‘lines’, and of the
common antipodal ‘lines’ inside the common circular point of two parallel ‘planes’.
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Figure 2: Genesis of parallel ‘lines’ or ‘planes’ (s ‖ o) and of the
common antipodal ‘lines’ of parallel ‘planes’

2. Homology in relativistic geometry

In relativistic geometry a homology (perspective collineation) in space is a central projection
(center S) from one plane into another (planes 1 and 2 in Fig. 3). In classical projective
geometry, the vanishing lines u2 and v1 are projected into the infinitely distant lines u1 (in 1)
and v2 (in 2), respectively. In relativistic geometry, however, the vanishing ‘lines’ u2 and v1

really “vanish” as they are blown down into the infinitesimal antipodal ‘straight lines’ u1 and
v2. The procedure becomes more obvious if the ‘planes’ and the ‘rectilinear’ projecting rays
are inverted into the corresponding spheres and circular projecting rays (through S and A).

The parallel ‘planes’ (1 and ‖1, 2 and ‖2) are transformed into the spheres touching at A.
Since the relativistic parallelism is invariant under inversion while the absolute equidistance
is not, all the mutually parallel ‘lines’ (s, ‖s, u2, v1, u1, v2) are inverted into the circles (seen
edgewise) which touch each other at the antipodal point A. Now one can clearly see that
the vanishing ‘line’ v1 in 1 is projected (by its circular rays through S in opposite directions)
onto the corresponding pair of antipodal ‘straight lines’ v2 in 2 and vice versa (as well as u2

in 2 onto u1 in 1). Actually, the pencil of ‘planes’ through s, the fixed axis of the homology,
is inverted into the pencil of spheres through the fixed circle s (dia = OA). So the point A
is the common antipodal point for every observer staying diametrically opposite to A on his
particular sphere from the pencil (e.g., O1 and O2).

The relativistic procedure shows us that such a homology represents a ready-made mech-
anism for tying (or untying) singular points of curves by tightening (or untightening) the
circular loop v1 (or v2) and u2 (or u1). In Fig. 3 (top on ‘planes’ and bottom on spheres)
the circle TH (seen edgewise in 1) is projected from S onto the hyperbola TH in 2. Since
v1 meets the circle TH at two real points M,N , these points, by tightening the loop v1 in 1
into v2 in 2, form the antipodal crunode of the hyperbola, while at the same time the circle’s



154 L. Dovniković: Relativistic Homology as a Way of Tying or Untying Singular Points

Figure 3: Relativistic homology on ‘planes’ and spheres

antipodal circular acnode u1 in 1 is untied into two conjugate imaginary intersecting points
between u2 and the ‘spherical hyperbola’ in 2 with the apices T,H and the crunode v2 at A.

In the same way the circle TE is transformed into the ellipse TE with its antipodal
acnode, and the circle TP into the parabola TP with its antipodal cusp.

Before dealing with a few more complex examples let us present some essentials of rela-
tivistic geometry and especially about its inversion and stereographical projection.

2.1. Relativistic versus classical interpretation of inversion and stereographical

projection

Let us begin with the question why our new geometry is relativistic when everybody knows
that different observers from different positions see one and the same object differently. How-
ever, this everyday experience is a trivial non-mathematical ‘relativity’, where (to a lay person)
“everything is relative” and no observer can know the views of the others. The relativity prin-
ciple, on the contrary, means that each observer can know in advance how any other observer
will see the same object because between the equivalent positions of two observers, as well
as between their respective views, there is a definite mathematical relation (hence relativity).
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In geometry, this relation is a harmonical and conformal transformation — the symmetry
with respect to a circle or sphere, in general, and to a ‘straight line’ or ‘plane’ in the limiting
classical cases. It means that under such a symmetry, i.e., under a ‘plane’ or space inversion
or stereographical projection, the shape of a curve or surface changes the lengths of its ‘linear’
or curved segments only, whereas all the rest — harmonic relations, angles, and numbers of
symmetry axes and centres, singular points, apices, foci — remains invariant.

In classical projective geometry the 4th order cruciform c2 (dashed in Fig. 4) with its
central acnode at the pole O is transformed by an inversion (as a quadratic transformation
with respect to the imaginary coordinate triangle O, I, J with sides o∞ = IJ , i = OI and
j = OJ) into an expected 8th order curve with 4-fold points at O, I, J which splits into
the 6th order rose c2 and the double line o∞. As the 2-fold o∞ passes through the 4-fold
absolute points I, J two times, the rose passes also two times through I, J , meaning that it is
bicircular. Then, reversely, the 6th order rose with its 4-fold point O and 2-fold points I, J , is
transformed into the total 12th order curve with three 6-fold points O, I, J , which splits into
the 4th order cruciform c2, the 4-fold ideal line o∞, and the two 2-fold imaginary lines i and j
(note 4+4+2+2 = 12). As the 4-fold o∞ passes through I and J four times, and i passes two
times through I and O, and j two times through J and O, the resulting multiplicity of the
singular points is: 0 for I (6− 4− 2 = 0), 0 for J (6− 4− 2 = 0) and 2 for O (6− 2− 2 = 2),
meaning that the cruciform passes only through O as its acnode. Everything is alright, but
rather complicated.

In contrast to this classical procedure, the relativistic inversion is quite simple because
it is not a quadratic transformation but a pure harmonic symmetry with respect to a fixed
circle; it is a complete bijection because the pole does not correspond to the line at infinity
but to the unique observer’s antipodal point. In the same way, the relativistic stereographic
projection is a space inversion of a sphere into a ‘plane’ with respect to a fixed sphere with its
centre at the pole, i.e., there is a complete harmonic symmetry between the ‘flat’ geometry
in a ‘plane’ and the corresponding curved geometry on a sphere. It is intriguing to note that
even the classical inversion, in contrast to other quadratic transformations, is quite limited;
it works only between particular curves whose classical orders ranges from n to 2n. That is
why a circle, e.g., cannot be inverted into a 4th order curve but only into a circle or a line.

In Euclidean geometry, the stereographic projection (= inversion) is not bijective for the
pole cannot be projected from the sphere onto the plane since the projecting rays, being
equidistant to the plane, cannot have any contact with the plane. That is why Viviani’s
curve (as the intersection of a sphere with radius R and a rotational cylinder with radius
r = R/2 touching internally) can be stereographically projected, either from its crunode into
a 2nd order orthogonal hyperbola (4− 2 = 2), or from a regular point into a 3rd order curve,
e.g., a strophoid (4 − 1 = 3), or from a pole outside the curve into a 4th order curve (e.g.,
Bernoulli’s lemniscate). In projective geometry we have a similar effect: the bijection cannot
be achieved since the pole is projected (‘contractually’) into the plane’s line at infinity.

In relativistic geometry, however, the order of the curve does not change under stere-
ographic projection (= inversion= symmetry) because the pole, as the observer’s antipodal
point on the sphere, is projected into the observer’s antipodal point in the ’plane’, and vice
versa.

Now it is evident why — because of the fact that relativistic stereographic projection,
inversion and conformal symmetry are synonyms — all spatial and planar curves which are
symmetrical to Viviani’s curve and then consequently with each other, form a family of differ-
ent but harmonically and conformally equivalent curves of the same order. Naturally, none of
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them is more elementary than the others, but yet the orthogonal hyperbola distinguishes itself
as a unique shape, while the equivalent shapes of 3rd and 4th order curves are non-enumerable.

On the way from projective to relativistic geometry the first step had been done by
Möbius in the plane, and by Riemann in the space. Möbius added to the Euclidean plane
a unique point at infinity, thus forming the Möbius plane or Euclidean circular plane, on which
the inversion became bijective. Riemann mapped such a plane onto a sphere creating his
representation of the complex plane by stereographic projection, where the pole corresponds
to the plane’s point at infinity. However, they could not go further since by replacing the line
at infinity by a point at infinity they stepped outside the existing projective geometry and
its algebraic interpretation. But above all, they could not free themselves from the reigning
conception of infinity, which otherwise was necessary for the final recognition of the classical
open-ended plane as a sphere of unlimited size.

Because of the facts, first, that equivalent curves of different classical order (n to 2n) are
mutually entirely symmetrical, and second, that all algebraic and transcendent curves and
surfaces are closed, it is evident that today’s infinitistic algebraic geometry cannot work in
the relativistic geometry. To say it briefly, the discovery of the relativistic nature of ‘straight
line’ and ‘plane’ leads us finally to the ‘end of infinity’.

Since Euclidean geometry was algebraized 2000 years later by Descartes and Fermat,
and projective geometry 200 years later by Möbius and Plücker, it is to expect that the
algebraization of relativistic geometry — regarding the acceleration of modern science —
should be done within 20 years; one decade has already elapsed.

2.2. Tying of the four-petal rose into a six-petal lemniscate

The cruciform c2 (Fig. 4) with a central acnode and an antipodal 4-fold node (constructed as
the intersection of two hyperbolic cylinders with an apex-apex touch; see Fig. 198 in [6]) is
inverted into the four-petal rose c2 with an antipodal acnode and a central 4-fold node. Both
curves are projected from 2 to 1 (note: a solid curve is always mapped into a dashed curve,
and vice versa). The points 2, 6 and the central acnode of c2 on u2 are tied into an antipodal
4-fold point of c1 on the antipodal u1, while at the same time the antipodal 4-fold node of
c2 on v2 is untied into two crunodes 1, 5 and 3, 7 of c1 on v1 . Since u2 intersects the rose c2
at six points (2, 6 and 1, 3, 5, 7), the rose is projected into the six-branch hyperbola c1 with a
6-fold antipodal node on u1. Simultaneously, the rose’s antipodal acnode on v2 is untied into
a pair of conjugate imaginary points of c1 on v1.

We will be able to see the structure of the singular antipodal points of c1 and c1 directly
after inverting them into c′

1
and c′

1
(Fig. 5). Thus the 6-fold node of the six-petal lemniscate

c′
1
(as well as the equivalent antipodal node of c1) is composed of two crosses (2′ and 6′) and

four touches (1′, 3′, 5′ and 7′) with the common horizontal symmetry axis.
In classical geometry the cruciform c2 and the rose c2 are of the 4th and 6th order, re-

spectively, but in relativistic geometry they both, as mutually symmetrical curves, are of the
8th order with mutually symmetrical singular points (at the pole and at the antipodal point).
So the classical 4th order cruciform with its antipodal 4-fold point and the classical 6th order
rose with its antipodal 2-fold point are unique shapes among the multitude of various classi-
cal 7th and 8th order shapes, which all together form the relativistic family of harmonically
equivalent curves of 8th order. Thus, the number of unique shapes is equal to the number of
unique singular points. Because of that in the mentioned family there is no curve of classical
5th order as these curves have no 3-fold point.

Because of the fact that the antipodal ‘straight line’ v2 meets the classical 4th order
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Figure 4: Projection of the rose c2 into c1 with a 6-fold antipodal point
and the cruciform c2 into c1 with a 4-fold antipodal point
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Figure 5: Inversion of the curves c1 and c1 with respect to the circle s into
the curves c′

1
and c′

1

cruciform c2 at four real points (4 + 4 = 8), the classical 6th order rose c2 at two conjugate
imaginary points (6 + 2 = 8), every classical 7th order curve at one point (7 + 1 = 8), and
every 8th order curve at no point (neither real nor imaginary), the classical Bézout theorem
is not valid in relativistic geometry.

The micro geometrical structure of the cruciform’s antipodal 4-fold node at the infinites-
imal environment of the antipodal point A is shown in the corner of Fig. 4. The touching
points 1, 5 and 3, 7 lie on the lines a2, b2, c2 and v2, so that neither the axis 4-8 nor the van-
ishing ‘line’ u2, nor its parallel s, pass through these points. (This must be so, for a singular
point is not the Gordian knot; it is tied in such a way that it could be untied reversely). The
fixed axis s and its parallels u2 and v2 pass through A touching each other in the overlapped
infinitesimal segments (presumably of different lengths) which, under reverse projection from
S, remain on the fixed axis s and on its parallels u1 and v1.
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Figure 6: Projection of the 12th order lemniscate into a curve with an antipodal 12-fold point
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2.3. Tying of the six-petal lemniscate into an eight-petal curve

After putting the axis of the lemniscate c2 on the vanishing ‘line’ u2 (Fig. 6) and projecting it
into the ‘plane’ 1, we obtain a curve c1 with four hyperbolic branches (2, 6 and 4, 8) and eight
parabolic branches (1, 1; 5, 5 and 3, 3; 7, 7), which all together form the curve’s antipodal
12-fold point composed of one crunode (4 with 8), one touching (2 with 6) and four cusps
(1-1, 5-5, 3-3, 7-7). It is because of the fact that the vanishing ‘line’ u2 intersects the 12th

order lemniscate c2 four times (2, 6, 4, 8) and touches it four times (1-1, 5-5, 3-3, 7-7). To
recognize this, one must note how the lemniscate c2 consecutively passes through its singular
point with respect to u2. This can be better seen on the inverted curve c1 (Fig. 5) which
passes through its antipodal singular point, with respect to the common horizontal axis, in
the following order: 1, 1 (touch) -E – 2 (cross) -F – 3, 3 (touch) - 4 – 5, 5 (touch) -G – 6 (cross)
H – 7, 7 (touch) - 8→ 1. In the same way, after inverting the obtained curve c1 into the eight-
petal rose c1 (Fig. 7), we can recognize the order of its passings through its central 12-fold
point only with the help of c1: 1, 1 (cusp) -A – 2 (pass) -B – 3, 3 (cusp) -C – 4 (pass) -D –
5, 5 (cusp) -E – 6 (pass) -F – 7, 7 (cusp) -G – 8 (pass) -H → 1.

2.4. Transformations of symmetries

The rose c2 (Fig. 4) has five symmetries, one central and four axial. Since the central rays
with the centre on u2 are projected into parallel rays orthogonal to v1, the central symmetry of
c2 (and c2) is projected into the axial v1-symmetry of c1 (and c1), the axial u2-symmetry into
the central V -symmetry, and the two axial a2- and b2-symmetries into the two central-axial
(Va, a1)- and (Vb, b1)-symmetry, respectively. For example: There are harmonic quadruples
(Vbb2, BP ) = (Vbb1, BP ) = −1, (Vaa1, KL) = −1, and (Vaa1, RT ) = −1 for two pairs of
points of c1.

As the rose c2 and the cruciform c2 (Fig. 4) are mutually symmetrical with respect to
the circle h2, so are c1 and c1 symmetrical with respect to the hyperbola h1 (as the pro-
jection of the circle), and therefore the final curves c′

1
and c1 (Fig. 5) are symmetrical with

respect to the lemniscate h′

1
(= inverted hyperbola h1); e.g., (PQ,MN) = −1 is inverted into

(P ′Q′,M ′N ′) = −1 on the circular ray through P ′ and the pole.

In the same way, the five symmetries of the six-petal lemniscate c2 (Fig. 6) are transformed
as follows: the axial u2-symmetry into the central U -symmetry, the central one into the
axial v1-symmetry, the central-axial (Va2, a2)- and (Vb2, b2)-symmetries into the central-axial
(Va1, a1)- and (Vb1, b1)-symmetries of c1. The ‘rectilinear’ rays r of the Va-symmetry (Fig. 5)
are inverted into the circular rays r′ through Va and through the pole. The pencil of circular
rays, e.g., the circle r2 in Fig. 6, is projected into the pencil of conics (circle r2 → hyperbola
r1). Then the harmonic quadruples (Va2a2, AK) = −1 and (Va2a2, RT ) = −1 on r2 are
projected onto (Va1a1, AK) = −1 and (Va1a1, RT ) = −1 on r1. Finally, the hyperbolic ray r1

(Fig. 7) is inverted into the harmonically equivalent 4th order ray r1 with a crunode at the
pole, as well as the parabolic axes a and b of c1 are inverted into their 4th order harmonic
equivalents a and b with a cusp at the pole. Consequently, the projective transformations
leave the same harmonic relations between four segments on the 4th order ray r1 of the central-
axial symmetry of the 24th order eight-petal rose c1 with respect to its center V a and its 4th

order axis a: (V aa,AK) = −1 and (V aa,RT ) = −1.
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Figure 7: Five symmetries of the two harmonically equivalent curves

3. Conclusion

In relativistic geometry the classical roles of homology and inversion are, in some sense,
exchanged: now the relativistic homology does the task of transformation, i.e., it resolves and
generates the respective antipodal points of homological curves c1 and c2 by blowing up or
down the two vanishing ‘lines’ u1 or v1, whereas the relativistic inversion, as a pure symmetry,
only does the mere task of transportation of a curve’s singular point to or from the observer’s
antipodal point. Accordingly, the number of points (real + conjugate imaginary), where u2

(v1) meets c2 (c1), is equal to the multiplicity of the antipodal point of c1 (c2) on u1 (v2).
Therefore, by a homology any curve’s order can at most be doubled or halved, (e.g., c2 ↔ c1
in Fig. 6), meaning that it can remain unchanged too (e.g., ellipse↔ hyperbola). Briefly, the
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total order of a curve is now its classical order + the multiplicity of its antipodal point.
Under a chain of homology-inversion-homology transformations the types of curves’ sym-

metries (central, axial, central-axial), symmetry axes and rays (‘line’, circle, conic, conic
equivalent, . . . ) are obviously changing, but the harmonic cross-ratio of the four segments on
a symmetry ray remains invariant.

In general, countless families of harmonically equivalent curves can now be connected by
relativistic homologies in an unlimited network. The generation and resolution of singular
points of curves can be achieved otherwise by quadratic transformations: analytically by so
called σ-processes [1], or constructively by a sequence of restituted MacLaurin’s transforma-
tions [2, 3].

References

[1] E. Brieskorn, H. Knörrer: Plane Algebraic Curves. Birkhäuser Verlag, Basel-
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[3] L. Dovniković: Uniform mechanisms for rational plane curves. Proc. 4th ICECGDG,
Miami 1990, 125–131.
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[7] L. Dovniković: The Relativistic Geometry as the Legendary ‘Royal Road’ to the Whole
of Geometry. Proc. 10th ICGG, Kiev 2002, 152–161.

Received December 25, 2003; final form December 26, 2004


