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Abstract. In this paper, we propose a method for realizing a polyhedral graph
as a deltahedron, i.e., a polyhedron with congruent equilateral triangles as faces.
Our experimental result shows that there are graphs that are not realizable as
deltahedra. We provide an example of non-realizable graphs which are obtained
by trying to construct deltahedra from each of the simple cubic polyhedral graphs
with up to 10 vertices. We also show that the infinite families of non-realizable
graphs can be obtained by solving the graph isomorphism problem.

Key Words: deltahedron, polyhedral graph, geometric realization

MSC 2010: 51M20, 05C10, 68R10, 52B05

1. Introduction

A deltahedron is a polyhedron whose faces are congruent equilateral triangles. Only eight of
these are convex: those having 4, 6, 8, 10, 12, 14, 16, or 20 faces [5]. Coplanar faces sharing an
edge are not allowed. The tetrahedron, octahedron, and icosahedron are the three deltahedra
that are regular solids. If we permit non-convex shapes, then the number of deltahedra is
infinite, because we can compose larger deltahedra by gluing two smaller deltahedra.

There are several subclasses of deltahedra. Cundy listed 17 biform deltahedra, which
have only two forms of vertices [4]. Olshevsky added another 11 biform deltahedra to
Cundy’s list [9]. These lists did not permit intersecting faces, so these biform deltahedra
are solids. Shephard presented 34 isohedral deltahedra, and McNeill added six further
examples to Shephard’s list [8, 13]. Isohedral deltahedra are face-transitive and may in-
clude intersecting faces. Trigg defined spiral deltahedra as those constructed from strips of
equilateral triangles [14].

Each of these classes of deltahedra have their own particular properties. Therefore, the
configurations of the vertices are very limited. We decided to loosen the conditions and see
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what kinds of shapes are possible in the world of deltahedra. In this study, we tried to
construct deltahedra from each of the simple polyhedral graphs and counted the graphs that
can be constructed as deltahedra. We call these “deltahedral graphs”. It is hard to determine
whether a graph will form a deltahedron by examining only its combinatorial structure. Thus,
we solve a geometric realization problem, which is the problem of determining whether a
triangulation of an orientable surface can be realized geometrically in R

3 as a polyhedron
without self-intersections [6].

We propose a random realization method for constructing a deltahedron from a polyhedral
graph and provide examples of the constructed deltahedra with up to 10 vertices. In our
realization process, we generate an initial polyhedron with non-equilateral triangles and then
deform the faces into equilateral triangles by a gradient method, because the graph does not
provide the locations of the vertices. Note that the resulting deltahedron has a small geometric
error and is not theoretically exact. Our realization process does not necessarily guarantee
the non-realizability of a graph. We also propose an approach to determine the deltahedral
non-realizability of a graph. The idea is to detect the operation used to construct the graph.
Augmentation is an operation that joins each appendage polyhedron to its own single-core
face. A polyhedron composed by adding a non-realizable structure is also non-realizable.
We show that the augmentation can be detected by solving a graph isomorphism problem,
and this detection is useful for finding an infinite family of graphs that are non-realizable as
deltahedra.

Our deltahedral realization problem is a particular case of a geometric realization problem.
In general, Bokowski and Guedes de Oliveira [1] showed that there is a non-realizable
triangulation of the orientable surface of genus 6, and Schewe [12] showed that we can
construct non-realizable triangulations for any number of vertices with genus 5 or 6. However,
for surfaces of genus 1 ≤ g ≤ 4, the problem remains open. The conditions for deltahedral
realization are stricter than those. Each face must be realized as an equilateral triangle,
and it is necessary to calculate the geometric coordinates to check whether there exist self-
intersections or edges whose dihedral angle is equal to 180◦. In this paper, we focus on surfaces
of genus 0. Also the previous studies on deltahedra mentioned above focused on the genus-0
surface. Although a few deltahedra with g > 0 are known, we are not aware of published
studies.

2. Deltahedral graphs

Polyhedral graphs are three-connected planar graphs. These graphs contain not only triangu-
lar faces, but also polygonal faces with more than three edges. A cubic polyhedral graph is a
three-connected cubic planar graph which has only triangular faces. This graph is realized as
a polyhedron whose faces are triangles, that is, a simple polyhedron. Deltahedra are a sub-
class of simple polyhedra because they are composed of equilateral triangles. Therefore, the
graphs of deltahedra are a subclass of the graphs of simple polyhedra. The relation between
them is shown in Figure 1.

Here we define a deltahedral graph as a graph which can be realized as a deltahedron.
Although there are various kinds of deltahedra, we include only deltahedra without self-
intersections and without edges for which the dihedral angle is 180◦. For example, all the
polyhedra in Figure 2 are composed of congruent equilateral triangles. However, the lower
left one (924, N) has intersecting faces, and the lower right one (812, N) has coplanar and
connecting faces. In this paper, we will not consider deltahedra like these lower ones but only
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Polyhedral graphs

Cubic polyhedral graphs

Deltahedral graphs

Figure 1: Relation between polyhedral graphs and deltahedral graphs

those like the topmost example (917, D) in Figure 2. The code below each figure is composed
of two numbers and a character. The numbers represent the number of vertices and the
index of the graph. The index follows the order of an existing graph generation algorithm [3],
and they are classified into one of two categories: ‘D’ for deltahedral graphs, and ‘N ’ for
non-deltahedral graphs. For example, (61, D) is the first six-vertex deltahedral graph that is
generated by that algorithm. The important thing is that more than one deltahedron may be
obtained from a single graph. Figure 3 shows a deltahedral graph that has one convex form
and two non-convex forms. If a graph has at least one deltahedron, we say it is deltahedral.

3. Approach

We have to prepare the graphs which are combinatorially different before the realization
process. The class of deltahedra is a subset of the class of simple polyhedra whose faces
are triangles. Therefore, the number of three-connected cubic polyhedral graphs is an upper
bound on the number of deltahedral graphs. Graph enumeration has been widely discussed,
and there are many approaches to it. We used the planar graph generation program plantri
[3] to obtain the three-connected cubic planar graphs.

We used two steps to realize the graphs. First, each graph was embedded without inter-
sections in the 2D plane with straight line edges. Then, we used graph lifting [11] and an
iterative deformation process for the attempt to construct a deltahedron from the graph. The
constructed polyhedron may have coplanar neighboring faces or may not even be a solid. The
graph was considered to be a deltahedral graph only if the constructed geometry satisfied the
conditions for a deltahedron.

As mentioned above, non-convex deltahedra form an infinite class. So it is necessary to

(a) (917, D)
(b) (924, N) has
intersecting faces

(b) (812, N) has coplanar
and connecting faces

Figure 2: Polyhedra with equilateral triangles. The first polyhedron is a deltahedron
and the others are not.
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Figure 3: One convex shape and two non-convex shapes form the graph 950

limit the allowable number of vertices. We choose this limit to be ten. As an upper bound,
there are 306 polyhedral graphs which have ten or less vertices. We decided that it is enough
for the first step of this realization problem.

3.1. Graph embedding

Several methods have been proposed for embedding planar graphs. We used Plestenjak’s
algorithm, which is based on a spring model [10]. The size of the graph is small enough that
it is practical to calculate it. This algorithm chooses a base face and fixes the positions of its
vertices in the 2D plane. The remaining vertices are placed inside the base face. We choose
the base face randomly and place it so that it forms an equilateral triangle with edges of
unit length. The algorithm calculates the periphericity pv of each vertex when placing the
inner vertices. Periphericity is a kind of centrality and indicates the distance from the outer
polygon. The periphericity pv of the outer triangle is 0, and the pv of the vertices adjacent to
them is 1. The periphericity pv increases as going toward inside.

These periphericities are used when generating the initial polyhedron which is needed for
the iterative deformation. Figure 4a shows an example of an embedded graph. In this step,
the base face is chosen randomly. The results of the following steps are different, depending
on the initial choice.

3.2. Realization of deltahedra

First, we generate a polyhedron with non-equilateral triangles from an embedded graph. Al-
though this polyhedron will be deformed to a deltahedron, it should be close to a deltahedron.
We obtain the heights hv for the vertices corresponding to each pv by using the following for-
mula:

hv = Cpv,
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(a) Embedding (b) Lifting (c) Shrinking the
base face

(d) Deformed shape

Figure 4: Realization process
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Minimum graph Operation (a)

Operation (b) Operation (c)

Figure 5: Operations for the generation of simple triangulations

where C is a constant value that defines the height of the pyramid-like model shown in
Figure 4b. Then the base face is shrunk to reduce the differences in the lengths of the edges
(Figure 4c).

Finally, we transform the generated polyhedron to form a deltahedron by using a numer-
ical optimization. We define a penalty function F which measures the difference in length of
the edges, and then we minimize it. We set

F :=
∑

i

(L(Ei)− 1.0)2,

where L(Ei) is the length of Ei. We use the Levenberg-Marquardt algorithm for the it-
erations and the Gauss-Seidelmethod for solving the linear equations within each iteration.
The resulting polyhedron may include intersecting faces. If this happens we try a different
embedding or we reconfigure the positions of the vertices manually.

The convergence of this method is not guaranteed. However, there exists a vertex con-
figuration that makes the lengths of all edges equal when self-intersections are ignored. The
proof is as follows:

There are only three operations for generating all triangulations [2],

a) adding a vertex of degree 3,

b) removing an edge and adding a vertex of degree 4, and

c) removing two edges and adding a vertex of degree 5.

The minimum four-vertex graph is realized as a tetrahedron. The graph and the operations
are shown in Figure 5. When these operations are applied, the resulting polyhedron can be fit
into the interior of the tetrahedron because our iterative deformation algorithm does not care
about intersecting faces. The operation (a) adds a vertex that separates a face into three faces.
The additional faces can be realized as an excavation of a tetrahedron. The additional faces
generated by operations (b) and (c) will be realized by overlapping coplanar faces covering
other faces. These operations change the positions of the original vertices, however, the shape
will still fit into the tetrahedron.
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Table 1: Number of deltahedral graphs

Vertices 4 5 6 7 8 9 10

Graphs 1 1 2 5 14 50 233

Deltahedral graphs 1 1 2 4 9 36 154

Non-deltahedral graphs 0 0 0 1 5 14 79

4. Results

Here we present the experimental results of the realizations with up to 10 vertices. Table 1
shows the numbers of deltahedral and non-deltahedral graphs. We can see that more than
50% of the graphs are deltahedral. The percentage of non-deltahedral graphs is gradually
decreasing. To confirm this trend, it will be necessary to investigate larger graphs. Figures 6
and 7 show the constructed polyhedra with seven and eight vertices, respectively. Note that
each figure shows one of various possible polyhedra. We did not generate all the possible
realization shapes for each graph. Fortunately, if we do not allow faces to intersect, the
variations are small in graphs with ten or fewer vertices. It is easy to identify manually
whether a graph has different shapes. For example, only 813 admits different shapes (made
by tucking one of the pyramid) in Figure 7. In difficult cases, we manually generated good

initial polyhedra and performed an iterative deformation.

The lengths of all the edges of the constructed polyhedra are very close to 1. Although
there is an error caused by the numerical calculations, the maximum difference between the
mean edge length and each edge was under 10−5. In most cases, the iteration process converged
in a few seconds on a PC with 2.9 GHz Intel Core i7 CPU. The time differed depending on
the initial polyhedron produced by the graph lifting.

(71, D) (72, D) (73, D)

(74, D) (75, N)

Figure 6: Constructed polyhedra with V = 7
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(81, D) (82, D) (83, D) (84, D) (85, D)

(86, D) (87, N) (88, D) (89, D) (810, N)

(811, N) (812, N) (813, N) (814, D)

Figure 7: Constructed polyhedra with V = 8

(87, N) (926, N)

Figure 8: Graphs with and without the appendage tetrahedra, and the associated polyhedra
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5. Finding the infinite family of non-deltahedral graphs

Some graph structures cause face intersections. For example, in the case of the graph 87 the
shape is completely flat (see Figure 7). Similar shapes appear also in larger graphs. We can
find the graphs that have particular non-realizable structures by comparing graphs.

Figure 8 shows graphs which contain the same partial structures and their realized poly-
hedra. As shown in Figure 8, when we form a larger deltahedron by connecting two smaller
deltahedra along a single face, the original shapes do not change and the graph of the appended
deltahedron can be embedded inside a connecting face. This operation can be detected by
solving the subgraph isomorphism problem. Hence, we can obtain a family of non-deltahedral
graphs from one non-deltahedral graph by solving it, without the need to realize the polyhe-
dron.

Figure 10 shows an example of a non-deltahedral family. We used graph 87 as a seed and
obtained ten non-deltahedral graphs with nine or ten vertices. We used a simple backtracking
algorithm for the subgraph isomorphism [15]. For nine and ten vertices the computation time
was 140ms and 2500ms, respectively.

This subgraph isomorphism only detects the connection of two deltahedra along a single
face. Figure 9 shows a comparison of a connection along one face with another, where more
faces are involved. These shapes look similar, but the isomorphism of the subgraphs only
detects the deformation from the left to the central object. The right one is a seed of another
non-deltahedral family. For the transition from the center to the right, an octahedron is
attached along two faces. In this case, the original shape does not change, but in general,
attaching a deltahedron along at least two faces causes a deformation of the original shape.

The graph 75 can be realized as a polyhedron that does not contain self-intersections.
Such non-deltahedral graphs that are realizable as polyhedra cannot be used as seeds of the
subgraph isomorphism problem. A larger graph may be realizable as a deltahedron because
the attachment changes the dihedral angles of the edges around the core face.

Single-face augmentation Multiple-face augmentation

Joint face Joint faces

Figure 9: Connection with single faces and with multiple faces

6. Conclusions

We described a method for realizing a simple cubic polyhedral graph as a deltahedron. Not
all simple cubic polyhedral graphs can be realized as deltahedra, due to self-intersections or
dihedral angles of 180◦. We also showed that the infinite family of non-deltahedral graphs is
obtained by solving the subgraph isomorphism problem. This eliminates the non-deltahedral
graphs from the set of cubic polyhedral graphs without the need for realization, and it may
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926 1096 1097 1098 1099

10100 10101 10102 10103 10104

Figure 10: Non-deltahedral family of graphs 87 with up to ten vertices

be useful for finding the deltahedral ones. Our future work is to improve the discrimination
approach by employing this detection method.

The remaining problem is to determine how non-realizability can be characterized. In
order to do this, we need the vertex coordinates for checking the dihedral angles. Our delta-
hedral realization problem is similar to the polyhedral realization problem. We hope that
by combining our iterative deformation process with other realization or detection methods
[12, 7], we will obtain a method that creates a robust realization of deltahedra.

It is also necessary to investigate graphs of higher genus. Do all triangulated surfaces with
non-zero genus admit a deltahedral realization? Our realization process is not applicable for
surfaces with non-zero genus; however, an iterative deformation may be useful. It will be
an interesting challenge to find the smallest deltahedron with g > 0, such as a toroidal
deltahedron.
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