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Abstract. When three circles, O1, O2, and O3, are tangent externally to each
other, there are only two circles tangent to the original three circles. This is a
special case of the Apollonius problem, and such circles are called the inner and
outer Soddy circles. Given the outer Soddy circle S, we can construct the new
Apollonian circle I1 that is tangent to S, O2, and O3. By the same method, we
can construct new circles I2 tangent to S, O3, and O1, and I3 tangent to S, O1,
and O2. These seven tangent circles are a subset of an Apollonian packing of cir-
cles. In this article, we describe a new inscribed circle tangent to the three pairs
of common external tangents of diagonally placed circles, {O1, I1}, {O2, I2}, and
{O3, I3}. Furthermore, we found that when two externally tangent triangles of
the three circles {O1, O2, O3} and {I1, I2, I3} are constructed, the three diago-
nally joined lines of the two triangles are concurrent. These theorems are further
generalized to the three-dimensional case on nine tangent spheres. Focusing on
visual representations, we established these theorems only by a synthetic method
throughout this article.
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1. Introduction

Finding elegant relations among points, lines, and circles are essential in geometry. Already,
many geometrical theorems with concurrent lines and collinear points, such as Pascal’s theo-
rem and Brianchon’s theorem (see, for example, [1, 2, 3], have been discovered. In addition,
relations between the radii on mutually tangent circles are also fascinating to many geome-
tricians. Descartes gave the formula known as Descartes theorem for finding the radius of
a fourth circle tangent to three given kissing circles (Pedoe [4, p. 157]). Soddy rediscovered
this formula and extended it to tangent spheres [5]. Although geometricians have long been
interested in systems of tangent circles and spheres, such as Apollonian packing of circles
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(Wells [3]) and mutually contacting spheres (Coxeter [6]), the inscribed circles, spheres,
and concurrent lines behind these configurations have not been sufficiently studied, except in
a few works (for example, Eppstein [7]). In the present paper, we describe finding inscribed
circles and concurrent points for a configuration of seven tangent circles. The theorems were
also extended to the three-dimensional space by a synthetic method.

2. Two-dimensional theorems on seven kissing circles

Two theorems are obtained for two-dimensional kissing circles.
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Figure 1: (a) Circle inscribed in externally tangent lines. (b) Concurrent theorem.

Theorem 1. Let O1, O2, and O3 be three circles externally tangent to each other and S be
the outer Soddy circle tangent to O1, O2, and O3 (see Fig. 1a.). Construct new circles I1
tangent to O2, O3, and S, I2 tangent to O3, O1, and S, and I3 tangent to O1, O2, and S.
I1, I2, and I3 are different from O1, O2, and O3, respectively. Denote by {O1I1} the common
external tangents between opposite circles O1 and I1, and define {O2I2} and {O3I3} similarly.

Then there exists a unique circle inscribed in {O1I1}, {O2I2}, and {O3I3}.

Theorem 2. For the configuration of Theorem 1, let A1A2A3 be a triangle whose sides are
given by the outer common external tangents of O1, O2, and O3, and let B1B2 B3 be a triangle
whose sides are given by the outer common external tangents of I1, I2, and I3, as shown in
Fig. 1b.

Then the three lines joining the opposite vertices of the two triangles, A1 B1, A2 B2, and A3B3,
are concurrent.

Before showing the proofs of Theorems 1 and 2, we introduce a lemma.
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Lemma 1. Let S1, S2, and S3 be three fixed spheres mutually tangent to each other such that
S1 and S2 are contained in S3 (see Fig. 2a). Then

1. the 1-parameter family of spheres F1 tangent to S1, S2, and S3 touch a pair of distinct
common planes π1 and π2,

2. the curve of tangency of F1 and S3 is a circle on the surface of S3.

Note that the enveloping surface of F1 is a Dupin cyclide.
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Figure 2: (a) 1-parameter family of spheres tangent to a given set of three tangent spheres,
S1, S2, and S3. (b) Image of the 1-parameter family of spheres under inversion.

Proof of Lemma 1: Let O be the point of tangency of S1 and S3, and let SO be a sphere of
inversion with center O (Fig. 2a). Let i be an inversion with respect to SO. Then S ′

1
= i(S1)

and S ′

3
= i(S3) are the planes parallel to the common tangent plane π0 of S1 and S3 at O,

as shown in Fig. 2b. Furthermore, S ′

2
= i(S2) is a sphere tangent to planes S ′

1
and S ′

3
. It

follows that there exists a 1-parameter family of spheres F2 tangent to S ′

1
, S ′

2
, and S ′

3
. Note

that F2 = i(F1), and that the spheres of F2 have centers lying on a circle and a common
radius. Moreover, from the symmetry of F2, we know that the there exist two distinct sphere
surfaces σ1 and σ2 that are tangent to F2 and pass through O. It follows that π1 = i(σ1) and
π2 = i(σ2) are the distinct planes that are tangent to F1 since F1 = i(F2). This completes the
proof of Lemma 1.1.

Let d be the curve of tangency of F2 and S ′

3
. From the symmetry of F2, d must be a circle

on S ′

3
. Therefore, the curve of tangency of F1 and S3, that is i(d), is a circle which lies on

surface S3. This completes the proof of Lemma 1.2.

Proof of Theorem 1: Assume that all the circles and lines in Fig. 1a (Theorem 1) are on
a plane π, and let SO1, SO2, SO3, SI1, SI2, SI3, and SS be the spheres with centers on π

containing circles O1, O2, O3, I1, I2, I3, and S, respectively. Let us consider the 1-parameter
family G12 of spheres tangent to SO1, SO2, and SS. Similarly, let G23 be the family of spheres
tangent to SO2, SO3, and SS, and G31 be that tangent to SO3, SO1, and SS.
Now, let a new sphere SO4 be tangent to SO1, SO2, SO3, and SS. Then we know that G12,
G23, and G31 share SO4. Applying Lemma 1.1 to G12, G23, and G31, we see that each of these
has two distinct planes tangent at the two sides. Furthermore, these six tangent planes are
perpendicular to π, since G12, G23, and G31 are symmetric with respect to π.
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Figure 3: G12, G23, and G31 share a common sphere, SO4.

If we consider the orthographic-projection of Fig. 3 into π, it follows that there exists a unique
circle inscribed in the common external tangents {O1I1}, {O2I2}, and {O3I3}. This completes
the proof of Theorem 1.

Remark 1. Referring to Figs. 3 and 4a, let {C1, C2, C3, D1, D2, D3} be the points of tangency
of {O1, O2, O3, I1, I2, I3} and S, respectively. Applying Lemma 1.2 to G12, G23, and G31,
and SS, we know that the three curves of tangency of { G12, G23, G31 } and SS are all circles
on surface SS. Thus, since G12, G23, and G31 share a common sphere SO4 that is also tangent
to SS, these circles intersect at a point T , where T is a point of tangency of SO4 and SS. Note
that these circles of tangencies are all symmetric with respect to π since G12, G23, and G31

are symmetric with respect to π. Therefore, if we consider the orthographic projection into π

(Fig. 3), we have that C1D1, C2D2, and C3D3 are concurrent at a point M , where M is the
orthographical projection of point T .

Remark 2. Theorem 1 remains true by replacing the outer Soddy circle by the inner Soddy
circle. The proof is almost same like for Theorem 1.

Finally, we will prove Theorem 2. The proof is based on two facts:

(a) Referring to Fig. 4a, let lC1, lC2, lC3, lD1, lD2, and lD3 be tangent lines of S at C1, C2,
C3, D1, D2, and D3, respectively, and let X , Y , and Z be the intersections of two lines,
lC1 ∩ lD1, lC2 ∩ lD2, and lC3 ∩ lD3, respectively. Then, X , Y , and Z are collinear.

(b) Let us denote as a12 and b12 the lines A1A2 and B1B2, respectively, in Fig. 1b, and define
a23, b23, a31, and b31 similarly. Then, X = a23 ∩ b23, Y = a31 ∩ b31, and Z = a12 ∩ b12.

Proof of Theorem 2:
(a) X , Y , and Z can be considered as vertices of externally tangent cones of SS at circles of
tangencies of G23 and SS, G31 and SS, and G12 and SS, respectively (see Fig 4a). In addition,
these circles of tangencies intersect at point T . Thus, assuming that α is a plane tangent to
SS at T , we see that α is tangent to three tangent cones at each of the generators. It follows
that X , Y , and Z are collinear since these points lie on the intersection of α and π.
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Figure 4: (a) X , Y , and Z are collinear. (b) Image of (a) under inversion.
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Figure 5: Triangles A1A2A3 and B1B2B3 have a center of perspective.

(b) Let f be an inversion with center C1. Then S ′ = f(S) and O′

1
= f(O1) are lines parallel

to the common tangent line lC1 of O1 and S at C1, and O′

2
= f(O2) and O′

3
= f(O3) are

the circles mutually tangent to each other and also tangent to S ′ and O′

1
, as seen in Fig. 4b.

Furthermore, I ′
3
= f(I3) is the circle tangent to S ′, O′

2
, and O′

1
, I ′

2
= f(I2) is the circle

tangent to S ′, O′

1
, and O′

3
, and I ′

1
= f(I1) is the circle tangent to S ′, O′

2
, and O′

3
. Moreover,

l′D1
= f(lD1) is the circle tangent to I ′

1
and S ′ at D′

1
= f(D1) passing through C1, a

′

23
= f(a23)

is the circle tangent to O′

2
and O′

3
passing through C1, and b′

23
= f(b23) is the circle tangent

to I ′
2
and I ′

3
passing through C1.

Let m be the line perpendicular to S ′ through D′

1
. From the symmetry with respect to m, we

know that l′D1
, a′

23
, and b′

23
pass through a unique point P on l′C1

such that P is a symmetrical
point of C1 with respect to m. Therefore, we see that lC1, lD1, a23, and b23 pass through a
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unique point at f(P ). Since X = lC1 ∩ lD1, it follows that X = f(P ) = a23 ∩ b23. Similarly,
we know that Y = a31 ∩ b31 and Z = a12 ∩ b12.
From facts (a) and (b), and applying Desargues’ theorem to X , Y , Z, A1, A2, A3, B1, B2,
and B3, shown in Fig. 5, we know that the two triangles A1A2A3 and B1B2B3 have a center
of perspective. This completes the proof of Theorem 2.

Remark 3. It should be noticed that all the externally tangents of {O2, O3} and {I2, I3}
intersect at point X . Similarly, all the externally tangents of {O1, O2} and {I1, I2} intersect
at point Z, and externally tangents of {O3, O1} and {I3, I1} intersect at point Y . This
directly indicates that Theorem 2 remains true for any of the 23 = 8 triangles formed by any
combination of outer tangents, and there exit 82 = 64 centers of perspective given by any
combination of two triangles. In general, these centers of perspective are different from point
M given in Remark 1.

3. Three-dimensional theorems on nine kissing spheres

Two theorems are obtained on the three-dimensional kissing spheres.

Theorem 3. Let SO1, SO2, SO3, and SO4 be four spheres externally tangent to each other and
S be an outer sphere tangent to SO1, SO2, SO3, and SO4 (see Fig. 6a). Construct new spheres
SI1 tangent to SO2, SO3, SO4, and S, SI2 tangent to SO3, SO4, SO1, and S, SI3 tangent to SO4,
SO1, SO2, and S, and SI4 tangent to SO1, SO2, SO3, and S. Denote by {SO1SI1} the common
external tangent cone of opposite spheres SO1 and SI1, and define {SO2SI2}, {SO3SI3}, and
{SO4SI4} similarly.

Then there exists a unique sphere inscribed in {SO1SI1}, {SO2SI2}, {SO3SI3}, and {SO4SI4}.
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Figure 6: (a) Sphere inscribed in externally tangent cones. (b) Concurrent theorem.
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Theorem 4. For the configuration of Theorem 3, let A1A2A3A4 and B1B2B3B4 be tetra-
hedra whose surfaces are given by the outer common external tangent planes of the spheres
{SO1, SO2, SO3, SO4} and {SI1, SI2, SI3, SI4}, respectively, as shown in Fig. 6b.

Then the four lines joining the opposite vertices of the two tetrahedra, A1B1, A2B2, A3B3,
and A4B4, are concurrent.

Proof of Theorem 3: Let O1, O2, O3, O4, I1, I2, I3, and I4 be the centers of SO1, SO2, SO3,
SO4, SI1, SI2, SI3, and SI4, respectively (see Fig. 6a). We know that SO3, SO4, SI3, and SI4

are the spheres tangent to SO1, SO2, and S.

Applying Lemma 1.1 to these spheres, we then know that SO3, SO4, SI3, and SI4 are tangent
to two distinct common planes, π1 and π2. Hence, there exists a unique intersection point
P34 of the two lines O3I3 and O4I4 since the four centers O3, O4, I3, and I4 lie on the median
plane of π1 and π2. Therefore, if SP34 is the sphere tangent to π1 and π2 with center P34, then
we know that SP34 is a unique sphere inscribed in tangent cones {SO3SI3} and {SO4SI4}.

Similarly, there exists a unique intersection point P41 of the two lines O4I4 and O1I1 and the
sphere SP41 inscribed in the tangent cones {SO4SI4} and {SO1SI1}, where P41 is the center of
SP41, and there exists a unique intersection point P13 of the two lines O1I1 and O3I3 and the
sphere SP13 inscribed in the tangent cones {SO1SI1} and {SO3SI3}, where P13 is the center of
SP13.

Now let us assume that P34 (O3I3 ∩ O4I4) and P41 (O4I4 ∩ O1I1) are distinct points. If so,
then the lines O1I1 and O3I3 do not intersect. However, this cannot be true from the above
discussion since O1I1 and O3I3 intersect at P13. Hence, P34 and P41 must be identical, i.e.,
P34 = P41 = P13, and we have that three lines O1I1, O3I3, and O4I4 are concurrent.

Considering the permutation symmetry, we know that

(a) all the lines joining the opposite centers of inner spheres, O1I1, O2I2, O3I3, and O4I4
intersect at a unique point. Furthermore, from the above discussion, we also know that

(b) there exists a unique common sphere SPjk with center Pjk inscribed in the two diagonally
joined tangent cones of {SOjSIj} and {SOkSIk}, where Pjk is a intersecting point of OjIj
and OkIk for j, k = 1, 2, 3, 4 and j 6= k.

From (a) and (b) follows that there exists a unique sphere inscribed in the tangent cones
{SO1SI1}, {SO2SI2}, {SO3SI3}, and {SO4SI4}. This completes the proof of Theorem 3.
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Figure 7: Tangent points of inner spheres and S.
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Remark 4. Let {C1, C2, C3, C4, D1, D2, D3, D4} be the points of tangency of {SO1, SO2, SO3,
SO4, SI1, SI2, SI3, SI4} and S, respectively (see Fig. 7). Applying Lemma 1.2 to SO1, SO2,
and S, we know that the four points C3, C4, D3, and D4 lie on a circle on S. It follows that
lines C3D3 and C4D4 intersect at a point Q34.
Similarly, the sets of four points {C1, C2, D1, D2}, {C2, C3, D2, D3}, {C2, C4, D2, D4},
{C3, C1, D3, D1}, and {C4, C1, D4, D1} also lie on circles on S, and the pairs of lines
{C1D1, C2D2}, {C2D2, C3D3}, {C2D2, C4D4}, {C3D3, C1D1}, and {C4D4, C1D1}, in-
tersect at points Q12, Q23, Q24, Q31, and Q41, respectively. As in the proof of Theorem 3,
let us assume that Q34 and Q41 are distinct points. Then the lines C3D3 and C1D1 do not
intersect. However, this cannot be true from the above discussion since there exists Q31 which
is the intersection of C3D3 and C1D1.
Hence, Q34 and Q41 must be the same point, i.e., Q34 = Q41 = Q31, and we have that three
lines C1D1, C3D3, and C4D4 are concurrent. Considering the permutation symmetry, we
conclude that all four lines, C1D1, C2D2, C3D3, and C4D4, intersect at a unique point.
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Figure 8: πC1, πD1,πC2, πD2 pass through T12, the point where l1 and l2 intersect.

We will now prove Theorem 4 using the facts (c) and (d) below.

(c) Let πC1, πC2, πC3, πC4, πD1, πD2, πD3, and πD4 be tangent planes of S at C1, C2, C3,
C4, D1, D2, D3, and D4, respectively (Fig. 8), and let lines l1, l2, l3, and l4 be the
intersection lines of pairs of planes, πC1 ∩ πD1, πC2 ∩ πD2, πC3 ∩ πD3, and πC4 ∩ πD4,
respectively. Then l1, l2, l3, and l4 lie on a unique plane and determine a complete
quadrilateral (Fig. 10).

(d) Let us denote as α123 and β123 the planes A1A2A3 and B1B2B3, respectively (Fig. 9a),
and define α234, α341, α412, β234, β341, and β412 similarly. Then l1 = α234 ∩ β234, l2 =
α341 ∩ β341, l3 = α412 ∩ β412, and l4 = α123 ∩ β123.

Proof of Theorem 4:
(c) As seen in Remark 4, we know that the four points C1, D1, C2, and D2 lie on a circle,
namely, C1D1C2D2 (see Fig. 8). Hence, the lines C1D1 and C2D2 intersect at a point. Let T12

be a vertex of the tangent cone of S at the circle C1D1C2D2. Vertex S could be at infinity.
Then we know that all four planes, πC1, πD1, πC2, and πD2, pass through T12, since all the
planes pass through the generator of this tangent cone. It follows that T12 = l1 ∩ l2 since
l1 = πC1 ∩ πD1 and l2 = πC2 ∩ πD2.
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Figure 9: (a) Tangent spheres and planes. (b) Image of (a) under inversion.

Similarly, using analogous definitions to that of T12 for T23, T24, T34, T31, and T41, we obtain
T23 = l2 ∩ l3, T24 = l2 ∩ l4, T34 = l3 ∩ l4, T31 = l3 ∩ l1, and T41 = l4 ∩ l1. Since T12, T23, T24,
T34, T31, and T41 are distinct points, we conclude that, l1, l2, l3, and l4 lie on a unique plane
and determine a complete quadrilateral.

(d) Referring to Figs. 9a and 9b, let i be inversion with center C1. Then S ′ = i(S) and
S ′

O1
= i(SO1) are the planes parallel to the common tangent plane π′

C1
= i(πC1) = πC1, and

S ′

O2
= i(SO2), S

′

O3
= i(SO3), and S ′

O4
= i(SO4) are mutually tangent spheres and are also

tangent to S ′ and S ′

O1
, as shown in Fig. 9b.

Furthermore, S ′

I2 = i(SI2), S
′

I3 = i(SI3), S
′

I4 = i(SI4), and S ′

I1 = i(SI1) are spheres tangent to
{S ′, S ′

O1
, S ′

O3
, S ′

O4
}, {S ′, S ′

O2
, S ′

O4
, S ′

O1
}, {S ′, S ′

O1
, S ′

O2
, S ′

O3
}, and {S ′, S ′

O2
, S ′

O3
, S ′

O4
}, re-

spectively. Let α′

234
= i(α234), β

′

234
= i(β234), and define α′

123
, α′

341
, α′

412
, β ′

123
, β ′

341
, and β ′

412

similarly.

Then, α′

234
and β ′

234
are the spherical surfaces that pass through C1 tangent to {S

′

O2
, S ′

O3
, S ′

O4
}

and {S ′

I2, S
′

I3, S
′

I4}, respectively. Note that from the symmetry, α′

234
and β ′

234
contain the

same circle, namely d, on π′

C1
= i(πC1) and pass through C1. Moreover, π′

D1
= i(πD1) also

contain the circle d. The inversion i with center C1 maps any circle through C1 onto a line
not passing through C1. It follows that α234 = i(α′

234
) and β234 = i(β ′

234
) intersect at line

l1 = i(d). Similarly, l2 = α341 ∩ β341, l3 = α412 ∩ β412, and l4 = α123 ∩ β123.

From facts (c) and (d), we know that T12 = l1 ∩ l2, l1 = α234 ∩ β234, and l2 = α341 ∩ β341

(see Fig. 10). It follows that the lines A3A4 and B3B4 intersect at point T12, since α234, β234,
α341, and β341 are the planes A2A3A4, B2B3B4, A3A4A1, and B3B4B1, respectively. Similarly,
A2A3 and B2B3 intersect at point T41, and A2A4 and B2B4 intersect at point T31. Hence, the
two triangles A2A3A4 and B2B3B4 have an axis of perspective.

From Desargues’ theorem, we know the two triangles A2A3A4 and B2B3B4 have a center of
perspective. Similarly, the pairs of triangles A3A4A1 and B3B4B1, A4A1A2 and B4B1B2, and
A1A2A3 and B1B2B3 each have an axis of perspective. It follows that A1B1, A2B2, A3B3,
and A4B4 are concurrent. This completes the proof of Theorem 4.
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Figure 10: Complete quadrilateral and concurrent lines joining the opposite vertices
of the two tetrahedra.
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