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Abstract. This paper presents a collection of geometrically interesting results
obtained within the last years in kinematic contexts. Special emphasis is laid on
geometric objects that describe kinematic features like workspaces or singularities
of robots and mechanisms.
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1. Introduction

Kinematic mapping of planar, spherical or spatial kinematics uses three or seven dimensional
parameter spaces to represent motions or displacements. Algebraic varieties in these spaces
encode kinematic properties of mechanisms or robots. Geometric properties of the varieties
in the image spaces provide insight into the motions in the Cartesian spaces. Kinematic
image spaces as they have been introduced by geometricians like Study [20], Blaschke [1]
or Grünwald [9] are point models of Euclidean displacements but they are not the only
parameter spaces that can be used to represent displacements. There are other parameter
spaces in which kinematic features sometimes are better represented, like e.g. joint spaces of
mechanisms. Each representation has its advantages and disadvantages. It is interesting to
observe that the same kinematic feature can be represented by geometrically very different
surfaces. From this follows that there exist interesting maps between these different spaces.
Without going into computational details, some surfaces and the corresponding kinematic
features are discussed. But to the best of the author’s knowledge the presented algorithm
to compute the workspace of a regional 3-R manipulator is new and shows how geometric
considerations simplify the computations up to a level that the equations can be presented in
complete generality.

This paper is organized as follows: In Section 2 we briefly recall Study’s kinematic map-
ping, in Section 3 geometric objects which represent workspaces of manipulators are intro-
duced and in Section 4 geometric objects which encode kinematic properties in are presented.
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2. Study’s kinematic mapping

Euclidean three space is the three dimensional real vector space R3 together with the usual
scalar product xTy =

∑3
i=1 xiyi. A Euclidean displacement is a mapping

γ : R3 → R3, x 7→ Ax + a (1)

where A is a proper orthogonal three by three matrix and a ∈ R3 is a vector. The entries of
A fulfill the well-known orthogonality condition AT ·A = I3, where I3 is the three by three
identity matrix.

The group of all Euclidean displacements is denoted by SE(3). It is a convenient conven-
tion to write (1) as product of a four by four matrix and a four dimensional vector according
to [

1
x

]
7→
[

1 oT

a A

]
·
[

1
x

]
. (2)

Study’s kinematic mapping κ maps an element α of SE(3) to a point x ∈ P 7. If the homo-
geneous coordinate vector of x is [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3]

T , the kinematic pre-image
of x is the displacement α described by the transformation matrix

1

∆


x20 + x21 + x22 + x23 0 0 0

p x20 + x21 − x22 − x23 2(x1x2 − x0x3) 2(x1x3 + x0x2)
q 2(x1x2 + x0x3) x20 − x21 + x22 − x23 2(x2x3 − x0x1)
r 2(x1x3 − x0x2) 2(x2x3 + x0x1) x20 − x21 − x22 + x23

 (3)

where
p = 2(−x0y1 + x1y0 − x2y3 + x3y2),

q = 2(−x0y2 + x1y3 + x2y0 − x3y1),
r = 2(−x0y3 − x1y2 + x2y1 + x3y0),

(4)

and ∆ = x20 + x21 + x22 + x23. The matrix operator in (3) describes an element of SE(3) if

x0y0 + x1y1 + x2y2 + x3y3 = 0 (5)

holds and not all xi are zero. If these conditions are fulfilled we call [x0 : · · · : y3]T the Study
parameters of the displacement α. The important relation (5) defines a quadric S2

6 ⊂ P 7 and
the range of κ is this quadric minus the three dimensional subspace defined by

E : x0 = x1 = x2 = x3 = 0. (6)

We call S2
6 the Study quadric and E the exceptional or absolute generator 1.

The restriction of Study’s kinematic mapping to certain three-spaces on the Study quadric
yields two important subgroups of SE(3), the group of planar Euclidean displacements SE(2)
and the special orthogonal group SO(3) whose elements are pure rotations without any trans-
lational component. Both groups are of relevance in kinematics. The planar Euclidean motion
group SE(2) can be embedded into SE(3) by substituting x2 = x3 = y0 = y1 = 0 into (3).
This yields the matrix parameterization

1

x20 + x21

 x20 + x21 0 0
2(−x0y2 + x1y3) x20 − x21 −2x0x1
2(−x0y3 − x1y2) 2x0x1 x20 − x21

 (7)

1A more detailed introduction to kinematic mapping can be found in [13].
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Figure 1: Surface of revolution generated
by rotations about axes a2 and a3

Figure 2: Cross-section plane intersecting
in a curve of the two-parameter family (9)

of SE(2) (the second row and the second column in (3) were omitted). The group SE(2)
can be considered as kinematic pre-image of the three space x2 = x3 = y0 = y1 = 0, minus
its intersection with the exceptional generator E, which is a line. We identify this three
space with P 3 and describe its points by homogeneous coordinates [x0 : x1 : y2 : y3]

T . The
geometry of P 3 as range of planar kinematic mapping is governed by a change of coordinates
in the moving or fixed frame of the planar displacements or, equivalently, by a Cayley-Klein
geometry with the absolute figure consisting of the line x0 = x1 = 0 and the absolute points
[0 : 0 : 1 : ±i]T This geometry is called quasielliptic [4, p. 399].

The spherical motion group SO(3) can be embedded in SE(3) via the matrix operator

1

∆

 x20 + x21 − x22 − x23 2(x1x2 − x0x3) 2(x1x3 + x0x2)
2(x1x2 + x0x3) x20 − x21 + x22 − x23 2(x2x3 − x0x1)
2(x1x3 − x0x2) 2(x2x3 + x0x1) x20 − x21 − x22 + x23

 (8)

where ∆ = x20 + x21 + x22 + x23. It is the kinematic pre-image of the three space y0 = y1 =
y2 = y3 = 0. The absolute figure is the exceptional quadric y20 + y21 + y22 + y23 = 0 and the
corresponding geometry is elliptic [2].

3. Workspaces of mechanisms and robots

The workspace of a mechanism is the set of all poses (= positions and orientations) the
endeffector of the device can reach. In terms of kinematic mapping this means: the workspace
is the set of all points in the image space that correspond to endeffector poses. But there
are many other different definitions for the workspace. Very often only one point in the
endeffector frame is considered, which results in neglecting the orientation of the frame and
then the workspace becomes some solid in 3D Cartesian space. There is also a fundamental
difference between the workspaces of parallel or serial robots. We will show this with two very
simple, but prototypical manipulators, the planar 3-RPR parallel robot and the regional 3-R
serial manipulator, where a revolute joint is denoted by R and a prismatic joint is denoted
by P . In case of the serial 3-R chain the workspace of a point Q in the end effector frame is
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generated by a one parameter sweep of a surface of revolution. This surface of revolution is
obtained when the point Q is rotated about the third axis A3, which yields a circle and this
circle is rotated about the second axis A2. These two rotations produce therefore a surface of
revolution (see Fig. 1), which itself generates the whole workspace when it is rotated about
the first axis A1. The boundary of the workspace is again a surface of revolution which can
be obtained by an approach due to M. Ceccarelli [5]:
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Figure 3: Two-parameter set of curves in
the cross section of the workspace

Figure 4: Graph of the level set

The workspace boundary of a general 3-R manipulator can be expressed as function of
radial and axial reaches, r and z respectively, with respect to the base frame. The reaches r
and z can be evaluated as functions of coordinates of the position vectors in the form

r0 =(Hx
0 )2 + (Hy

0 )2 = (Hx
1 cos θ1 −Hy

1 sin θ1)
2 + (Hx

1 sin θ1 +Hy
1 cos θ1)

2, z0 = Hz
0 ,

which can be equivalently expressed in the form

r = (Hx
1 )2 + (Hy

1 )2, z = Hz
1 , (9)

in which Hi are the components of the position vector of the end-effector point with respect
to reference frame i, θ1 is the rotation angle about the first axis and r, z are the coordinates
of a conveniently chosen cross-section plane passing through the first axis (Fig. 2). Because
H1 is a function of the two rotation angles θ2 and θ3 of the rotations about the second and
the third axis, (9) represents a 2-parameter family of curves. Its envelope is the cross-section
workspace contour in the cross-section plane. It is a function of the Denavit-Hartenberg (DH)
parameters and can be used to express the vector components Hx

1 , H
y
1 and Hz

1 in the form
of a so called ring equation [5]. This two-parameter set can also be interpreted as a level set
with one parameter set of curves as level sets of the other parameter. When one uses one
of the two angles of rotation (e.g θ3) as the parameter of the pencil of curves then one can
generate the graph of this level set (Fig. 4). In [15] and [16] it was shown that this surface,
after algebraization of the rotation angles is of degree 12. It is interesting to note that the
boundary of the two-parameter set of curves in (9) (thick red curve in Fig. 3) corresponds
to the singularities in the displayed meridian plane of the workspace solid. This curve is on
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the other hand the orthogonal projection of the contour of the graph of the level set surface
(thick red curve in Fig. 4) into the level set plane2.

A second approach to derive the workspace boundaries is based on a very geometric ob-
servation: The operation point Q is on the boundary iff there is a line l passing through Q and
intersecting all three axes (Fig. 5). From kinematic point of view the boundary characterizes
the singular positions of the operation point, because the operation point cannot move in the
direction of l . On the other hand one can use this line condition to characterize all points in
the end-effector space which are at a certain instant in a singular position: these points are
on the hyperboloid which is determined by the three axes A1, A2, A3.

Figure 5: Singular position of the
operation point

Figure 6: Workspace boundaries of
3-R manipulator

With this geometric insight it is straightforward to derive the boundary condition: In a
first step the equation of the plane ε spanned by the axis A1 and the operation point Q is
derived. Then the two piercing points P1 and P2 of the axes A2 and A3 with ε are determined.
The boundary condition B is given by the collinearity condition of the three points P1, P2, Q.
This condition can be derived completely general (i.e. without specifying the DH-parameters)

B : cos θ23 [a3 sin θ2(a2 sinα1 cosα2 − a1 cosα1 sinα2) + a3d2 cos θ2 sinα2 sinα1]

+ cos θ3 sin θ3 [−a3(a1 cosα1 sinα2 cosα2 − sinα1a2) cos θ2

−a3 sinα1(a1 cosα2
2 + sin θ2 sinα2d2 cosα2 − a1)

]
(10)

+ cos θ3
[
(−a1 cosα1d3 + sinα1a2 sinα2d2 + a1 cosα1d3 cosα2

2) cos θ2

+(−a1a2 cosα1 sinα2 − d3 sinα1d2 + cosα2
2d3 sinα1d2) sin θ2 − sinα1d3a1 sinα2 cosα2

]
+a2 sinα1 sin θ3(a2 cos θ2 − d3 sin θ2 sinα2 + a1)− a2a3 cosα2 sin θ2 sinα1 = 0,

where α1, d2, a1, α2, d3, a2 denote the DH-parameters encoding the angle and the distance
between two axes and the offset (see [19]). B is linear in sin θ2 and cos θ2 and therefore

quadratic in algebraic parameters u (cos θ2 =
1− u2

1 + u2
, sin θ2 =

2u

1 + u2
). A parametric expression

for the boundary curve is found by solving B for u and substituting into (9). An implicit

2All figures are in color that can be seen in the web version of the paper.
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equation of the boundary curve is computed after algebraization of θ2 and θ3 and elimination
of both algebraic parameters from B, r and z of (9). The result is that the boundary curve is
an algebraic curve of degree 16, which is symmetric with respect to the first axis. If this curve
is rotated about the first axis, a revolute surface of degree 16 is obtained. Fig. 6 shows the
workspace boundaries of an example manipulator with DH-parameters α1 = π/3, α2 = π/2,
a1 = 13/10, a2 = 5, a3 = 5/2, d2 = 21/10, d3 = −23/10. The two boundary surfaces have
the following kinematic meaning: If the operation point is in the inner (red) solid the inverse
kinematics has four solutions (there are four possible configurations of the axes to reach the
point), outside of the red solid the inverse kinematics has two solutions.

1
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Figure 7: Planar 3-RPR parallel
manipulator

Figure 8: Workspace of a
3-RPR manipulator

Workspaces of parallel manipulators are quite different. They consist of the intersection of
the workspaces of all of their kinematic chains. We will discuss this feature here presenting a
simple planar manipulator, the 3-RPR manipulator (Fig. 7). This manipulator is the planar
equivalent to the famous Gough-Stewart platform which is practically used, for example, as
flight simulator mechanism. This manipulator consists of a moving plate connected to the
fixed base via three extensible legs mounted to base and platform with revolute joints. The
end-effector plate moves freely within the plane when three prismatic joints, which extend the
legs, are actuated. If the actuated joint parameters are unlimited, the possible poses cover
the whole plane with all possible orientations. Practically this is of course not the case. There
will be a maximum and a minimum extension of the prismatic joints. As mentioned above
the workspace will be the intersection of the three workspaces of each leg of the manipulator.
Therefore we discuss at first the workspace of one leg, i.e. a serial RPR-chain. If the P
joint is locked then the chain has two rotational degrees of freedom, the set of end-effector
poses in the kinematic image space is two parametric, a surface. This surface represents the
only mechanical constraint which is posed on the mechanism when the P joint is locked: the
center of the revolute on the moving platform is bound to move on a circle. After a change
of coordinates in the image space (7) and renaming y2 = x3, y3 = −x2, x1 = −x1, x0 = −x0
the equation of this surface can be computed as:(

x2 −
1

2

(
c2 + C2 − x1(C1 − c1)

))2
+
(
x3 −

1

2

(
x1(c2 − C2)− C1 − c1

))2
− 1

4
R2 (x21 + 1) = 0.

(11)

This equation represents the circle constraint for a general leg with base center (C1, C2) and
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moving center (c1, c2). The equations for the three legs can be obtained in a simplified form
when the coordinate system is specially adapted (see Fig. 7). Substituting the coordinates of
the fixed and moving pivots of the manipulator Fig. 7 into the constraint equation we obtain
three equations:

h1 : 4x22 +R1 + 4x23 = 0

h2 : 4x22 +R2 − 4A2x3x0 + 4x3x0a2 + 4x23 − 4x1x2a2 − 4x1A2x2
+ 4x21A2a2 − 2A2a2 = 0

h3 : 4x22 + 4B3x0x2 +R3 − 4A3x3x0 − 4x2x0b3 + 4x3x0a3 + 4x23
− 4x1B3x0a3 + 4x1A3x0b3 − 4x1x2a3 − 4x1B3x3 − 4x1A3x2
− 4x1x3b3 + 4x21A3a3 + 4x21B3b3 − 2B3b3 − 2A3a3 = 0.

(12)

These equations represent hyperboloids in the kinematic image space. When the prismatic
joint is in its maximum extension we obtain a hyperboloid himax and when the leg is at
its minimum extension we again obtain a hyperboloid himin. The sought workspace lies
between these two surfaces and can be obtained by computing the difference of two solids
Shimax − Shimin. For the whole mechanism there are six hyperboloids and therefore three
solids. The workspace can be found by the intersection of the three solids corresponding to
the three legs. The workspace of a generic manipulator of this type is displayed in Fig. 8 (see
also [10]).

When spatial parallel manipulators are discussed then the workspace question becomes
much more involved. The spatial equivalent to the planar parallel manipulator discussed
above is the Gough-Stewart platform. A Gough-Stewart platform is a parallel manipulator,
which consists of a mobile platform connected to a base via six linearly actuated links (legs).
The links are mounted to the platform with spherical and to the base with universal joints.
This manipulator provides six degrees of freedom within a well defined workspace. The
workspace is a six-dimensional solid in the kinematic image space. Only if one restricts to
either constant orientation or constant position, then the corresponding workspaces can be
displayed. In case of constant orientation the workspace of a Gough-Stewart platform is the
intersection of six solids. Each of the solids is obtained by the difference of a maximum sphere
of the extension of one leg and the minimum sphere of the minimum extension of the same leg.
Both spheres are centered at the same point, which is the center of the base universal joint.
Fig. 9 shows a model of a Gough-Stewart platform with the workspace of the origin C of the
moving coordinate system (x−y−z) corresponding to an orientation when the platform stays
parallel to the base and does not rotate. In [17] and [18] interesting possibilities are shown
to overcome the dimensional difficulties in displaying the workspaces of complicated spatial
parallel manipulators.

4. Kinematic properties

Singularities are kinematic features of special interest. In case of a serial manipulator the
device looses at least one degree of freedom in a singularity. In case of a parallel manipulator
it gains at least one degree of freedom in a singular pose. Both cases are unwanted in
practical work because they mean that the operator looses control or that motors might
break. The description of singularities is therefore an important task in the kinematic analysis
but equally important in the synthesis of mechanisms. The discussion of singularities of
serial manipulators is closely related to line geometry and subvarieties of lines (see [19]). We
confine ourselves in this paper to singularities of parallel manipulators and discuss especially
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Figure 9: Workspace of Gough-Stewart
platform
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Figure 10: Singular pose of a planar
3-RPR manipulator

the singularities of the 3-RPR planar parallel manipulator. When a parallel manipulator is
described by a set of algebraic equations as for example in (12) then we can discuss more
generally the algebraic variety V ∈ P 7 determined by a set of such equations. Let p =
[p0, . . . , p7]

T be a point on V . The tangent space of V at p, denoted Tp(V ), is the variety

TP (V ) = V(dp(f)) : f ⊂ I(V) (13)
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Figure 11: Singularity surface of a planar
3-RPR manipulator in kinematic image space

Figure 12: Singularity surface of spherical
3-RPR manipulator
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Figure 13: Singularity surface of a planar
3-RPR manipulator in joint space

Figure 14: Horizontal cross-section of the
singularity surface in joint space

of linear forms of all polynomials contained in the ideal I(V) in point p (see [7, p. 486]). With
this definition we can immediately link the tangent space to the local degree of freedom of the
mechanism: The local degree of freedom is defined as dimTp(V ). In case of a general 6-R serial
manipulator the dimension of the tangent space should be six, meaning that the manipulator
is free to move in any direction and orientation. In a singularity this motion capability is
restricted in one, two or more dimensions depending on the rank of the Jacobian of the
system of equations. In case of a general six degrees of freedom (6-dof) parallel manipulator
the dimension of the tangent space is given by the intersection of six fully dimensional tangent
spaces of each leg and therefore should be zero. If the manipulator is in a singular pose than
the intersection of the six tangent spaces is one, two or more dimensional and the manipulator
gains one, two or more degrees of freedom and becomes locally unstable. Computationally
the differentials are to be taken with respect to the Study parameters xi, yi. In kinematics
these differentials are collected in the Jacobian matrix of the manipulator

J(fj) =

(
∂fj
xi
,
∂fj
yi

)
, (14)

where fj are polynomials describing the constraints, the Study condition, and a normalizing
condition. The normalizing condition has to be added to avoid dimensional problems coming
from the exceptional generator E. In a nonsingular pose of the mechanism the Jacobian J
will have maximal rank. A singular pose is characterized by rank deficiency of J and the
defect is directly related to the local degree of freedom.

In case of the planar 3-RPR, the mechanism is in a singular pose whenever the deter-
minant of J vanishes (S : detJ = 0). Fig. 10 shows the manipulator in a singular pose. It
should be noted, that a singular pose has a simple geometric interpretation, namely that the
extensions of the three leg lines have to intersect in a point or they are parallel. The equation
of S can be written in the form3

S : x20(ax0x2 + bx2x1 + cx3x1 + dx22 + ex3x2) + x0x1[fx2x1 + gx1x3 + h(x22 + x23)]+

x21(ix1x3 + ex3x2 − dx23) = 0, (15)

3For a more detailed deduction see [12].
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where
a := (A3b3 −B3a3)(A2 − a2)
b := 2(−A2a2A3 − a2A3a3 + A2a2a3 + A2B3b3 + A2A3a3 − a2B3b3)

c := −a2A3b3 + a2B3a3 − 2B3A2a2 + A2B3a3 − A2A3b3 + 2b3A2a2
d := 2(a2A3 − A2a3)

e := 2(a2B3 − A2b3)

f := −a2B3a3 + A2B3a3 + a2A3b3 − 2B3A2a2 − A2A3b3 − 2b3A2a2
g := 2(−A2A3a3 − A2B3b3 + A2a2A3 − a2B3b3 + A2a2a3 − a2A3a3)

h := 2(a2B3 + 2A2b3)

i := (A3b3 −B3a3)(A2 + a2).

(16)

This surface is an interesting surface of degree 4. It has been already studied in the 19th

century by the famous mathematicians A. Clebsch [6] and M. Noether [14]. S has the
absolute line of the quasielliptic geometry of the kinematic image space as a double line
and because of the double line it is rational. Fig. 11 shows this surface for a generic 3-
RPR manipulator. The rational parameterization (S : x0 = f1(u, v), x1 = f1(u, v), x2 =
f2(u, v), x3 = f3(u, v)) has been found in [12] and was used in [11] to map this surface into the
joint space. Because of the nonlinearity of the map the surface becomes an algebraic surface
JS of degree 12 with a lot of singularities. Fig. 14 shows a horizontal cross section of JS.
This surface was used to prove that every generic 3-RPR manipulator has the property of
non-singular assembly mode change. In Fig. 11 several arcs are displayed. Their end points
correspond to different solutions of the direct kinematics i.e. to different poses having the
same leg lengths. The curves do not intersect the singularity surface, which means they
correspond to a continuous one parameter motion connecting two assemblies without crossing
a singularity [11].

Interesting is also the spherical version of the 3-RPR manipulator, which practically
is built as 3-RRR manipulator. Kinematically these two versions are the same with the
exception of leg singularities when the RRR leg is either folded or fully extended. Figs. 15
and 16 show a working mechanism designed by C. Gosselin, the Agile Eye. This manipulator
is used for rapid orientation of a camera and has a better and faster orientation capability
than the human eye [8]. Using the same approach as with the planar equivalent, one can
compute the singularity surface:

Ax30x2 +Bx31x3 + Cx32x0 +Dx33x1 + x20(Ex2x2 + Fx1x3 +Gx2x3)

+x21(Hx0x2 + Ix0x3 + Jx2x3) + x22(Kx0x1 + Lx0x3 +Mx1x3)

+x23(Nx0x1 +Ox0x2 + Px1x2) +Qx20x
2
2 +Rx21x

2
3 − Sx0x1x2x3 = 0,

(17)

where A, . . . , S are functions of the design parameters (similar to (15)). This degree four
surface has the property that it contains all lines of the projective coordinate tetrahedron. It
is displayed for a generic choice of the design parameters in Fig. 12. It is conjectured that
this surface again has “enough holes” (like the one in the planar manipulator case), so that
a non-singular assembly mode change will be possible.

5. Conclusion

Compiling results obtained in recent years with special emphasis to geometric objects we have
shown that kinematic features yield interesting geometric objects that are worth studying on
their own.
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Figure 15: The Agile Eye (courtesy
Prof. C. Gosselin)

Figure 16: CAD model of The Agile Eye
(courtesy Prof. C. Gosselin)
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