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Abstract. We study the set of circles which intersect a Dupin cyclide in at least
two different points orthogonally. Dupin cyclides can be obtained by inverting a
cylinder, or cone of revolution, or by inverting a torus. Since orthogonal intersec-
tion is invariant under Möbius transformations we first study the ortho-circles of
cylinders/cones of revolution and tori and transfer the results afterwards.
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1. Introduction

In this paper we investigate the set of circles which intersect Dupin cyclides twice orthogonally.
These circles will be called ortho-circles. Dupin cyclides are algebraic surfaces of degree three
or four [17]. They are known to be the images of cylinders, or cones of revolution, or tori
under inversions. Depending on the location of the center O of the inversion and of the choice
of the input surface Φ we obtain different types of Dupin cyclides (see Fig. 1).

Dupin cyclides can be obtained by certain projections from supercyclides [12]. There is
also a close relation between Dupin cyclides and line geometry [48] and geometric optics [34].
Dupin cyclides carry at least two one-parameter families of circles. The carrier planes of these
circles form pencils with skew axes [13]. These circles comprise the set of lines of curvature
on the cyclide. The normal lines of a Dupin cyclide intersect a pair of focal conics, i.e., a pair
of conics k1 and k2 in planes π1 and π2 with π1⊥π2 . The vertices of k1 are the foci of k2, and
vice versa. Fig. 2 shows a part of a ring shaped cyclide and its focal conics. The conics k1

and k2 form the degenerate central surfaces. Dupin cyclides can be characterized by having
degenerate central surfaces [26].

Dupin cyclides are canal surfaces in two ways [10, 16]: A Dupin cyclide can be defined as
the envelope Φ of a smooth one-parameter family F1 of spheres touching three given spheres
in generic position. If we pick three arbitrary spheres from F1 they also define a second
smooth one-parameter family F2 of spheres touching these three spheres. The envelope of F2

is the same cyclide Φ. The centers of the spheres in F1 and F2 form the above mentioned
pair of focal conics (see Fig. 2).
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Figure 1: Dupin cyclides obtained from cylinders, cones, and tori. The possible choices
of centers of inversion are labelled according to the type of resulting surface: (1.1) thorn
torus, (1.2) needle cyclide, (1.3) parabolic needle cyclide (1.4) cuspidal cyclide; (2.1) cone
of revolution, (2.2) horn cyclide, (2.3) parabolic horn cyclide, (2.4) symmetric horn cyclide,
(2.5) spindle torus, (2.6) spindle cyclide; (3.1) ring torus, (3.2) ring cyclide, (3.3) parabolic
ring cyclide. Some of these are displayed in Figs. 6, 8, or 13.
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Figure 2: Part of a Dupin cyclide with its focal conics
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The definition of Dupin cyclides as envelopes of spheres touching three given ones is
invariant with respect to Möbius transformations, such as the inversion for example.

The CAGD community has discovered Dupin cyclides for their own purposes. These
surfaces can be used as blending surfaces between pipes with different radii and canal surfaces
as well [2, 3]. They also serve as blending surfaces between natural quadrics. Since Dupin
cyclides are rational surfaces of relatively low degree, their parametrizations can be rewritten
in rational tensor product form. This makes them accessible for CAD systems [5, 7, 11, 14,
21, 23, 27, 32, 33, 35, 36].

The huge amount of literature in the past and nowadays dealing with Dupin cyclides again
indicates the importance of Dupin cyclides in theory and practice. Even Dupin cyclides in
Non-Euclidean spaces have been a field of research [18, 30, 39, 40] as they serve as Clifford

surfaces in conformal models of three-dimensional hyperbolic or elliptic geometry.
The study of ortho-circles arose from the generalization of transnormal manifolds defined

by Robertson [37] and Wegner [47]. A submanifold M in Euclidean space R
n is called

transnormal if for points p, q ∈ M with corresponding normal spaces Np, Nq, resp., p ∈ Nq

implies q ∈ Np.
A submanifold M in Euclidean n-space R

n is called manifold of constant width d if any
pair of parallel support hyperplanes has distance d ∈ R. Manifolds M of constant width are
known to be transnormal. Any normal of M is a double normal.

The search for circles instead of linear spaces being twice orthogonal to a surface Φ ⊂ R
3

was first started in [41]. We follow the author and give the basic definition:

Definition 1.1 A circle c(P1, P2) which intersects a given surface in at least two different
points P1 and P2 orthogonally is called ortho-circle joining P1 and P2.

An ortho-circle that hits Φ k-times orthogonally is called k-ortho-circle.

The thesis [41] is mainly devoted to the study of examples. The set of ortho-circles of
Plücker’s conoid is computed as well as the ortho-circles of the helicoid. The ortho-circles of
Dupin cyclides are also investigated. Possible generalizations to ϕ-circles (i.e., ortho-circles
which additionally intersect a given surface Φ at a given angle ϕ 6= π/2) are also discussed.

In [28] more general results on ortho-circles can be found. The ortho-circles of the wide
class of generalized surfaces of revolution1 can easily be described. Looking for circles which
intersect a surface at least twice at the same angle ϕ 6= π/2 we find theorems similar to those
given for ortho-circles [28]. Suprisingly it turned out that there is a close relation between
Non-Euclidean geometries and the set of ortho-circles of spheres and planes. Spheres and
planes can be characterized as those surfaces in R

3 where any pair of points can be joined by
an ortho-circle.

This paper is dedicated to the study of ortho-circles of Dupin cyclides. The ortho-circles
of surfaces from this class can easily be studied by transforming the surface into a cylinder,
or cone of revolution, or a torus (depending on the type of surface, as we will see later) by
applying a suitable inversion. This paper summarizes some results of [41] and adds new ones.

The present paper is organized as follows: In Section 2 we collect some elementary prop-
erties of ortho-circles and summarize well known facts about inversions. In Sections 3, 4, 5 the
ortho-circles of cylinders/cones of revolution and ring tori are investigated. These surfaces

1A generalized surface of revolution is defined in the following way [25]: Consider a developable surface Γ.
Let T be a tangent plane of Γ and let further m be a curve in T . If now T is rolling on Γ without gliding,
then m traces out a generalized surface of revolution. The class of generalized surfaces of revolution contains
surfaces of revolution, moulding surfaces, and helical surfaces as well.
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serve as primitives, i.e., afterwards we apply inversions to these and obtain the results on
ortho-circles for all types of Dupin cyclides in Section 6. In Section 7 we give some ideas for
future research and conclusions.

2. Preparations

2.1. Some properties of ortho-circles

Let c(P1, P2) be the ortho-circle joining two points P1 and P2 on a surface Φ. With nP1
and nP2

we denote the respective normals of Φ at P1 and P2. The following observations (illustrated
in Fig. 3) can be made:
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Figure 3: Ortho-circle c(P1, P2) joining two points P1 and P2

1. The normals nP1
and nP2

intersect at a point S, or they are parallel and the line P1P2

is then orthogonal to both nP1
and nP2

.

2. The distances from S (if it exists) to points P1 and P2, respectively, are equal: SP1 =
SP2.

3. The axis and thus the center M of c(P1, P2) is contained in both tangent planes TP1
and

TP2
of Φ at P1 and P2, respectively. In case of parallel normals nP1

and nP2
we have

TP1
= TP2

and M is the midpoint of P1P2.

4. The four points P1, P2, M , and S are coplanar. They are included in the plane spanned
by nP1

and nP2
. If the normals nP1

and nP2
are parallel, then the point S is their

common ideal point.

Once we have found an ortho-circle of Φ we also have found a circle g touching Φ twice at P1

and P2, respectively. It is centered at S and its radius equals SP1 = SP2. The point S is also
the center of a sphere Σ touching Φ in P1 and P2, and g is a great circle of Σ.

Any surface normal nP of Φ at P which is also a surface normal at another point Q 6= P
(Q ∈ Φ) is called a double normal (line) of Φ. Throughout this paper we will regard double
normal lines as straight ortho-circles.
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2.2. Inversion

In the following we assume that points X ∈ R
3 are represented by Cartesian coordinate

vectors also denoted by X = (x, y, z). With 〈U, V 〉 = uxvx + uyvy + uzvz we denote the
standard scalar product for vectors U = (ux, uy, uz) and V = (vx, vy, vz) in R

3. Sometimes we
use the projective closure of R

3: The homogeneous coordinates of proper points thus will be
given by X = (1 : x : y : z) = (x0 : x1 : x2 : x3). Ideal points are characterized by x0 = 0, i.e.,
they obey the equation of the ideal plane ω.
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Figure 4: Inversion with respect to a circle or a sphere

Let S2 be the Euclidean unit sphere centered at O = (0, 0, 0) with the equation

〈X,X〉 − 1 = x2 + y2 + z2 − 1 = 0.

The mapping η : R
3 \ {O} → R

3 defined by

X 7→ η(X) = X〈X,X〉−1 (1)

is called inversion with respect to Σ. Obviously S2 is fixed under η and the image of O is
undefined. In order to make η bijective, we perform the conformal closure of R

3 by adding
one single element ∞ to the set of points. This ideal element is contained in each plane and
sphere [4, 6, 19]. Thus the inversion η becomes bijective if we define η(O) = ∞.

The inversion defined by (1) is birational and therefore a Cremona transformation [8,
22, 42, 43]. This means that even the coordinate functions of its inverse η−1 can be written as
rational functions in the coordinates x, y, z. Indeed the inverse of η reads just like (1) as can
easily be checked from straight forward calculations. Obviously η is involutive, i.e., η = η−1.

The mapping η also allows a more geometric definition (see Fig. 4). Any point X ∈ R
3

is first mapped to its polar plane ξ with regard to S2 and the image point is defined by
η(X) = (O ∨ X) ∩ ξ . This again shows that η is an involution.

For the sake of simplicity we define the extended set S of spheres (sometimes called Möbius
spheres [4, 6, 19]) as the union of points, planes, and spheres in Euclidean R

3 together with
the one and only ideal element ∞.

The inversion is conformal as can be seen easily by direct computation:

〈dX ′, dX ′〉 = 〈dX, dX〉〈X,X〉−2.
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This holds in spaces of arbitrary dimensions.
We study the action of the inversion. For that we apply η to a sphere Σ(M, r) with center

M and radius r given by
〈X − M, X − M〉 − r2 = 0.

With (1) an equation of η(Σ) reads

〈X,X〉(〈M,M〉 − r2) − 2〈X,M〉 + 1 = 0.

The image surface thus is a sphere with center M/(〈M,M〉 − r2) and radius ρ = (〈M,M〉 −
1)/(〈M,M〉 − r2). Note that η(M) = M〈M,M〉−1 and the center of η(Σ) do in general not
coincide. For M = O and r = 1 we find η(Σ) = S2. Spheres with M = O are mapped to
concentric ones; this is the only case where the center of the image sphere and the image of the
center are identic. In case of 〈M,M〉−r2 = 0, i.e., the center O of inversion is contained in Σ,
the equation of η(Σ) simplifies to 1 = 2〈X,M〉. Consequently η(Σ) is a plane perpendicular
to OM . The latter fact together with the property that η is involutive shows that planes
which do not pass through O are mapped to spheres containing O. Moreover: The restriction
of η to any plane through O acts like a planar inversion as shown in Fig. 4. Obviously the
elements of S are mapped to elements of S.

These properties make it possible to describe the set of ortho-circles of Dupin cyclides:
The cylinder of revolution, the cone of revolution, and the torus are envelopes of smooth
one-parameter families of spheres. By applying an inversion to this one-parameter family of
spheres we obtain another one-parameter family of spheres. The envelope Φ of the original
family is thus mapped to the envelope η(Φ) of the family of image spheres. Since η is conformal
ortho-circles of Φ are mapped to ortho-circles of η(Φ).

Because of the conformality of η orthogonal intersection is invariant with respect to in-
versions. Moreover, if c is a line of curvature on a C2-surface Φ ∈ R

3 then its inverse η(c) is
a line of curvature on the η-image η(Φ) of Φ [38].

Later the following theorem will be of importance when we are going to characterize
surfaces formed by ortho-circles. It is due to F. Joachimsthal [26] and is sometimes ascribed
to O. Bonnet [25]:

Theorem 2.1 Let Φ1 and Φ2 be two C2-surfaces in R
3 which intersect along a curve c. Any

two of the following three statements imply the third:
1. The curve c is a line of curvature on Φ1.

2. The curve c is a line of curvature on Φ2.

3. Φ1 and Φ2 intersect along c at constant angle.

Recalling the properties of an inversion or a general Möbius transformation we see that
this theorem also applies to the inverse images of Φ1, Φ2, and c.

3. Dupin cyclides with a cuspidal point

3.1. Ortho-circles of cylinders of revolution

Let Φ be a cylinder of revolution. For short we will call Φ a cylinder. Now we are going to
describe its set of ortho-circles. As can be seen in Fig. 5 we have:

Lemma 3.1 1. Each pair of points on the same generator of a cylinder Φ can be joined
by an ortho-circle.
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Figure 5: Ortho-circles of a cylinder of revolution

2. Each pair of points on the same parallel circle of a cylinder Φ can be joined by an
ortho-circle.

There are no circles that intersect a cylinder more than twice orthogonally.
The set of straight ortho-circles of Φ is the congruence N of its surface normals. N can

be decomposed into one-parameter families of pencils of lines in two ways:
(1) pencils with its vertex on the cylinder’s axis (normals along parallel circles), and
(2) pencils of parallel lines (normals along generators).

Let c be an ortho-circle of Φ joining two points on the same generator. Applying a rotation
about Φ’s axis, Φ is transformed into itself and c sweeps a torus Φ. Depending on the radius
of c we obtain all types of tori: the ring shaped, the thorn shaped, and the spindle shaped
torus as well. Any Φ shares at least two lines of curvature with Φ, moreover they intersect
along these curves at constant angle π/2. We have:

Lemma 3.2 For any cylinder Φ of revolution there exists a two-parameter family F 2 of tori
Φ such that each torus Φ ∈ F 2 consists of ortho-circles of Φ (each of which joining points on
the same generator). Each Φ ∈ F 2 intersects Φ along two lines of curvature (parallel circles).

F2 contains a one-parameter family F 1 of tori touching Φ along a line of curvature (parallel
circle).

Let now c be an ortho-circle joining points on the same parallel circle of Φ. We can apply
the translation in the direction of Φ’s generators. The ortho-circle c generates a cylinder Φ of
revolution. Obviously Φ and Φ share two lines of curvature, i.e., two generators. So we have:

Lemma 3.3 For any cylinder Φ of revolution there exists a two-parameter family F 2 of
cylinders of revolution such that each cylinder Φ ∈ F 2 consists of ortho-circles of Φ (each
of which joining points on the same parallel circle). Each Φ ∈ F 2 intersects Φ orthogonally
along two straight lines of curvature.

3.2. Images of cylinders of revolution under inversions

A cylinder Φ of revolution can be seen as the envelope of a one-parameter family of spheres
with constant radius and their centers located on a straight line. The family is determined by



80 M. Schrott, B. Odehnal: Ortho-Circles of Dupin Cyclides

three congruent spheres with collinear centers. Thus the inverse η(Φ) of Φ is also an envelope
of a one-parameter family of spheres defined by the η-images of the three given spheres in S.

Figure 6: Dupin cyclides: first row: thorn torus, cuspidal cyclide;
second row: needle cyclide, and parabolic needle cyclide

The lines of curvature of Φ are the straight generators together with the parallel circles.
Any inversion will transform them onto two one-parameter families of circles in the image
surface η(Φ). Lines of curvature on Φ passing through O are mapped to straight lines (of
curvature) on η(Φ).

Let the cylinder Φ of revolution be given by its equation

(x − e)2 + y2 − 1 = 0 (2)

with constant e ∈ R. It means no restriction to assume that the cylinder’s radius equals 1.
With N = 〈X,X〉 and (1) the inverse η(Φ) of Φ is given by

N2(e2 − 1) − 2exN + e2 − 1 = 0. (3)

Eq. (3) describes a needle cyclide if |e| > 1 and a spindle cyclide if |e| < 1. If e = 0 Eq. (3) is
that of a thorn torus as a special case of a cuspidal cyclide. The degree of η(Φ) reduces to 3
if e = ±1; in this case the center O of inversion is contained in Φ and η(Φ) is called parabolic
needle cyclide. Examples of η-images of cylinders are shown in Fig. 6.
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4. Dupin cyclides with nodes

4.1. Ortho-circles of cones of revolution

Consider a cone Φ of revolution, from now on a cone for short. As can be seen from Fig. 7,
the following facts are obvious:

Lemma 4.1 1. Each pair of points on the same generator of a cone Φ can be joined by
an ortho-circle.

2. Each pair of points on the same parallel circle of a cone Φ can be joined by an ortho-
circle.

3. The cone admits 4-ortho-circles.

4. The 4-ortho-circles of a cone joining points on the same parallel circle form a sphere Σ
centered at the cone’s apex.

5. There exists a one-parameter family of such spheres.

6. For each generator g there exists a one-parameter family of ortho-circles joining points
on g and touching the opposite generator.

Remarks: 1. Assume that the angle of aperture of the cone Φ equals π/2 and let c be an ortho-circle
joining two points on g such that c is in contact with the opposite generator. Then c is in contact
with Φ and intersects Φ at V orthogonally at the same time.

2. The vertex of a quadratic cone is its only singular point. This makes it necessary to say a few
words about ortho-circles through singular points. Let c be an ortho-circle joining any two (regular)
points P1 and P2 on the same generator g of Φ. All points on g share the same tangent plane. The
center of c is the midpoint of P1P2. If now P1 is moving along the generator towards V , the center
of the ortho-circle is again defined as the midpoint of V P2, and together with P2 and the normal
nP2

the ortho-circle c is uniquely defined.

Let c be an ortho-circle of Φ joining two points on the same generator of Φ. Applying
a rotation about Φ’s axis, Φ is transformed into itself and c sweeps a torus Φ. Depending
on the radius of c we obtain all types of tori: the ring shaped, the thorn shaped, and the
spindle shaped torus as well. Any Φ intersects Φ at least along two common lines of curvature
(parallel circles) at constant angle π/2. We have:

Lemma 4.2 For any cone Φ of revolution there exists a two-parameter family F 2 of tori
such that each torus Φ ∈ F 2 consists of ortho-circles of Φ (each of which joining points on
the same generator). Each Φ ∈ F 2 intersects Φ along two lines of curvature (parallel circles)
orthogonally.

Assume Φ’s angle of aperture is different from π/2. Then there is a one-parameter family
F1 ⊂ F2 of tori which touch Φ along a line of curvature (parallel circle) and intersect Φ twice
orthogonally along two lines of curvature (parallel circles) at the same time.

In case of an right angle of aperture the curve of contact shrinks to the vertex of Φ.

Assume c is an ortho-circle of a cone Φ of revolution joining two points on the same
parallel circle p. Applying the dilatation with the cone’s vertex for its center, the circle c
generates a cone Φ. Since c and p intersect in two points they are contained in a sphere Σ.
Σ is centered at the common point V of the axes of both c and p, respectively. V is Φ’s
vertex since c’s axis is the intersection of two tangent planes of Φ. Thus Φ is also a cone of
revolution. The cones Φ and Φ share two lines of curvature (generators) and we have:
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Figure 7: Ortho-circles joining points on a cone of revolution

Lemma 4.3 For any cone Φ of revolution there exists a two-parameter family F 2 of cones
of revolution such that the parallel circles of each cone Φ ∈ F 2 are ortho-circles of Φ.

Each cone Φ ∈ F2 shares the vertex with Φ and intersects Φ along two lines of curvature
(generators) orthogonally.

The aforementioned facts on intersecting axes of circles c and p imply:

Lemma 4.4 The ortho-circles of a cone Φ of revolution joining points on the same parallel
circle form a sphere Σ centered in the cones vertex. Σ carries a one-parameter family of
4-ortho-circles of Φ which are located in the meridian planes of Φ.

Fig. 7 shows some ortho-circles of a cone Φ of revolution joining a point with points on
the same parallel circle.

Remark: The normals of a cone Φ of revolution are not ortho-circles of Φ though their images under
inversions are ortho-circles of the image surface.

4.2. Images of cones of revolution under inversions

Similarly to the case of cylinders of revolution we can treat cones Φ of revolution. Like
any surface of revolution, cones of revolution can be seen as the envelopes of one-parameter
families of spheres. The radius is growing linearly while the centers traverse the cone’s axis.
The inverse η(Φ) of Φ will therefore be an envelope of a one-parameter family of spheres.

We note that on Φ there are straight generators and circles as well. These curves comprise
the set of lines of curvature on Φ and so do their η-images on η(Φ). Let Φ be given by the
equation

(x − e)2 + y2 −
(z − f)2

k2
= 0, (4)
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Figure 8: Dupin cyclides: first row: spindle torus, spindle cyclide;
second row: horn cyclide, and parabolic horn cyclide

where the constant k ∈ R \ {0} equals the cotangent of the half angle of aperture. The real
constants e, f determine the position of the apex of Φ. With (1) and N = 〈X,X〉 we get the
equation of η(Φ) as

N2

(

e2 −
f2

k2
− 1

)

+ 2N

(

−ex +
f

k2
z

)

+ x2 + y2 −
z2

k2
= 0. (5)

Eq. (5) is of degree 4. It is the equation of a spindle cyclide if e2k2 − f 2 < 0 (i.e., O is an
interior point of Φ) and a horn cyclide if e2k2 − f 2 > 0 (i.e., O is an exterior point of Φ). As
a special case we obtain the spindle torus for e = 0 and f 6= 0. The horn cyclide ( 6= spindle
torus) becomes symmetric if f = 0 and e 6= 0 [1]. All these are quartic surfaces. In case of
ek = ±f we find O ∈ Φ and η(Φ) is called parabolic horn cyclide. The latter is of degree 3 .
Fig. 8 shows some examples: a spindle torus, a spindle cyclide, horn cyclide, and a parabolic
horn cyclide.

Under e = f = 0 the center O of inversion is the apex of Φ. Since lines and planes through
O are transformed into themselves under η we have Φ = η(Φ).
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5. Dupin cyclides without nodes

5.1. Ortho-circles of ring tori

Let m be a circle in a plane µ and let further A ⊂ µ be a line. The surface Φ generated by m
while µ is rotating about A is called a torus. Depending on the number of real intersection
points the following names are common: For #A ∩ m = 2 the surface Φ is a spindle torus
(see Fig. 8), for #A ∩ m = 1 Φ is a thorn torus (see Fig. 6), and for #A ∩ m = 0 Φ is a ring
torus (see Fig. 13).

Note that from the view point of the complex extension the ring and spindle shaped
surfaces do not differ. We observe that the above definition of a torus includes the case of
spheres when A happens to be a diameter of m. The appearing spheres are of multiplicity
two.

The following facts are obvious and illustrated in Fig. 9:

Lemma 5.1 1. Any two points on the same parallel circle of a torus Φ can be joined by
an ortho-circle.

2. Any two points on the same meridian circle of a torus Φ can be joined by an ortho-circle.

3. The torus admits 4-ortho-circles joining points on the same meridian circle.

4. The 4-ortho-circles of a torus joining points on the same parallel circle p form a sphere
Ω centered at the axis of Φ. Ω is centered at the vertex of Φ’s tangent cone along p.

5. There exists a pencil of such spheres including the plane of Φ’s circular spine curve.

6. There exists a one-parameter family of ortho-circles joining points on the same meridian
circle and touching the opposite one.

Let now m be a meridian circle. Each point P1 ∈ m can be joined with each point P2 6= P1

on m by an ortho-circle c. Under the rotation about the axis of the torus Φ the ortho-circle c
sweeps a torus Φ which intersects Φ orthogonally at least along two lines of curvature (parallel
circles). All types of tori (the ring, thorn, and spindle shaped) show up as surfaces Φ. If P1

and P2 are joined by a straight ortho-circle (diameter of m) the surface Φ is the cone of
revolution formed by Φ’s normals along the paths of P1 and P2, respectively. So we can state:

Lemma 5.2 For each ring torus Φ there exists a two parameter family F 2 of coaxial tori such
that the meridian circles of each torus Φ ∈ F 2 are ortho-circles of Φ (each of which joining
points on the same meridian circle).

F2 contains a one-parameter family F 1 of cones of revolution comprising the set of straight
ortho-circles of Φ.

F2 contains a one-parameter family F 1 of tori which intersect Φ orthogonally along two lines
of curvature (parallel circles) and touch Φ along another line of curvature (parallel circle) at
the same time.

Consider p is an arbitrary parallel circle of a torus Φ. The normals as well as the meridian
tangents along p form a cone of revolution. Thus we can apply Lemmas 4.3 and 4.4 and state:

Lemma 5.3 The ortho-circles of any torus Φ joining points on the same parallel circle form
a sphere.

There exists a one-parameter family F 1 of such spheres. Each sphere Φ ∈ F 1 intersects Φ
along two lines of curvature (parallel circles) orthogonally.

Each sphere in F1 contains a one-parameter family F 1 of 4-ortho-circles contained in the
meridian planes of Φ.
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Figure 9: Ortho-circles joining points of a ring torus

The normals of any torus Φ are at least double normals of Φ, and thus the congruence
N of surface normals of Φ equals the set of straight ortho-circles of Φ as is the case for
the cylinder of revolution as well. As illustrated in Fig. 10, N can be decomposed into a
one-parameter family of pencils of lines carried by meridian planes and with vertices on the
circular spine curve. On the other hand N is the set of generators of cones of revolution, all
of them passing through the circular spine curve and share the axis A with the torus.

Any ring shaped torus Φ carries a third one-parameter family of circles different from the
meridian and parallel circles [15, 20, 44, 45, 46, 49]. These circles are called Villarceau circles
and can be found either by intersecting Φ with double tangent planes τ or by intersecting with
spheres Ψ touching Φ twice without being in line contact. As an example, consider a doubly
touching sphere Ψ which is centered in the plane π1 of Φ’s circular spine curve and touches
Φ in two different points, at one from inside and at the other from outside (see Fig. 10).

Remark: A sphere touching a ring torus Φ twice in points P1 6= P2 without being in line contact
with Φ can be called Villarceau sphere.
Any such sphere Ψ intersects Φ in a real spherical quartic q with two double points. (Note that the
curve x2

1 +x2
2 +x2

3 = x0 = 0 in the ideal plane is a double curve of Φ and thus splits from Φ∩Ψ with
multiplicity 2.) As q has two double points it is the union of two conics. Since q is entirely contained
in a sphere, these conics are circles. Thus any Villarceau sphere shares two Villarceau circles with
the ring torus Φ. Unfortunately this is not mentioned in [45].
For any torus (indeed for any C1-surface) Φ there exists a two-parameter family F 2 of doubly
touching spheres. The centers of these spheres form the medial axis of Φ [9, 31]. The medial axis of
a ring torus with Eq. (6) consists of its axis, its circular spine curve, and the one-sheet hyperboloid
of revolution with equation (x − e)2/r2 + y2/r2 − z2/(R2 − r2) = 1.

Let v be a Villarceau circle on a ring torus Φ and let further τ be the double tangent plane
of Φ carrying v. The plane τ touches Φ in two different points, say D1 and D2, respectively.
There are exactly two pairs of points on v which can be joined by an ortho-circle:

1. Φ’s surface normals at D1 and D2 are parallel and the plane τ is tangent to Φ at both
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Figure 10: Left: Villarceau sections of a ring torus.
Right: Congruence of surface normals of a torus

points. Thus there is an ortho-circle c(D1, D2) joining D1 with D2. Points D1 and D2

are located in the same meridian plane µ of Φ, the line D1D2 is tangent to both meridian
circles µ ∩ Φ. Obviously c(D1, D2) is a 4-ortho-circle of Φ.
The circle v can also be obtained as a part of the intersection of Φ with a Villarceau
sphere Ψ centered in the plane π1 of Φ’s circular spine curve. (Ψ is touching Φ from
the inside and the outside.) The remaining real part of the intersection curve Ψ ∩ Φ is
a second Villarceau circle w which can be obtained from v by reflection with respect to
π1. The carrier plane of w is Φ’s tangent plane in points D1 and D2, respectively. This
again shows that c(D1, D2) = c(D1, D2) is a 4-ortho-circle.

2. Let C ∈ v be the point closest to the axis A of Φ and let F ∈ v denote the point with
maximal distance to A. The line CF ⊂ π1 is the surface normal of Φ at both C and F .
Indeed it is four times a normal of Φ. Thus CF is a straight 4-ortho-circle.

We can state

Lemma 5.4 A pair (P1, P2) of points on a Villarceau circle can be joined by an ortho-circle
c(P1, P2) if and only if c(P1, P2) is a 4-ortho-circle.

Proof: The only points on a Villarceau circle v which can be joined by an ortho-circle are
those which can also be joined with a parallel circle or a meridian circle. Since any meridian
circle and any parallel circle intersects v exactly once, there are no further points on v different
from D1, D2 and C, V which can be joined by an ortho-circle.

Figure 11 shows a ring torus with points on a Villarceau circle joined by 4-ortho-circles.
An obvious consequence of Lemma 5.4 is

Lemma 5.5 The 4-ortho-circles of a ring torus Φ joining points on Villarceau circles form
a sphere Ω and the plane π1 of Φ’s circular spine curve. Ω is concentric with Φ, i.e., it is
centered at A ∩ π1. Ω and π intersect at right angles.
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Figure 11: Left: Ring torus with a Villarceau circle and points joined by a 4-ortho-circle
(Lemma 5.4). Right: Ring shaped Dupin cyclide with 4-ortho-circles joining points on a
Villarceau circle (Lemma 6.8)

Remark: The plane π1 carries the straight 4-ortho-circles of Φ.

Villarceau circles are known to be loxodromes, i.e., curves intersecting another family of
curves on a surface at constant angle [15, 46, 49]. In this case the curves of reference are the
lines of curvature. Since angles, circles, and lines of curvature are invariant with respect to
inversions, the ring shaped Dupin cyclides carry a third set of circles (also called Villarceau
circles) corresponding to the Villarceau circles of a ring torus (see Fig. 11).

Remark: The Villarceau circles on a ring cyclide Φ can also be found by intersection. The double
tangent planes of Φ as well as the Villarceau spheres share two circles v and w, respectively, with Φ.
Any double tangent plane τ of a ring cyclide Φ is the η-image of a sphere containing the center O of
inversion. The set of doubly touching spheres of the preimage of Φ containing the center of inversion
form a one-parameter subfamily of the two-parameter family of doubly touching spheres of η−1(Φ).

Finally we give the following theorem dealing with the crossratio of the four common
points of a 4-ortho-circle and a ring torus.

Lemma 5.6 Let Φ be a ring or spindle torus with major radius R and minor radius r,
respectively. Let further c be an arbitrary 4-ortho-circle of Φ intersecting in points S1, S2,
S3, and S4 . Then the four points Si can be arranged such that their crossratio equals r2/R2.

Proof: We use the notations given in Fig. 12. Let c be a 4-ortho-circle of a ring or spindle
torus Φ. Its center Z is contained in the axis A of Φ. With m we denote one meridian circle
of Φ in the plane µ of c.

1. In order to compute the crossratio of the four points Si, we use the stereographic projection
σ from one of the intersection points of c and A onto the straight 4-ortho-circle n ∈ µ, say P .
The crossratio remains invariant under σ.
Let C,F ∈ n be the σ-images of S1 and S2, respectively. We have to show that C,F ∈ m.
Assume F = σ(S1). Clearly <) ZS1M = π/2. Further we observe that

<) MS1F = π/2− <) ZS1P and <) MFS1 = π/2− <) ZPS1.
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Consequently we have

<) MS1F = <) MFS1 and therefore MS1 = MF1

which shows F ∈ m. Similarly we show σ(S2) = C.
If we use the other point of c∩A as center of projection, S1 is mapped to C and S2 is mapped
to F .

2. Let F and C denote the points symmetric to F and C with respect to A. Obviously they
are the stereographic images of the remaining intersection points S3 and S4 of c and Φ.
Now it is elementary to verify that the crossratio of F , F , C, and C equals r2/R2 and we find
cr(F, F , C,C) = cr(S1, S3, S4, S2) = r2/R2.

Remark: Four points can be permuted in 24 ways, but there appear only six different values of
crossratios: If cr(A, B, C, D) = δ, we have cr(A, C, B, D) = 1 − δ, cr(D, A, B, C) = δ/(δ − 1),
cr(A, D, B, C) = (δ − 1)/δ, cr(A, B, D, C) = 1/δ, and cr(A, C, D, B) = 1/(δ − 1). Thus we can also
assign the five values R2/r2, R2/(R2 − r2), r2/(R2 − r2), 1− r2/R2, and 1−R2/r2 as crossratios to
certain arrangements of points Si.

Lemma 5.6 holds for straight ortho-circles as well, which is clear from the proof.

5.2. Images of ring tori under inversions

Like any torus the ring torus Φ can be seen as envelope of two one-parameter families of
spheres: The first family consists of congruent spheres with their centers located at the
circular spine curve. The second family comprises the spheres touching Φ along its parallel
circles. These spheres are centered at the straight spine curve, i.e., the axis of Φ. So we can
expect η(Φ) to be the envelope of two one-parameter families of spheres.

Let R, r ∈ R denote the radii of the spine curve and the meridian of a ring torus Φ. With
the real constant e we denote the distance of Φ’s center to the origin of a Cartesian coordinate
system. Then Φ is given by the equation

(

(x − e)2 + y2 + z2 − R2 − r2
)2

− 4R2(r2 − z2) = 0. (6)
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Now we apply an inversion to Φ, i.e., we substitute (1) in (6) and obtain the equation of η(Φ):

N2 ((e2 − R2 − r2) − 4R2r2)

+2N(1 − 2ex)(e2 − R2 − r2) + (1 − 2ex)2 + 4R2z2 = 0,
(7)

where N = 〈X,X〉. This is the equation of a ring cyclide or a ring torus if e = 0. For
e = ±(R± r) the center O of inversion is contained in Φ and the degree of the image surface
reduces to 3. The surface η(Φ) is then called parabolic ring cyclide. Fig. 13 shows a ring torus
and two possible images under inversion: a (quartic) ring cyclide and a (cubic) parabolic ring
cyclide.

Figure 13: Dupin cyclides: ring torus, ring cyclide, parabolic ring cyclide
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6. Surfaces formed by the ortho-circles of Dupin cyclides

So far we have studied the set of ortho-circles of cylinders, and cones of revolution, and the
ring torus as well. Lemmas 3.2, 3.3, 4.3, 4.4, 5.2, and 5.3 clarify the shape of the surfaces
built by certain ortho-circles of the respective surfaces. We have summarized well known facts
about inversions and concerning the images of cones, cylinders, and ring tori under inversions.
These preparations enable us to describe the set of ortho-circles of Dupin cyclides and surfaces
formed by these ortho-circles.

6.1. Ortho-circles of cyclides with a cuspidal point

As an immediate consequence of Lemma 3.1 we find:

Lemma 6.1 Each pair of points on the same line of curvature on a thorn torus, cuspidal
cyclide, needle cyclide, or parabolic needle cyclide can be joined by an ortho-circle.

In the case of cuspidal cyclides it is useful to distinguish between two types of lines of
curvature: those passing through the cuspidal point will be called lines of curvature of 1 st

kind. The others will be referred to as the lines of curvature of 2 nd kind. The latter do not
pass through the cuspidal point.

Under any inversion the straight lines (of curvature) on the cylinder are mapped to the
lines of curvature of 1 st kind, the parallel circles are mapped to the lines of curvature of 2 nd

kind.
If we apply an inversion to the surfaces described in Lemma 3.2 we get:

Theorem 6.1 For any cuspidal Dupin cyclide Φ (including all special cases) there exists a
two-parameter family F 2 of Dupin cyclides such that each cyclide Φ ∈ F 2 consists of ortho-
circles (each of which joining points on the same line of curvature of 1 st kind) of Φ.

According to Theorem 2.1 each Φ ∈ F 2 intersects Φ along two lines of curvature of 2 nd kind
orthogonally.

The family F2 contains a one-parameter family F 1 of Dupin cyclides which touch Φ along a
line of curvature of 2 nd kind.

Remark: When ever we use the term line of curvature in this section, we keep in mind that these
are circles, except a few ones which are straight lines in the parabolic cyclides or the generators of
cylinders and cones.

Lemma 3.3 can now be formulated as follows:

Theorem 6.2 For any cuspidal Dupin cyclide Φ (including all special cases) there exists a
two-parameter family F 2 of cuspidal Dupin cyclides such that each Dupin cyclide Φ ∈ F 2

consists of ortho-circles (each of which joining points on the same line of curvature of 2 nd

kind) of Φ.

According to Theorem 2.1 each Φ ∈ F 2 intersects Φ along lines of curvature of 1 st kind
orthogonally.

Remark: In this family F2 we cannot find cyclides which are in line contact with Φ like those
mentioned in Theorem 6.1.

Note that all ortho-circles appearing here are themselves lines of curvature on the surfaces
Φ formed by them.
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Figure 14: Cuspidal cyclides with cyclides formed by ortho-circles. Left: Cuspidal cyclide and
ring cyclides (cf. Theorem 6.1). Right: Cuspidal cyclides carrying each other’s ortho-circles
while sharing the cuspidal point (cf. Theorem 6.2)

6.2. Ortho-circles of cyclides with nodes

In Section 4 we had to distinguish between generators and parallel circles. Again there are
two kinds of lines of curvature: The straight lines of curvature on the cone Φ are transformed
to those lines of curvature on η(Φ) passing through the nodes of η(Φ) and will henceforth be
called of 1 st kind. The η-images of the parallel circles will be called lines of curvature of 2nd

kind. Unfortunately the theorems of this section seem to be formulated circumstantially.
We apply an inversion to the curves and surfaces described in Lemma 4.1 and find:

Lemma 6.2 1. Each pair of points on the same line of curvature on a Dupin cyclide with
nodes can be joined by an ortho-circle.

2. Each Dupin cyclide with nodes admits 4-ortho-circles.

3. The 4-ortho-circles of a Dupin cyclide with nodes joining points on the same line of
curvature of 2 nd kind form a sphere.

4. There exists a one-parameter family of such spheres.

5. For any line of curvature of 1 st kind on a Dupin cyclide with nodes there exist two
one-parameter families of ortho-circles touching the surface.

We can reformulate Lemmas 4.2 and 4.3 and obtain

Theorem 6.3 For any Dupin cyclide Φ with nodes there exists a two-parameter family F 2

of Dupin cyclides with nodes such that each cyclide Φ ∈ F 2 consists of those ortho-circles of
Φ joining points on the same line of curvature of 1 st kind.

According to Theorem 2.1 each cyclide Φ ∈ F 2 intersects Φ along two lines of curvature of
2 nd kind orthogonally.
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There is a one-parameter family F 1 ⊂ F2 of Dupin cyclides touching Φ along a line of
curvature of 2 nd kind, if the angle of aperture of the tangent cone at the nodes is different
from π/2 (see Fig. 16).

If the angle of aperture of the tangent cone at the node of the cyclide Φ is a right one, then
the ortho-circles touch the cone and thus the cyclide at the node and intersect there at right
angles at the same time.

Figure 15: Two horn cyclides carrying some of each other’s ortho-circles and
sharing the nodes (cf. Theorem 6.4)

Theorem 6.4 For any Dupin cyclide Φ with nodes there exists a two-parameter family F 2

of Dupin cyclides with the same nodes such that the lines of curvature of 2 nd kind on each
Φ ∈ F2 are ortho-circles of Φ joining points of the same line of curvature of 2 nd kind.

Each cyclide Φ ∈ F2 intersects Φ along two lines of curvature of 1 st kind orthogonally,
according to Theorem 2.1.

Figure 15 shows two horn cyclides carrying some of each orther’s ortho-circles while shar-
ing the nodes.

The result corresponding to Lemma 4.4 follows at once:

Theorem 6.5 The ortho-circles of a Dupin cyclide Φ with nodes joining points on the same
line of curvature of 2 nd kind form a sphere. This sphere carries a one-parameter subfamily
of the two-parameter family of 4-ortho-circles of Φ.

Again we observe that the ortho-circles forming the surfaces Φ are lines of curvature on Φ.

6.3. Ortho-circles of ring cyclides

Now we are going to describe the set of ortho-circles of Dupin cyclides without nodes, i.e.,
the ring torus, the ring cyclide, and the parabolic ring cyclide. We only have to apply an
inversion to curves and surfaces mentioned in the lemmas of the previous section.

It is useful to summarize the following facts (see Lemma 5.1):
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Figure 16: Ring cyclide and a horn cyclide of ortho-circles
sharing three lines of curvature (cf. Theorem 6.3)

Lemma 6.3 1. Each pair of points on the same line of curvature of a ring cyclide (includ-
ing the ring torus and the parabolic ring cyclide) can be joined by an ortho-circle.

2. The ring cyclide allows 4-ortho-circles.

3. The 4-ortho-circles of a ring cyclide can be arranged in a one-parameter family of
spheres.

In order to formulate our results precisely, we call those lines of curvature on a ring cyclide
(ring torus, parabolic ring cyclide) lines of curvature of 1 st kind which are the η-images of
the meridian circles of the ring torus mentioned in Section 5. The η-images of the parallel
circles will be referred to as the lines of curvature of 2 nd kind.

The more general versions of Lemmas 5.2 and 5.3 now read:

Theorem 6.6 For any ring cyclide Φ there exists a two-parameter family F 2 of Dupin cy-
clides such that the lines of curvature of 1 st kind on each cyclide Φ ∈ F 2 are ortho-circles of
Φ (each of which joining points on the same line of curvature of 1 st kind).

Each Dupin cyclide Φ ∈ F 2 intersects Φ along two lines of curvature of 2 nd kind orthogonally,
cf. Theorem 2.1.

For each ring cyclide Φ there exists a one-parameter family F 1 of Dupin cyclides with nodes
such that each cyclide Φ ∈ F 1 intersects Φ along two lines of curvature at right angles. (The
cyclides Φ can be obtained by inverting the cones formed by the normals at points of parallel
circles of a ring torus.)

There exists a one-parameter family F 1 ⊂ F2 of Dupin cyclides such that each cyclide Φ ∈ F 2

touches Φ along a line of curvature of the 2nd kind.
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Figure 17: Ring cyclides carrying ortho-circles of each other (cf. Theorem 6.6)

Figure 18: Ring cyclides carrying touching ortho-circles (cf. Theorem 6.6)

Fig. 17 shows two ring cyclides Φ and Φ. The lines of curvature of 1 st kind of Φ are
ortho-circles of Φ and vice versa. Fig. 18 shows a ring cyclide and a spindle cyclide carrying
some of each other ortho-circles. The surfaces are in line contact along a common line of
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curvature and intersect along two lines of curvature at right angles.

Theorem 6.7 The ortho-circles of any ring cyclide Φ joining points on lines of curvature
of 2 nd kind form a sphere which intersects Φ along two lines of curvature of 2 nd kind
orthogonally (cf. Theorem 2.1).

Since ring shaped Dupin cyclides carry Villarceau circles, we have in analogy to Lemma 5.4

Theorem 6.8 Two points P1 and P2 on a Villarceau circle of a ring shaped Dupin cyclide
can be joined by an ortho-circle c(P1, P2) if and only if c(P1, P2) is a 4-ortho-circle.

The facts described in Theorem 6.8 are illustrated in Fig. 11. Since crossratios are invari-
ant with respect to inversions we can state Lemma 5.6 in a more general form:

Theorem 6.9 On all 4-ortho-circles of a quartic ring, spindle, or horn cyclide the four inter-
section points have the same crossratio.

Remark: For any needle and cuspidal cyclide Φ there exists a two-parameter of 3-ortho-circles.
Each of them is passing through the cuspidal point. This two-parameter family of 3-ortho-circles
can be arranged in a parabolic pencil of spheres touching at the cuspidal point. The 3-ortho-circles
of Φ are the η-preimages of the normals of the cylinder η−1(Φ).

The set of 4-ortho-circles joining points on Villarceau circles of a ring cyclide can be
described by (cf. Lemma 5.5)

Theorem 6.10 The 4-ortho-circles joining points on Villarceau circles of a ring cyclide form
a pair of orthogonally intersecting spheres. Each of them intersects Φ along two lines of
curvature (circles) at right angles.

Proof: We start with the ring torus in Lemma 5.5 and apply an inversion. The sphere Ω is
mapped to a sphere and the plane π1 containing Ω’s center is also mapped to a sphere. Ω and
π1 intersect Φ orthogonally along parallel circles; therefore their η-images do the same.

7. Final remarks

A circle that intersects a given surface Φ at least twice at the same angle ϕ 6= 0, π/2 will be
called a ϕ-circle. Most of the theorems concerning ortho-circles presented so far in this paper
can be reformulated if we replace the term ortho-circle by ϕ-cirlce. Some of them need minor
corrections: There are no 4-ortho-circles for a cylinder Φ of revolution. For any ϕ 6= 0, π/2
we can find 4-ϕ-circles of Φ.

The fact that being an ortho-circle and being a Dupin cyclide (including cylinders and
cones of revolution) is invariant with respect to Möbius transformations is used throughout the
paper. The ortho-circles of a Dupin cyclide Φ can somehow be seen as its Möbius geometric
normals. With this normalization Dupin cyclides are transnormal manifolds in the sense of
Wegner [47]. Unfortunately the normals of a cone of revolution are not double normals,
they only intersect once at right angle. This blemish can be removed using the conformal
closure as performed in Section 2.2 by defining an intersection at the ideal element as an
intersection at any angle we need.

We do not answer the question whether Dupin cyclides are the only transnormal manifolds
in the sense of Möbius geometry or not. This could be a topic of future research.
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Figure 19: Two ring cyclides with common ortho-circles

We skip the study of the set of centers of ortho-circles of Dupin cyclides as they are not
Möbius invariant; the interested reader is referred to [41]. Dupin cyclides with special metric
properties such as additional symmetries may lead to interesting results in this context (see
[24]).

A further topic of future research could be the study of common normals and common
ortho-circles of a pair of Dupin cyclides. One could ask for configurations of two Dupin
cyclides with common ortho-circles. Are there in general finitely many? Fig. 19 shows two
ring cyclides with infinitely many common ortho-circles. (Only a few of them are shown.)
They are the images of two ring tori with skew axes and infinitely many common normals
(see [29]).
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