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1. Introduction

The geometry enthusiast may have sensed that the classical theorems (about concurrency of
lines or collinearity of points in a plane) of Brianchon, Ceva, Desargues, Menelaus, Pappus, or
Pascal [7] (the listing is in alphabetical order) are very much related, very much equivalent.

The hexagons are the best polygons: They have just enough sides/angles to accommodate
diversity and versatility, yet not too many to induce confusion. Not surprisingly, Nature chose
them for packing efficiency, from bees’ honeycombs to the Giant’s Causeway [8]. Let it be
noted, for instance, that when probing the concurrency of three lines in a plane one deals
practically with properties of hexagons, given that a line is uniquely determined by two points.

In plane geometry the trigonometric methods of proof are typically the most underrated:
For noblesse oblige reasons one tries first synthetic methods, only to switch to analytic ones,
if the former do not yield results. Trigonometry comes only as an afterthought, despite its
undeniable efficiency in problems where shape and not size matters.

The purpose of this paper is to investigate the familiar theme of concurrency of three
lines in plane geometry, via a trigonometric study of hexagonal paths. In the end a very
nice equation emerges in hexagons (see (1) below), which surprisingly does not appear to be
known.
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Figure 1: A convex hexagon with concurrent
main diagonals, and the nine relevant angles.

Figure 2: The angles associated to the
trigonometry of hexagons.

2. Sine-Theorem

Let A1A2A3A4A5A6 be a convex hexagon. Its three main diagonals are the line segments A1A4,
A2A5, and A3A6, and a very natural problem is to find necessary and sufficient conditions
guaranteeing their concurrency. More generally, given a hexagonal path in a plane, with
distinct vertices A1, A2, . . . , A6 in reasonably generic position, when are its main diagonal
lines

←−→
A1A4,

←−→
A2A5, and

←−→
A3A6 concurrent?

Our result will express this concurrency in terms of the measures of nine oriented angles.
In order not to be distracted by orientation issues, we will prove it only when the hexagonal
path is convex and the above vertex listing is consistent with traversing the sides of the
hexagon in a counterclockwise manner. Fixing one of the two core internal triangles in the
hexagon, say 4A1A3A5 (the other being 4A2A4A6), denote by α, β, and γ, the measures of
its angles A1, A3, and A5, respectively. Denote also by α− and β+ the measures of the angles
A1 and A3, respectively, in 4A1A2A3. Similarly, we have β−, γ+, and γ−, α+ (see Figure 1).
Then the following holds true:

Sine-Concurrency Theorem. Let A1A2A3A4A5A6 be a convex hexagon. With the above
notations, the three main diagonals in the hexagon, A1A4, A2A5, and A3A6, are concurrent
if and only if

sin(α + α+) sin(β + β+) sin(γ + γ+) sinα− sin β− sin γ− =

sin(α + α−) sin(β + β−) sin(γ + γ−) sinα+ sin β+ sin γ+
(1)

The proof of the Sine-Concurrency Theorem will be an immediate consequence of the
following two Lemmas.

Lemma 1 – The Trigonometry of Hexagons. The angle notations being those of Figure 2,
in any convex hexagon A1A2A3A4A5A6 the following trigonometric identity holds true:

sin(α + α+) sin(β + β+) sin(γ + γ+) sinα− sin β− sin γ− sinα1 sin β1 sin γ1 =

sin(α + α−) sin(β + β−) sin(γ + γ−) sinα+ sin β+ sin γ+ sinα2 sin β2 sin γ2
(2)
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Proof of Lemma 1. Since the hexagon is convex, its main diagonals A1A4, A2A5, and A3A6

intersect the sides A3A5, A1A3, and A5A1 of the core triangle, 4A1A3A5, at interior points
B1, B5, and B3, respectively. Consequently, for the angle A1 in 4A1A3A4 with measure α1

and angle A1 in 4A1A4A5 with measure α2, we have α1+α2 = α. Similarly, β1+β2 = β and
γ1 + γ2 = γ (cf. Figure 2).

The proof of Lemma 1 makes a judicious use of the Law of Sines in various triangles inside
the hexagon. For instance, looking at triangles, 4A1A3A6, 4A3A5A2, and 4A5A1A4, we get

sin(α + α+)

A3A6

=
sin β2
A6A1

,
sin(β + β+)

A5A2

=
sin γ2
A2A3

, and
sin(γ + γ+)

A1A4

=
sinα2

A4A5

, (3)

respectively. Similarly, from the triangles, 4A3A4A1, 4A5A6A3, and 4A1A2A5, we get

sinα1

A3A4

=
sin(β + β−)

A4A1

,
sin β1
A5A6

=
sin(γ + γ−)

A6A3

, and
sin γ1
A1A2

=
sin(α + α−)

A2A5

, (4)

respectively. Finally, the triangles 4A1A2A3, 4A3A4A5, and 4A5A6A1, give

sinα−

A2A3

=
sin β+

A1A2

,
sin β−

A4A5

=
sin γ+

A3A4

, and
sin γ−

A6A1

=
sinα+

A5A6

, (5)

respectively. Multiplying now side by side the nine identities given by equations (3), (4), and
(5) yields (2), after the requisite side-lengths cancellations.

Lemma 2 – Ceva’s Theorem-Trigonometric Form. In a triangle 4A1A3A5, let B1 ∈
A3A5, B1 6= A3, B1 6= A5, and similarly let B3 ∈ A5A1 and B5 ∈ A1A3. If the angle measures
α, α1, α2, β, β1, β2, and γ, γ1, γ2, are cf. Figure 2 or Figure 3, then the line segments A1B1,
A3B3, and A5B5 are concurrent if and only if

sinα1 sin β1 sin γ1 = sinα2 sin β2 sin γ2 (6)

Proof of Lemma 2. Assume first that the line segments A1B1, A3B3, and A5B5 intersect at
point O (cf. Figure 3). Applying now the Law of Sines in triangles, 4A1A3O, 4A3A5O, and
4A5A1O, we get respectively

sinα1

A3O
=

sin β2
OA1

,
sin β1
A5O

=
sin γ2
OA3

, and
sin γ1
A1O

=
sinα2

OA5

. (7)

Multiplying side by side the three identities given by (7) yields (6).
Conversely, assume that the identity (6) holds true. Let the line segments A3B3 and A5B5

intersect at point O′, and let the line
←−→
A1O

′ intersect the line segment A3A5 at the interior point
B′1. The line segment A1B′1 splits the angle A1 of 4A1A3A5 into two angles with measures α′1
and α′2, and so α = α′1 + α′2. Applying now the only if part of Lemma 2 (which was proved
above) to the concurrent line segments A1B′1, A3B3, and A5B5 we conclude that

sinα′1 sin β1 sin γ1 = sinα′2 sin β2 sin γ2 (8)

By division, the equations (6) and (8) yield

sinα1

sinα′1
=

sinα2

sinα′2
, (9)
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Figure 3: Ceva’s Theorem –
trigonometric form.

Figure 4: An example of a cyclic hexagon
with concurrent main diagonals.

or equivalently,
sinα1

sin(α− α1)
=

sinα′1
sin(α− α′1)

. (10)

The function
f(t) =

sin t

sin(α− t)
, 0 < t < α,

is strictly increasing, as its derivative

f ′(t) =
sinα

sin2(α− t)

is strictly positive, and so equation (10) gives α1 = α′1. Thus, B1 = B′1, which proves the
concurrency of A1B1, A3B3, and A5B5 at the point O′.

Proof of Sine-Concurrency Theorem. Cf. Figure 2, the line segments A1A4, A2A5, and A3A6

are concurrent if and only if the line segments A1B1, A3B3, and A5B5 are so, or, by Lemma
2, if and only if equation (6) holds true. Since the identity (2) of Lemma 1 is always true,
dividing (2) by (6) gives that equation (6) holds true if and only if equation (1) does.

We proceed with three applications to the Sine-Concurrency Theorem.

Corollary. a) The notations being those of the Sine-Concurrency Theorem, the main di-
agonals of the convex hexagon A1A2A3A4A5A6 are concurrent if α− = α+, β− = β+,
and γ− = γ+.

b) Let A1A2A3A4A5A6 be a cyclic hexagon. Then its main diagonals are concurrent if and
only if A1A2 · A3A4 · A5A6 = A2A3 · A4A5 · A6A1.

c) Let B1B2B3B4B5B6 be a cyclic hexagon. On its sides erect exterior triangles by ex-
tending these sides, and denote the additional vertices of these triangles by A1, A2, A3,
A4, A5, and A6. Then the main diagonals in the convex hexagon A1A2A3A4A5A6 are
concurrent.

Proof. a) is a result of de Villiers [4]. Its proof is an obvious consequence of the if part
of the Sine-Concurrency Theorem, as the given hypotheses make the content of equation (1)
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plain. In the particular case α+ = α− = β+ = β− = γ+ = γ−, the concurrency point is known
as the Kiepert point [5].

b) is a result of Cartensen [3]. Due to the cyclicity of the hexagon,

(α + α+) + (γ + γ−) = π, (β + β+) + (α + α−) = π, and (γ + γ+) + (β + β−) = π.

Therefore,

sin(α + α+) = sin(γ + γ−), sin(β + β+) = sin(α + α−), and sin(γ + γ+) = sin(β + β−).

In conclusion, equation (1) is equivalent to

sinα+ sin β+ sin γ+ = sinα− sin β− sin γ−,

and also to the metric property

A1A2 · A3A4 · A5A6 = A2A3 · A4A5 · A6A1,

via (5).
Here are now two natural implementations of b).

b1). Let A1, A2, A3, A4, and A5 be five distinct points, distributed in a counterclockwise
manner on a given circle. If

>
A5A1 is the counterclockwise oriented arc of the circle (with

initial point A5 and terminal point A1), the continuous function

f :
>
A5A1 → R, f(A) = A1A2 · A3A4 · A5A− A2A3 · A4A5 · AA1,

is strictly increasing as A advances along the arc, f(A5) < 0, and f(A1) > 0. By the
Intermediate Value Property there is an unique point A = A6 ∈

>
A5A1 such that the main

diagonals in the cyclic hexagon A1A2A3A4A5A6 are concurrent. Clearly, A6 is the intersection
point of the arc

>
A5A1 with the line

←→
A3I, where I is the intersection point of the line segments

A1A4 and A2A5.
b2) Let A be a point exterior to a given circle, and let A1 and A4 be the points where the two
tangents to the circle through the point A intersect the circle. Let also two secants through
A intersect the circle at A2 and A6, respectively A3 and A5 (cf. Figure 4). Then the main
diagonals in the cyclic hexagon A1A2A3A4A5A6 are concurrent.

This can be seen by using similarity in three pairs of triangles. For instance 4AA1A2 ∼
4AA6A1 gives

A1A2

A6A1

=
AA1

AA6

=
AA2

AA1

, which implies
(A1A2)

2

(A6A1)2
=
AA2

AA6

.

Similarly,
A3A4

A4A5

=
AA3

AA4

=
AA4

AA5

, gives
(A3A4)

2

(A4A5)2
=
AA3

AA5

,

and
A5A6

A2A3

=
AA5

AA2

=
AA6

AA3

, gives
(A5A6)

2

(A2A3)2
=
AA5 · AA6

AA2 · AA3

.

Therefore,
(A1A2)

2

(A6A1)2
(A3A4)

2

(A4A1)5
(A5A6)

2

(A2A3)2
= 1,
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which proves the validity of b2).

c) Referring to Figure 5, by the Sine-Concurrency Theorem we have to establish the validity
of equation (1) for the choices of angles indicated. The content of equation (5) is equivalent
to

sinα−

sin β+
=
A2A3

A1A2

,
sin β−

sin γ+
=
A4A5

A3A4

, and
sin γ−

sinα+
=
A6A1

A5A6

. (11)

Figure 5: The main diagonals in the con-
vex hexagon A1A2A3A4A5A6 are always con-
current, while those in the cyclic hexagon
B1B2B3B4B5B6 may not be.

Figure 6: A non-convex, non-simple, hexago-
nal path in general position with concurrent
main diagonals, and the nine relevant ori-
ented angles.

Combining now three implementations of the Law of Sines respectively to triangles,
4A6A1B6, 4A2B1B6 and 4A3A4B1, we have

sin(α + α+)

sin(β + β−)
=
A6B6

A6A1

A2B1

A2B6

A3A4

A4B1

, (12)

and similarly,

sin(β + β+)

sin(γ + γ−)
=
A2B2

A2A3

A4B3

A4B2

A5A6

A6B3

and
sin(γ + γ+)

sin(α + α−)
=
A4B4

A4A5

A6B5

A6B4

A1A2

A2B5

. (13)

Multiplying together equations (11), (12), and (13), and simplifying yields now

sin(α + α+) sin(β + β+) sin(γ + γ+) sinα− sin β− sin γ−

sin(α + α−) sin(β + β−) sin(γ + γ−) sinα+ sin β+ sin γ+
=

A6B5 · A6B6

A6B4 · A6B3

A2B1 · A2B2

A2B6 · A2B5

A4B3 · A4B4

A4B2 · A4B1

.

(14)

However, each one of the three ratios contained on the right hand side of equation (14) equals
1, due to the well-known invariance of the power of a point exterior to a circle.
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3. Final Remarks

We conclude the paper with some substantive remarks.
1. Sine-Concurrency Theorem for Hexagonal Paths. The Sine-Concurrency Theorem
still holds true for non-convex, in fact even non-simple (when viewed as closed polygonal
curves), hexagonal paths A1A2A3A4A5A6, however we need to be more careful how we measure
the angles involved. First, the hexagonal path has to be in general position, that is no lines
through any two of its vertices may be identical or parallel (in particular, no three vertices
may be collinear). Second, all the angles considered have to be oriented angles.
For a proper angle, say B̂AC, with vertex A and rays

−→
AB and

−→
AC we define its oriented

measure, m(B̂AC) = θ, as being the (real) angle θ (in radians), 0 < |θ| < π, required
to rotate (about vertex A) the ray

−→
AB over the ray

−→
AC. The measure will be positive

if this rotation is counterclockwise, and negative if it is clockwise. So for oriented angles,
m(ĈAB) = −m(B̂AC). Then, just as in the Sine-Concurrency Theorem, the main diagonal
lines

←−→
A1A4,

←−→
A2A5, and

←−→
A3A6 will be concurrent if and only if equation (1) holds, where

α = m(Â3A1A5), β = m(Â5A3A1), γ = m(Â1A5A3), α− = m(Â2A1A3), α+ = m(Â5A1A6),
β− = m(Â4A3A5), β+ = m(Â1A3A2), γ− = m(Â6A5A1), and γ+ = m(Â3A5A4). Notice that
the same letter angle measures correspond to angles sharing the same vertex. For a more
unorthodox implementation of these notations, see Figure 6.
A proof similar to that given in the convex case may be attempted. It requires a ‘Signed Law
of Sines’ and many particular cases need to be considered. For a compact analytic proof, see
[1].

2. Sine-Collinearity Theorem. It is well-known that Desargues’ Theorem [7] renders the
concurrency of three line equivalent to the collinearity of three points. When teamed up with
the Sine-Concurrency Theorem it produces the following

Sine-Collinearity Theorem. Given a convex hexagon A1A2A3A4A5A6 with vertices in gen-
eral position, consider the three intersecting points of corresponding sides in 4A1A2A3 and
4A4A5A6. More precisely, let lines

←−→
A1A2 and

←−→
A4A5 intersect at M1, lines

←−→
A2A3 and

←−→
A5A6

intersect at M2, and lines
←−→
A3A1 and

←−→
A6A4 intersect at M3 (cf. Figure 7). Then the points

M1, M2, and M3 are collinear if and only if for the angle measures α, α+, α−, β, β+, β−, and
γ, γ+, γ− associated as before in connection with 4A1A3A5 equation (1) holds true.

A direct proof (without Desargues’ Theorem) of the Sine-Collinearity Theorem can be found
in [1].

3. Sine-Cross Ratio Theorem. Recall that the cross ratio [6, 7] of four (distinct) collinear
points C1, C2, C3, and C4 in some plane, denoted [C1, C2, C3, C4], is the real number

[C1, C2, C3, C4] :=
~C1C3

~C3C2

/
~C1C4

~C4C2

, (15)

where for two points A and B we denote by ~AB the vector with origin A and end B (different
from

−→
AB, by which we denote the ray originating at A through the point B). In general two

vectors cannot be divided, except when they are proportional, as in (15), in which case by
their ratio we mean the proportionality constant. Then the following theorem holds true:
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Figure 7: A convex hexagon exhibiting collinearity and the nine relevant angles, as
in the Sine-Collinearity Theorem.

Sine-Cross Ratio Theorem. In the convex hexagon in standard position A1A2A3A4A5A6,
let E1, E2, E3, and E4, be the intersection points of

←−→
A1A2,

←−→
A2A3,

←−→
A3A4, and

←−→
A4A5 with

←−→
A5A6,

respectively, and similarly let F1, F2, F3, and F4, be the intersection points of those same four
lines with

←−→
A6A1 (cf. Figure 8). Then the trigonometric equation (1), associated as before to

4A1A3A5 and to the angle measures α, α+, α−, β, β+, β−, and γ, γ+, γ−, holds true if and
only if

[E1, E2, E3, E4] = [F1, F2, F3, F4], (16)

where [E1, E2, E3, E4] and [F1, F2, F3, F4] stand for the cross ratios of those respective points.

For a proof of the Sine-Cross Ratio Theorem, see [2].

Figure 8: A hexagon with cross-ratio points E1, E2, E3, E4, and F1, F2, F3, F4
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