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Abstract. In the Cayley-Klein model a hyperbolic space Ĥ3 of positive curvature
is realized on the ideal domain of the Lobachevski�� space, that is, on the exterior
domain of the projective space P3 with respect to an oval surface. In this paper
the basic notions of the volumes theory of the space Ĥ3 are introduced through
projective invariants of the fundamental group of this space. The volume formulae
for a monopolar tetrahedron and bodies bounded by a hypersphere of the space
Ĥ3 are obtained.
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1. Introduction

1.1. The hyperbolic space Ĥ3 of positive curvature

In the projective Cayley-Klein model the Lobachevski�� space Λ3 can be realized on the interior
domain of the projective space P3 with respect to an oval surface [5, Chapter V, �15], [8,
Chapter II, �4] γ. A hyperbolic space Ĥ3 of positive curvature can be realized on the ideal
domain of the Lobachevski�� space, that is, on the exterior domain with respect to the surface
γ. The spaces Λ3 and Ĥ3 are connected components of the extended hyperbolic space H3

[29, Chapter 4, �1]. The oval surface γ is called the absolute of the spaces H3, Ĥ3, and Λ3.
The group G of projective automorphisms of the oval surface γ is the fundamental group of
transformations for H3, Ĥ3, and the Lobachevski�� space Λ3. The space Ĥ3 can be modelled
in the Minkowski space R4

1 on the hypersphere of real radius. Therefore, the space Ĥ3 is a
projective model of the de Sitter 3-space [4, 32].

Nowadays the theory of volumes is developed mainly in classical spaces of constant curva-
ture, that is, Euclidean, elliptic, and Lobachevski�� spaces. Main results and profound surveys
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on this topic are presented, for example, in [1, 2, 3, 7, 9, 10, 11, 12, 13, 30, 31, 33, 34].
For a number of reasons the volumes theory in the hyperbolic spaces of positive curvature is
developed less successfully. We discuss some of these reasons in [16]. The main results on
the areas theory of a hyperbolic plane Ĥ of positive curvature are presented, for example, in
[14, 20, 23, 25, 28]. The volumes of a �nite light cone and a �nite orthogonal h-cone of the
space Ĥ3 are calculated in [24] and [26] respectively, the volume formula for a Cli�ord surface
layer can be found in [27].

In the underlying paper, by analogy with [24, 26, 27, 28], the foundations of the volumes
theory for the space Ĥ3 are provided. We introduce the basic notions of this theory through
projective invariants of the fundamental group G and we calculate the volumes of the bodies
bounded by hyperspheres. We pay special attention to the volume formula of a monopolar
tetrahedron. Two opposite edges of such a tetrahedron lie on mutually polar lines with
respect to the absolute. The volume formula for a monopolar tetrahedron is simpler than
a general volume formula for an arbitrary tetrahedron and has the known analogue in the
elliptic geometry. Unlike the Lobachevski�� space Λ3, the space Ĥ3 contains �nite monopolar
tetrahedrons. In [27] we obtained the volume formula only for a �nite monopolar tetrahedron
of the space Ĥ3. In Theorem 1 of the presented work we prove this formula for any monopolar
tetrahedron in Ĥ3. To this end we classify the monopolar tetrahedrons of the space Ĥ3 and
introduce a new suitable orthogonal curvilinear coordinate system.

2. Preliminaries

2.1. Main notions

Assume that the absolute γ is added to the extended hyperbolic space H3 and H
3

= H3∪γ =

Ĥ3 ∪ Λ3 ∪ γ. The space H3
is homeomorphic to the projective space P3. Let η be a surface

which is homeomorphic to an oval surface and let η ⊂ H
3
. The surface η divides the space H

3

into two connected components. One of these components is homeomorphic to the interior
domain of an oval surface. We call it a body with boundary η. The second component is
homeomorphic to the space Ĥ3. We call it a Möbius body with boundary η. A body and a
Möbius body with the same boundary we call adjacent. A body or a Möbius body F of the
space H

3
is called �nite in the space Ĥ3 or Λ3 if F ∩ Ĥ3 = F or F ∩ Λ3 = F , respectively.

Every line in the space Ĥ3 belongs to one of three types depending on its position with
respect to the absolute. Lines intersecting the absolute in two real or imaginary points are
called hyperbolic or elliptic, respectively. Any tangent line to the absolute surface γ of the
space Ĥ3 is called parabolic. Main objects on lines of all types are introduced in [18, �4.2].
The type of a curve in its point M is determined by the type of the tangent line to this curve
in the point M . We call the curve elliptic or hyperbolic if in each of its points the tangent line
is elliptic or hyperbolic, respectively (see [28]).

Every real plane of the space Ĥ3 belongs to one of three types. An elliptic plane crosses
the absolute on a zero curve (see [5, Chapter V, �15], [8, Chapter II, �4]). A hyperbolic plane

of positive curvature (see [18, 29]) crosses the absolute on an oval curve. A co-Euclidean plane
(see [17, 29]) is tangent to the absolute and has a pair of imaginary conjugate lines from the
absolute.

There are �fteen types of dihedrons of the space Ĥ3. Dihedrons of six types are measur-
able, dihedrons of three types have real measures (see [16]). Every plane angle of the space
Ĥ3 belongs to one of twenty types. The type of a plane angle is determined by the types of
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its sides and the type of the plane containing this angle.
Assume that the lines a and b of the space Ĥ3 belong to a plane α which is not co-

Euclidean. The lines a and b are called orthogonal if each contains the pole of the other line
with respect to the curve γα, where γα = α ∩ γ. Two skew lines of the space Ĥ3 are called
orthogonal if they are mutually polar with respect to the absolute surface γ. Two segment of
the space Ĥ3 are called orthogonal if they lie on orthogonal lines. Two planes of the space Ĥ3

are called orthogonal if each contains the absolute pole of the other plane. A line and a plane
of the space Ĥ3 are called orthogonal if the line contains the absolute pole of the given plane.
A line and a plane are orthogonal if and only if the absolute polar line of the given line lies
in the given plane.

2.2. Main metric formulae

A canonical frame of the �rst type of the spaces Ĥ3, Λ3, and H3 is a projective frame
R∗ = {A1, A2, A3, A4, E} whose vertices A1, . . . , A4 form a nonplanar quadrilateral which
is autopolar of the �rst order with respect to the absolute surface γ; the vertex A4 lies in the
space Λ3, and the unit point E lies in each of three co-Euclidean planes αjk, where AjAk ⊂ αjk,
j, k = 1, 2, 3, j 6= k. In any canonical frame R∗ of the �rst type the absolute surface γ is given
by the equation

x2
1 + x2

2 + x2
3 − x2

4 = 0.

The quadratic form ϕ(x1, x2, x3, x4) = x2
1 +x2

2 +x2
3−x2

4 determines the metric of distances
in the space Ĥ3. It is the metric form of this space. Let ϕ be the symmetric bilinear
form corresponding to the form ϕ. If points A and B of an elliptic or hyperbolic line have
coordinates (ap) and (bp), p = 1, 2, 3, 4, then, in the frame R∗, the length σ of the segment
between these points can be expressed by the formulae

cos
σ

ρ
= ± ϕ(ap, bp)√

ϕ(ap)ϕ(bp)
= ± a1b1 + a2b2 + a3b3 − a4b4√

a2
1 + a2

2 + a2
3 − a2

4

√
b2

1 + b2
2 + b2

3 − b2
4

or (2.1)

cosh
σ

ρ
= ± ϕ(ap, bp)√

ϕ(ap)ϕ(bp)
= ± a1b1 + a2b2 + a3b3 − a4b4√

a2
1 + a2

2 + a2
3 − a2

4

√
b2

1 + b2
2 + b2

3 − b2
4

, (2.2)

respectively, where ρ, ρ ∈ R+, is a curvature radius of the space Ĥ3.
The length of an elliptic or hyperbolic line equals πρ or iπρ, respectively (see, for instance,

[18, ��4.4.1, 4.4.3]). The orthogonality condition A ⊥ B has the following form in R∗:

a1b1 + a2b2 + a3b3 − a4b4 = 0. (2.3)

The value of the form ϕ on the real coordinates (ap) of the point A is called the charac-
teristic of these coordinates. For the proper or ideal point A in Ĥ3 we have, respectively,

ϕ(ap) = a2
1 + a2

2 + a2
3 − a2

4 > 0 or ϕ(ap) = a2
1 + a2

2 + a2
3 − a2

4 < 0. (2.4)

The quadratic form Φ(X1, X2, X3, X4) = X2
1 +X2

2 +X2
3 −X2

4 , which is polar to the form
ϕ, coincides with the form ϕ and determines the metric of dihedral angles in the space Ĥ3.
We call it the tangential metric form of this space. The value of the form Φ on the real
coordinates (αp) of a plane α is called the characteristic of these coordinates. For an elliptic
or extended hyperbolic plane α we have, respectively,

Φ(αp) = α2
1 + α2

2 + α2
3 − α2

4 < 0 or Φ(αp) = α2
1 + α2

2 + α2
3 − α2

4 > 0. (2.5)
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The coordinate plane A1A2A3 of any canonical frame R∗ of the �rst type is elliptic. Any other
coordinate plane of such frame is an extended hyperbolic plane.

2.3. Spheres of the space Ĥ3

There are four types of nondegenerate spheres in the space Ĥ3 of curvature radius ρ, ρ ∈ R+.
These types are as follows:

(a) hyperspheres with centres at ideal points of the space Ĥ3;

(b) horospheres with centres on the absolute;

(c) elliptic spheres with elliptic radiuses and centres at proper points of the space Ĥ3;

(d) hyperbolic spheres with hyperbolic radiuses and centres at proper points of Ĥ3.

In the projective sense, all hyperspheres, horospheres, and hyperbolic spheres are oval surfaces
while elliptic spheres are anular surfaces (see the classi�cation of surfaces of the second order in
the projective space P3 in [5, Chapter V, � 15], [8, Chapter II, � 4]). In this paper we consider
hyperspheres of the space Ĥ3 as the coordinate surfaces of the used orthogonal coordinate
system C1 of the �rst type. Let us formulate the metric de�nition of a hypersphere.

Let S be a proper point of the space Λ3. The set of all points in Ĥ3 so that the hyperbolic
distance from it to the point S is a complex number r = iπρ/2 − h, h ∈ R+, is called the
hypersphere with centre at S and radius r and is denoted by w(S; r). The elliptic plane α
which is the absolute polar plane of the point S is called the base of the hypersphere ω. The
distance from any point of the plane α to the point S is equal to iπρ/2. Hence, a hypersphere
with base α is the set of all points of the space Ĥ3 so that the distance from the point to the
plane α is a real number h = iπρ/2− r which is called the height of the hypersphere. Thus,
a hypersphere is an equidistant surface with an elliptic base plane.

Using Formula (2.2), we �nd the equation of the hypersphere w(S;h) in the frame R∗ =
{A1, A2, A3, S, E}

x2
1 + x2

2 + x2
3 − x2

4 coth2 h

ρ
= 0. (2.6)

The equation (2.6) implies that a hypersphere of nonzero height is a nondegenerate surface
of second order. The signature of the quadratic form on the left hand side of this equation
with h 6= 0 is equal to 2. Therefore, in accordance with the classi�cation of surfaces of the
second order in the space P3, a hypersphere is an oval surface. A hypersphere fully belongs
to the space Ĥ3 and intersects the absolute surface on a zero curve in the hypersphere base.
The absolute surface of the space Ĥ3 fully belongs to the interior domain with respect to a
hypersphere. A hypersphere and the absolute have the common cone of imaginary tangent
lines with the vertex at the centre of the hypersphere.

3. General provisions of the volume theory in the space Ĥ3

3.1. Proper coordinates of points in Ĥ3

Projective coordinates of points in the space Ĥ3 are homogeneous and cannot uniquely provide
the calculation of bodies volumes in this space. Let us choose in the space Ĥ3 a coordinates
normalization which is invariant under the transformations of the group G. Assume that in
the frame R∗ the real numbers (xp), p = 1, . . . , 4, are the coordinates of a proper point M of
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the space Ĥ3 with curvature radius ρ, ρ ∈ R+. In the frame R∗, the quadruple of numbers

x̄p = ± ρxp√
x2

1 + x2
2 + x2

3 − x2
4

, (3.1)

which are de�ned exactly up to the sign, are called the proper coordinates of point M .
The described normalization establishes a one-to-one dependence between proper points

of the space Ĥ3 and quadruples of real numbers, de�ned exactly up to their signs. According
to the second condition from (2.4), the proper coordinates of ideal points of the space Ĥ3

in this normalization are imaginary numbers. The proper coordinates of absolute points in
the normalization (3.1) are in�nitely large. For all point in space Ĥ3, the proper coordinates
satisfy

x̄2
1 + x̄2

2 + x̄2
3 − x̄2

4 = ρ2. (3.2)

3.2. The volume element of the space Ĥ3

Assume that the domain Q of the space Ĥ3 is homeomorphic to the interior domain of an
oval surface, and a point M with the proper coordinates (x̄p) lies in the domain Q. Let us
set the curvilinear coordinate system C∗ in the domain Q by the smooth functions

x̄p = x̄p(u, v, w), p = 1, 2, 3, 4, (u, v, w) ∈ Q ⊂ R3.

When we calculate the volumes of in�nite bodies of the space Ĥ3, we generalize the system
C∗. For the coordinates u, v, and w we consider besides real values also complex values in
the form iπρ/2 + υ, υ ∈ R (see Subsection 4.1).

We determine the system C∗ so that all coordinate curves of the same family, u, v, or w,
belong to the same type of curves. The system C∗ is called orthogonal if every two coordinate
curves are orthogonal at each point of the domain Q.

Di�erentiating sequentially the equality (3.2) with respect to the variables u, v, and w,
we get the following conditions:

x̄1
∂x̄1

∂u
+ x̄2

∂x̄2

∂u
+ x̄3

∂x̄3

∂u
− x̄4

∂x̄4

∂u
= 0, x̄1

∂x̄1

∂v
+ x̄2

∂x̄2

∂v
+ x̄3

∂x̄3

∂v
− x̄4

∂x̄4

∂v
= 0,

x̄1
∂x̄1

∂w
+ x̄2

∂x̄2

∂w
+ x̄3

∂x̄3

∂w
− x̄4

∂x̄4

∂w
= 0.

(3.3)

According to condition (2.3), the equalities in (3.3) imply that each of the points

Mu

(
∂x̄p
∂u

)
, Mv

(
∂x̄p
∂v

)
, Mw

(
∂x̄p
∂w

)
(3.4)

is orthogonal to the pointM . Consequently, the planeMuMvMw is the polar plane of the point
M with respect to the absolute surface γ. For the points Mu, Mv, and Mw the coordinates
from (3.4) are not proper in the sense of condition (3.1). But these coordinates are uniquely
determined by the proper coordinates (x̄p) of the point M .

Denote the values of the forms ϕ and ϕ on coordinates from (3.4) as follows:

γuu = ϕ

(
∂x̄p
∂u

)
, γvv = ϕ

(
∂x̄p
∂v

)
, γww = ϕ

(
∂x̄p
∂w

)
,

γuv = ϕ

(
∂x̄p
∂u

,
∂x̄p
∂v

)
, γvw = ϕ

(
∂x̄p
∂v

,
∂x̄p
∂w

)
, γuw = ϕ

(
∂x̄p
∂u

,
∂x̄p
∂w

)
,

(3.5)
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and let

J =

∣∣∣∣∣∣
γuu γuv γuw
γuv γvv γvw
γuw γvw γww

∣∣∣∣∣∣ . (3.6)

The lines MMu, MMv, and MMw are tangent lines to the coordinate curves in the point
M . Therefore, in the case of an orthogonal system C∗, the points Mu, Mv, and Mw are
pairwise orthogonal. This means that for the orthogonal coordinate system C∗ the following
conditions hold:

γuv = γvw = γuw = 0.

In the frame R∗, the plane MuMvMw is given by the equation

α1x2 + α2x2 + α3x3 + α4x4 = 0,

where

α1 =

∣∣∣∣∣∣∣∣∣∣∣

∂x̄2
∂u

∂x̄3
∂u

∂x̄4
∂u

∂x̄2
∂v

∂x̄3
∂v

∂x̄4
∂v

∂x̄2
∂w

∂x̄3
∂w

∂x̄4
∂w

∣∣∣∣∣∣∣∣∣∣∣
, α2 = −

∣∣∣∣∣∣∣∣∣∣∣

∂x̄1
∂u

∂x̄3
∂u

∂x̄4
∂u

∂x̄1
∂v

∂x̄3
∂v

∂x̄4
∂v

∂x̄1
∂w

∂x̄3
∂w

∂x̄4
∂w

∣∣∣∣∣∣∣∣∣∣∣
,

α3 =

∣∣∣∣∣∣∣∣∣∣∣

∂x̄1
∂u

∂x̄2
∂u

∂x̄4
∂u

∂x̄1
∂v

∂x̄2
∂v

∂x̄4
∂v

∂x̄1
∂w

∂x̄2
∂w

∂x̄4
∂w

∣∣∣∣∣∣∣∣∣∣∣
, α4 = −

∣∣∣∣∣∣∣∣∣∣∣

∂x̄1
∂u

∂x̄2
∂u

∂x̄3
∂u

∂x̄1
∂v

∂x̄2
∂v

∂x̄3
∂v

∂x̄1
∂w

∂x̄2
∂w

∂x̄3
∂w

∣∣∣∣∣∣∣∣∣∣∣
.

Direct calculations show that the equality J = −Φ (α1, α2, α3, α4) holds in the frame R∗.
Therefore, the number J is invariant under the transformations of the group G.

For each proper point M of the space Ĥ3 the absolute polar plane MuMvMw is extended
hyperbolic. Hence, for the plane MuMvMw based on the second inequality from (2.5) we
have the inequality Φ (α1, α2, α3, α4) > 0. Thus, for each proper point of the space Ĥ3 the
inequality J < 0 holds in the frame R∗. Measuring volumes of �nite bodies in the space Ĥ3,
we seek to use real positive numbers. Therefore, we accept the number

dV =
√
−J du dv dw (3.7)

as the volume element of the space Ĥ3.
In the case of an orthogonal coordinate system C∗ the volume element has a simple

expression through line elements. Indeed, the coordinate curves of such a system are mutually
orthogonal in pairs. In the space Ĥ3, it implies that two coordinate curves of the system C∗

are elliptic, and the third coordinate curve is hyperbolic. Let, for example, u and v be the
elliptic coordinate curves, and let w be the hyperbolic coordinate curve. From Formulae (3.5),
(3.6), and (3.7) we obtain

dV =
√
ϕ(Mu) du

√
ϕ(Mv) dv

√
−ϕ(Mw) dw. (3.8)

The numbers
dle =

√
ϕ(dM) dt or dlh =

√
−ϕ(dM) dt
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are elliptic or hyperbolic line elements, respectively, of the space Ĥ3. Similar de�nitions of
line elements of the plane Ĥ have been given in [28]. The numbers√

ϕ(Mu) du,
√
ϕ(Mv) dv,

√
−ϕ(Mw) dw

are arc lengths of the coordinate curves corresponding to in�nitesimal increments of the
parameters u, v, and w, respectively. Based on the expression (3.8), we get the following
assertion:
The volume element of the space Ĥ3 is equal to the product of arc lengths of the coordinate

curves which originate from a point of the space and correspond to in�nitesimal increments

of the coordinates of this point.

3.3. The volume formula in the space Ĥ3 geometry

Let F be a body in the domain Q of the space Ĥ3. Assume that the domain F , where
F ⊂ Q ⊂ R3, determines the body F in the coordinate system C∗ given in the domain Q.
According to Formula (3.7), the volume V (F ) of F can be expressed by the formula

V (F ) =

∫∫
F

∫ √
−J du dv dw. (3.9)

Note that the choice of the volume element in accordance with Formula (3.7) is convenient
when we calculate volumes in the space Ĥ3 because it provides real positive values of the
volumes of �nite bodies in this space. The volumes of �nite bodies of the Lobachevski�� space
calculated by Formula (3.9) are real negative numbers. Moreover, the equality holds

VΛ3(F ) = −VĤ3(F ), (3.10)

where for each body F of the space H3 the number VΛ3(F ) is the volume calculated in the
geometry of the space Λ3, and the number VĤ3(F ) is the volume calculated in the geometry of
the space Ĥ3 by Formula (3.9). The proof of Formula (3.10) is very unwieldy. Therefore, we
con�ned ourselves to check this formula only at the calculation of the volume of the extended
hyperbolic space H3 in Subsection 5.2.

4. The orthogonal curvilinear coordinate system

4.1. A construction

Let R∗ = {A1, A2, A3, A4, E} be a canonical frame of the �rst type in the space Ĥ3 of curvature
radius ρ, ρ ∈ R+, and let E4 be the orthogonal projection of the point E in the elliptic plane
A1A2A3, i.e., E4 = A4E ∩ A1A2A3 (Figure 1a). Denote the quasiangle between the planes
A1A2A3 and A1A2A4 containing the point E by ψ and denote the angle between the lines
A1A2 and A1A3 (A1A3 and A2A3) containing the point E4 by ψ23 (ψ12). LetM be an arbitrary
point of the domain Q in the space H

3
, and let Q be a topological equivalent to the interior

domain of an oval surface. Denote the orthogonal projection of M in the plane A1A2A3 by
M4, i.e.,M4 = A4M∩A1A2A3. Let w̃ be the part of the hyperbolic line between the pointsM ,
M4 which completely or by its bigger part belongs to the quasiangle ψ. Denote the orthogonal
projection ofM4 on the line A1A2 in the plane A1A2A3 byM12, henceM12 = A3M4∩A1A2. Let
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Figure 1: a) The orthogonal coordinate system C1 = {A1, A1A2, A1A2A3, ψ12, ψ23, ψ} and the
absolute surface γ. b) The �nite monopolar tetrahedron F and the absolute oval surface γ.

ũ (ṽ) be the elliptic segment between the points A1 and M12 (M4 and M12) which completely
or by its bigger part belongs to the angle ψ12 (ψ23). Let us agree that

u =
|ũ|
ρ
, v =

|ṽ|
ρ
, w =

|w̃|
ρ
. (4.1)

The set of �gures C1 = {A1, A1A2, A1A2A3, ψ12, ψ23, ψ} is called a coordinate system of

the �rst type in the space H
3
. We say that the canonical frame R∗ is attached to the system

C1. The point A1, the line A1A2, and the plane A1A2A3 are called the origin, the axis, and
the base of the system C1, respectively. The point A4 is called the pole of this system. The
three numbers (u, v, w) from (4.1) are the coordinates of the point M in the system C1.

For the coordinates u and v from (4.1) we have u ∈ [0, π) and v ∈ [0, π). The value of the
coordinate w depends on the object w̃ type. Later the following alternatives will be used.

1. If w̃ is a segment of the space Ĥ3, then w ∈ R+. In this case the point M lies in Ĥ3.

2. If w̃ is a beam of the space Ĥ3, then w =∞. In this case M lies on the absolute γ.

3. If w̃ is a quasisegment of the space Ĥ3 (see [18, Chapter 4]), then w = iπ/2 +w∗, where
w∗ ∈ R. In this case the point M lies in the space Λ3.

Assume that the point M passes all possible locations on the line M4A4 from the point M4

to an arbitrary point of the space Λ3. Then all possibilities for the coordinate w of the point
M are described in cases 1 � 3. We formally denote such a change of the coordinate w in the
following manner: w ∈ [0, iπ/2 + w∗].

4.2. The relation between proper and curvilinear coordinates

Assume that the coordinate system C1 of the �rst type is given on the domain Q in the space
H

3
, and the canonical frame R∗ is attached to this system. Let (u, v, w) be the coordinates

of an arbitrary point M from the domain Q in the system C1 and let (x1 : x2 : x3 : x4) be the
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projective coordinates of M in the frame R∗. Then we have

A4M ∩ A1A2A3 = M4(x1 : x2 : x3 : 0), A3M4 ∩ A1A2 = M12(x1 : x2 : 0 : 0).

By Formulae (2.1), (2.2), (4.1) we obtain:

cosu = ± x1√
x2

1 + x2
2

, cos v = ±

√
x2

1 + x2
2√

x2
1 + x2

2 + x2
3

, coshw = ±

√
x2

1 + x2
2 + x2

3√
x2

1 + x2
2 + x2

3 − x2
4

. (4.2)

From the expressions (4.2) under the condition (3.2) we �nd the proper coordinates of
the point M in the frame R∗:

x̄1 = ρ cosu cos v coshw, x̄2 = ρ sinu cos v coshw,
x̄3 = ρ sin v coshw, x̄4 = ρ sinhw.

(4.3)

Formulae (4.3) set the parametrization of the �rst type on the domain Q.

4.3. The volume element in the coordinate system C1

Assume that the proper coordinates of the point M are given by Formulae (4.3). Let us
calculate the coordinates of the points Mu, Mv, and Mw in the frame R∗:

Mu (−ρ sinu cos v coshw : ρ cosu cos v coshw : 0 : 0),
Mv (−ρ cosu sin v coshw : −ρ sinu sin v coshw : ρ cos v coshw : 0),
Mw (ρ cosu cos v sinhw : ρ sinu cos v sinhw : ρ sin v sinhw : ρ coshw).

Using these coordinates and designations from (3.5), we obtain

γuu = ρ2 cos2 v cosh2w, γvv = ρ2 cosh2w, γww = −ρ2, γuv = γuw = γvw = 0. (4.4)

The last three equalities from (4.4) imply the orthogonality of the coordinate system C1.
From expressions (4.4), via Formulae (3.7) and (3.9), we �nd the volume element of the space
H

3
and the volume formula for bodies of this space in the coordinate system C1:

dV = ρ3 cos v cosh2w du dv dw, V = ρ3

∫∫
Φ

∫
cos v cosh2w du dv dw. (4.5)

4.4. Coordinate surfaces in the system C1

Via the �rst two formulae from (4.3) we �nd the equation of the coordinate surface u = u0 =
const. in the system C1 as

x1 tanu0 − x2 = 0. (4.6)

This equation determines a plane containing the hyperbolic line A3A4. The coordinates
(tanu0 : −1 : 0 : 0) of this plane satisfy the second condition from (2.5). Therefore, the vw
coordinate surfaces in C1 are hyperbolic planes. They form a pencil with an axis which is
polar with respect to the absolute to the axis of the system C1.

Via the �rst three formulae from (4.3) we �nd the equation of the coordinate surface
v = v0 = const. in the system C1 as

x2
1 + x2

2 − x2
3 cot2 v0 = 0. (4.7)
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Equation (4.7) determines a cone with vertex A4 and axis A3A4. This cone crosses the base
A1A2A3 of the system C1 along a circular curve with centre A3. Hence, the uw coordinate
surfaces in C1 are circular cones with the vertex at the system pole and an axis which is polar
with respect to the absolute to the system axis.

Formulae (4.3) with w = w0 = const. yield

x2
1 + x2

2 + x2
3 − x2

4 coth2w0 = 0. (4.8)

Equation (4.8) has the form of Eq. (2.6) and determines the hypersphere with centre A4 and
height ρ|w0|. Consequently, the uv coordinate surfaces in C1 are hyperspheres centered at the
system pole.

5. The calculation of the bodies' volumes in the space Ĥ3

5.1. The volume of a monopolar tetrahedron

5.1.1. The notion of a monopolar tetrahedron

A tetrahedron having two opposite edges on mutually polar lines relative to the absolute γ
of the space Ĥ3 is called monopolar [27]. The opposite edges of a monopolar tetrahedron on
the mutually polar lines relative to the absolute are called the base edges of the tetrahedron.
Let us prove that base edges of a monopolar tetrahedron are non-parabolic.

Let ã and b̃ be the base edges of a monopolar tetrahedron F . Assume that ã ⊂ a0 and
b̃ ⊂ b0, where the lines a0 and b0 are mutually polar with respect to γ. Denote the absolute
polarity of the space H

3
by ξ. Let us assume that, for example, the line a0 is parabolic with

the absolute point Z. The image ξ(Z) of the point Z under the transformation ξ is a co-
Euclidean plane. Since Z ∈ a0 ⊂ ξ(Z) and ξ(a0) = b0, the line b0 belongs to the plane ξ(Z),
too. Then the edges ã and b̃ lie in the same co-Euclidean plane. But these edges are opposite
in the tetrahedron F . These two facts contradict each other. Consequently, our assumption
is incorrect, and the edges ã and b̃ are non-parabolic.

Two non-parabolic lines which are mutually polar with respect to the absolute of the
space H

3
belong to di�erent types. The base edge of a monopolar tetrahedron is called

elliptic (hyperbolic) if it belongs to an elliptic (hyperbolic) line.
The elliptic base edge of a monopolar tetrahedron lies completely in the space Ĥ3. It

is likely that therefore the monopolar tetrahedrons have not been studied in detail at the
research of �nite bodies and some in�nite polyhedra in the Lobachevski�� space Λ3. In the
Lobachevski�� geometry the simplest polyhedra are presented by orthoschemes.

A tetrahedron P1P2P3P4 is called an orthoscheme or, in other terms, a biorthogonal tetra-
hedron if under the corresponding designation of its vertices the conditions P1P2 ⊥ P2P3P4

and P1P2P3 ⊥ P3P4 hold (see [6, 7, 34]). Under these conditions the vertices P1 and P4 are
called principal vertices of P1P2P3P4.

Let us compare the notions of a monopolar tetrahedron and an orthoscheme: Consider a
monopolar tetrahedron ABCD with edges AB and CD on the mutually polar lines relative to
the absolute γ. According to the de�nitions from Section 2.1, the tetrahedron ABCD satis�es
the following conditions: AB ⊥ BCD, CD ⊥ ABC. Under these conditions the tetrahedron
ABCD is an orthoscheme. Thus, each monopolar tetrahedron is an orthoscheme.

Now consider the nonplanar quadrilateral A1A2A3A4 of a canonical frame R∗ of the �rst
type. Let B be a point on the line A2A3, where B 6= A2, B 6= A3, and let C be a point on
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the line A3A4, where C 6= A3, C 6= A4. Since the point A1 is the absolute pole of the plane
A2A3A4, the line A1B is orthogonal to the plane BA3C. Since the point A4 is the absolute
pole of the plane A1A2A3, the line CA3 is orthogonal to the plane BA1A3. Consequently, the
tetrahedron A1BA3C is an orthoscheme. The lines A2A4, A1A4, and A1A2 are the respective
absolute polar lines of the lines A1A3, BA3, and CA3. Since BC 6= A2A4, A1C 6= A1A4,
and A1B 6= A1A2, the tetrahedron A1BA3C is not monopolar. Thus, there are orthoschemes

which are not monopolar tetrahedrons.

The following properties of a monopolar tetrahedron in the space Ĥ3 of curvature radius
ρ, ρ ∈ R+, are obtained directly from its de�nition and the de�nitions from Section 2.1. In
general, an orthoscheme has none of these properties (see [7]).

1. Any two vertices of a monopolar tetrahedron are its principal vertices.

2. Each face of a monopolar tetrahedron contains at least two right angles.

3. At least two planar angles at any vertex of a monopolar tetrahedron are right.

4. Each nonbasic edge of a monopolar tetrahedron equals half of the line containing this
edge. Therefore, the lenght of the elliptic (hyperbolic) nonbasic edge is equal to πρ/2
(iπρ/2).

5. The elliptic (hyperbolic) base edge of a monopolar tetrahedron is the common perpen-
dicular of the planes of its faces through its hyperbolic (elliptic) edge. Owing to this,
we �nd the equalities a = ρÂ and b = ρB̂, where the number Â (B̂) is the measure
of an interior dihedron at the hyperbolic (elliptic) base edge, and the number a (b) is
the lenght of the elliptic (hyperbolic) base edge of a monopolar tetrahedron (see [16,
Subsection 3.6], where the linear measure of a dihedron of the space Ĥ3 is considered).

6. The interior dihedron at each nonbasic edge of a monopolar tetrahedron is right.

Note that the introduction of the notion of an interior dihedron at the edge of a tetrahedron is
a painstaking task in the space Ĥ3 geometry (see, for instance, [22], where the de�nition of an
interior angle for a polygon of the plane Ĥ3 is given). Therefore we present here only assertions
5 and 6, without the introduction of rigorous de�nitions and specifying the dihedrons' types.

5.1.2. The classi�cation of monopolar tetrahedrons

We classify monopolar tetrahedrons of the space Ĥ3, considering all possibilities for the types
of their faces and the type of the hyperbolic base edge.

Let F be a monopolar tetrahedron of the space Ĥ3. Two faces of the tetrahedron F at
the hyperbolic base edge are congruent and lie in hyperbolic planes forming a semispace (see
[16]). The face planes through the elliptic base edge can be of any type. Hence, for monopolar
tetrahedrons there are six sets of the face types. These sets are as follows: EEHH , EHHH ,
HHHH , ECHH , HCHH , CCHH . Denoting the face type, we use the symbols E, H or C if
the type is elliptic, hyperbolic or co-Euclidean, respectively (see [15, 16]).

Let us consider all possibilities for each set, depending on the type of the hyperbolic base
edge of the tetrahedron F . We accompany the description by Figure 1b, assuming that the
points A, B, C, D, and K lie in the space Ĥ3, the points N and P belong to the absolute γ
while the points L and A4 lie in the space Λ3.

1. If the tetrahedron F has the set EEHH , then its hyperbolic base edge can be a segment
of the space Ĥ3 or the sum of two beams of this space and a full line of the space
Λ3. In these cases we denote the respective types of the tetrahedron F by EEHH (I)
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or EEHH (II ). In Figure 1b the tetrahedrons ABCD and ABCK of respective types
EEHH (I) and EEHH (II ) are shown.

2. If the tetrahedron F has the set EHHH , then its hyperbolic base edge can be only a
quasisegment. Depending on the types of quasisegments (see [18, Chapter 4]), there
are three types of monopolar tetrahedrons with the set EHHH . We denote the types
by EHHH (h), EHHH (r) or EHHH (e) in the cases when the hyperbolic base edge is a
hyperbolic, right or elliptic quasisegment, respectively. In Figure 1b the tetrahedrons
ABCL, ABDL, and ABDA4 of respective types EHHH (h), EHHH (r), and EHHH (e)
are shown under the conditions L ⊥ D and A4 ⊥ C.
In the particular case, when the vertices on the elliptic base edge of a monopolar tetra-
hedron of type EHHH (r) are orthogonal, the tetrahedron's vertices form a nonplanar
quadrilateral which is autopolar of the �rst order with respect to the absolute.

3. If the tetrahedron F has the set HHHH , then its hyperbolic base edge can be a segment
of the space Λ3 or the sum of two beams of this space and a full line of the space Ĥ3.
In these cases we denote the respective types of the tetrahedron F by HHHH (I) or
HHHH (II ). In Figure 1b the tetrahedron ABLA4 of type HHHH (I) is shown.

4. If the tetrahedron F has the set ECHH , then its hyperbolic base edge can be a beam of
the space Ĥ3 or the sum of a beam of this space and a full line of the space Λ3. In these
cases we denote the respective types of the tetrahedron F by ECHH (I) or ECHH (II ).
In Figure 1b the tetrahedrons ABCN and ABCP of types ECHH (I) and ECHH (II ),
respectively, are shown.

5. If the tetrahedron F has the set HCHH , then its hyperbolic base edge can be a beam of
the space Λ3 or the sum of a beam of this space and a full line of the space Ĥ3. In these
cases we denote the respective types of the tetrahedron F by HCHH (I) or HCHH (II ).
In Figure 1b the tetrahedron ABLN of type HCHH (I) is shown.

6. If the tetrahedron F has the set CCHH , then its hyperbolic base edge can be a full line
of the space Ĥ3 or a full line of the space Λ3. In these cases we denote the respective
types of the tetrahedron F by CCHH (I) or CCHH (II ). In Figure 1b the tetrahedron
ABNP of type CCHH (II ) is shown.

Thus, there are 13 types of monopolar tetrahedrons in the space Ĥ3. The �nite monopolar
tetrahedrons of this space belong to the type EEHH (I). The Lobachevski�� space has no �nite
monopolar tetrahedrons.

5.1.3. The main theorem on the volume of a monopolar tetrahedron

Note that the length of the elliptic base edge of a monopolar tetrahedron in the space Ĥ3

is limited by the length πρ of an elliptic line, while the length of the hyperbolic base edge
can in�nitely increase by keeping real values or accept complex values. Based on properties
of a monopolar tetrahedron (see Subsection 5.1.1), it is determined exactly up to a motion
by its base edges. Hence, the volume of a monopolar tetrahedron is uniquely determined by
the lengths of these edges. The volume formula for a �nite monopolar tetrahedron has been
proved in [27] with the use of the coordinate Cli�ord system CeCl introduced for studying
Cli�ord surfaces of elliptic type. The system CeCl cannot be generalized for the research of
objects outside the space Ĥ3. However, the introduced coordinate system C1 (see Section 4)
allows us to prove the volume formula for any monopolar tetrahedron of the space Ĥ3.
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Theorem 1. In the space Ĥ3 of curvature radius ρ, ρ ∈ R+, the volume V of a monopolar

tetrahedron with the lengths a and b of the base edges is given by

V =
1

2
ρab. (5.1)

Proof. We carry out the proof in two stages. At �rst we prove Formula (5.1) for monopolar
tetrahedrons of the types EEHH (I), ECHH (I), and EHHH (h). Then, we prove this formula
for other types of monopolar tetrahedrons by the method of addition. Note that we can �nish
the proof of Formula (5.1) on the �rst stage, changing the values interval of the variable w
from (5.4) in accordance to the type of the monopolar tetrahedron.

1. Assume that a monopolar tetrahedron F with the elliptic base edge AB of length a, where
a ∈ (0, πρ), and the hyperbolic base edge CD of length b belongs to the types EEHH (I),
ECHH (I) or EHHH (h). For the number b there are three possibilities: b ∈ R+ if F belongs
to the type EEHH (I), b = ∞ if F belongs to the type ECHH (I), and b = iπ/2 + b∗, where
b∗ ∈ R+, if F belongs to the type EHHH (h). Let us agree that in any considered case the
plane ABC is elliptic.

Choose the canonical frame R∗ = {A,A2, C, A4, E} of the �rst type, where the point A2

(A4) lies on the line AB (CD) and A2 ⊥ A (A4 ⊥ C) (see Figure 1b). Assume that the unit
point E of the frame R∗ satis�es the following requirements:
(i) the point E lies in three co-Euclidean planes each of which contains one of the lines AB,
A2C or AC;
(ii) for the point E12, where E12 = CE4∩AB and E4 = A4E∩ABC, the following conditions
hold: (BE12AA2) ≥ 0 if a ∈ (0, πρ/2], (BE12AA2) < 0 if a ∈ (πρ/2, πρ);
(iii) for the point E34, where E34 = A2E1 ∩ A3A4 and E1 = AE ∩ A2CD, the inequality
(DE34CA4) > 0 holds.
Attach the coordinate system C1 to the frame R∗. Assume that every point M of the domain
bounded by the tetrahedron F has the coordinates (u, v, w) from the numerical domain F .
Under the conditions (i) � (iii) the proper coordinates (x̄p) of the point M are given in (4.3),
where u ∈ [0, a/ρ] and v ∈ [0, π/2], in the frame R∗. The hyperbolic coordinate w runs
through values from zero in the plane ABC to w0 in the plane ABD. To express the value w0

in terms of the lengths a and b of the base edges of the tetrahedron F , we �nd the equation
of the plane ABD.

Since the point D lies on the line A3A4, it has the coordinates (0 : 0 : 1 : d), d ∈ R, in the
frame R∗. Moreover, the points A and B satisfy the following conditions: A = A1(1 : 0 : 0 : 0)
and B ∈ A1A2. Therefore, the plane ABD is given by the equation

dx̄3 − x̄4 = 0. (5.2)

Writing down Eq. (5.2) in the coordinates of the system C1 via Formulae (4.3), we obtain
tanhw = d sin v. This equation of the plane ABD yields the equality w0 = tanh−1(d sin v),
where tanh−1(x) is the inverse hyperbolic tangent function.

Writing down the inequality from (iii) in the coordinates of the points D(0 : 0 : 1 : d),
E34(0 : 0 : 1 : 1), C(0 : 0 : 1 : 0), and A4(0 : 0 : 0 : 1), we �nd (DE34CA4) = d > 0. Thus,
under the condition (iii) the inequality d > 0 holds. Let us re�ne the valuation of d, using
conditions from (2.5) for the coordinates (0 : 0 : d : −1) of the plane ABD.

When F is a tetrahedron of types EEHH (I), ECHH (I) or EHHH , the plane ABD is
elliptic, co-Euclidean or hyperbolic, respectively. Then we have d < 1, d = 1 or d > 1,
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respectively. By Formula (2.2) we obtain

cosh
|CD|
ρ

= cosh
b

ρ
=

1√
1− d2

. (5.3)

Since d > 0, the expression (5.3) implies d = tanh
b

ρ
. Note that d = coth

b∗

ρ
> 1 in the case

when b = iπ/2 + b∗, b∗ ∈ R+. Thus, the domain F can be given as follows:

u ∈
[
0,
a

ρ

]
, v ∈

[
0,
π

2

]
, w ∈ [0, w0], where w0 = tanh−1(d sin v), d = tanh

b

ρ
. (5.4)

Using conditions (5.4) for the domain F , we calculate the volume V of the tetrahedron F
via the second formula in (4.5) by means of WolframAlpha:

V (F ) = ρ3

∫∫
F

∫
cos v cosh2w du dv dw = ρ3

∫ a
ρ

0

du

∫ π
2

0

cos v dv

∫ w0

0

cosh2w dw

=
ρ3

2

∫ a
ρ

0

du

∫ π
2

0

(w0 + sinhw0 coshw0) cos v dv

=
ρ3

2

∫ a
ρ

0

du

∫ π
2

0

cos v [tanh−1(d sin v) + sinh(tanh−1(d sin v))

× cosh(tanh−1(d sin v))] dv =
ρ3

2
tanh−1

(
tanh

b

ρ

)∫ a
ρ

0

du =
ρab

2
.

So, in the considered cases Formula (5.1) is proved.
Note that the volume of a monopolar tetrahedron of type EEHH (I) is a real positive

number. If a monopolar tetrahedron belongs to the types ECHH (I) or EHHH (h), then its
respective volume is in�nite or is a complex number with a positive real part.

2. Now we consider all other possibilities for the types of a monopolar tetrahedron. In our
reasonings we use the additivity property for the bodies' volumes and the lengths of objects
on a hyperbolic line (see [18, Subsections 4.4.2, 4.4.3]). We still denote the length of the
elliptic base edge AB of a monopolar tetrahedron by a.

2.1. Assume that the monopolar tetrahedron F ∗ = ABCC∗ belongs to the type EHHH (r).
In this case the conditions C ⊥ C∗ and thereby b = |CC∗| = iπρ/2 hold. Assume that
an arbitrary point X from the space Λ3 lies on the hyperbolic base edge CC∗ of the tetra-
hedron F ∗. Then the quasisegment CX, which fully lies in the edge CC∗, is a hyperbolic
quasisegment. Hence, |CX| = iπρ/2 + b∗, where b∗ ∈ R+. Consider a monopolar tetrahedron
F = ABCX of type EHHH (h) with the hyperbolic base edge CX. For tetrahedrons of this
type Formula (5.1) has been proved at stage 1. Via this formula we �nd

V (F ) =
ρa|CX|

2
=
ρa

2

(
iπρ

2
+ b∗

)
.

When the point X tends to the point C∗, the tetrahedron F tends to the tetrahedron F ∗.
Under this condition the number b∗ vanishes. Consequently,

V (F ∗) = lim
b∗→0

V (F ) = lim
b∗→0

(
ρa

2

(
iπρ

2
+ b∗

))
=
ρab

2
.
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Thus, Formula (5.1) holds for monopolar tetrahedrons of type EHHH (r).

2.2. Assume that a monopolar tetrahedron F = ABA4L with the hyperbolic base edge A4L
belongs to the type HHHH (I) (see Figure 1b). In this case the edge A4L is a segment of
the space Λ3 and |A4L| = −l∗, where l∗ ∈ R+. Let C be the point on the line A4L which
is orthogonal to the point A4. Since for the right quasisegment A4C and the hyperbolic
quasisegment LC we have |A4C| − |LC| = |A4L| = −l∗, the equality |LC| = iπρ/2 + l∗ holds.
Consider the monopolar tetrahedrons F1 = ABA4C of type EHHH(r) and F2 = ABLC
of type EHHH (h). For the monopolar tetrahedrons of such types Formula (5.1) is proved.
Therefore, via the equality V (F ) = V (F1)− V (F2) we obtain

V (F ) =
ρa|A4C|

2
− ρa|LC|

2
=
ρa

2

(
iπρ

2
−
(
iπρ

2
+ l∗

))
=
−ρal∗

2
=
ρa|A4L|

2
.

Thus, Formula (5.1) is proved for monopolar tetrahedrons of type HHHH (I).

Remark. Before continuing the proof of Theorem 1, let us discuss an interesting result. A
monopolar tetrahedron of type HHHH(I) has two vertices in the space Ĥ3 and two vertices
in the space Λ3. Such a tetrahedron is in�nite, but has a �nite negative volume. This fact
gives us new ideas about bodies of the space H3. Compare, for example, with the following
description of a �nite orthoscheme in [6, p. 180]: �Now we extend the class of orthoschemes

by further allowing one or both of the principal vertices to lie beyond in�nity, i.e., outside the

absolute quadric. In this way we obtain polyhedra of in�nite volume, . . . �.

2.3. When the length of the hyperbolic base edge of a monopolar tetrahedron of type
HHHH (I) tends to in�nity, having negative values, the volume of this tetrahedron tends
to in�nity, too. This proves Formula (5.1) for a monopolar tetrahedron of type HCHH (I).
For the monopolar tetrahedrons of types HCHH (II ), CCHH (I), CCHH (II ), and ECHH (II )
we can prove Formula (5.1) in the same way.

2.4. Assume that the monopolar tetrahedron F = ABCD with the hyperbolic base edge CD,
where C ∈ Ĥ3, belongs to the type EHHH (e). Let C∗ be the point on the line CD which is
orthogonal to the point C. Then the tetrahedron F is the sum of the monopolar tetrahedrons
ABDC∗ of type HHHH (I) and ABCC∗ of type EHHH (r). Using Formula (5.1) for these
tetrahedrons, we prove this formula for F and thereby for each monopolar tetrahedron of type
EHHH (e).
When the tetrahedron F belongs to the types EEHH (II ) or HHHH (II ), we similarly divide it
into two monopolar tetrahedrons ABCC∗ of type EHHH (r) and ABDC∗ of types EHHH (e)
or EHHH (h), respectively. Using Formula (5.1) for these tetrahedrons, we prove this formula
for F and thereby for each monopolar tetrahedron of types EEHH (II ) or HHHH (II ). This
completes the proof of Theorem 1.

5.1.4. Corollary of the main theorem

Theorem 2. In the space Ĥ3 of curvature radius ρ, ρ ∈ R+, the volume V of a monopolar

tetrahedron can be expressed by the formulae

V =
1

2
ρ3ÂB̂, V =

1

2
aSb, V =

1

2
bSa, (5.5)

where Â and B̂ are the measures of the dihedrons at the base edges, a (b) is the length of

the elliptic (hyperbolic) base edge, and Sa (Sb) is the area of the elliptic (hyperbolic) face

containing the elliptic (hyperbolic) base edge of the tetrahedron.
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Proof. Assume that the numbers Â and B̂ are the measures of the dihedrons at the base
edges with the respective lengths b and a in a monopolar tetrahedron F of the space Ĥ3.
By de�nition of the dihedron measure (see [16]), we have a = ρÂ and b = ρB̂. From these
equalities via Formula (5.1) we get the �rst formula of the theorem.

In the hyperbolic plane Ĥ of curvature radius ρ, ρ ∈ R+, the following equalities hold for
the area S of a twice rectangular triangle with the length b of the hyperbolic base and the
measure B of the opposite angle (see [23, Theorem 3.1], [25, Theorem 4])

S = bρ, S = Bρ2. (5.6)

Using the parametrization (4.3) with w = 0, we can prove similar classical formulae for the
area S of a twice rectangular triangle in the elliptic plane of the curvature radius ρ (see, for
instance, [29, Chapter 2]). Applying these formulae and Formulae (5.1) and (5.6), we �nd the
two last formulae from (5.5). Thus, the theorem is proved.

5.2. The volume of the extended hyperbolic space H3

Let points A1, A2, A3, and A4 be the vertices of the canonical frame R∗ of the �rst type in the
space H3. Consider the tetrahedron F = A1A2A3A4 of type EHHH (r) with the base edges
A1A2 and A3A4. Since |A1A2| = πρ/2 and |A3A4| = iπρ/2, we obtain by Formula (5.1)

V (F ) =
iπ2ρ3

8
.

The faces planes of the tetrahedron F divide the space H3 into eight congruent tetrahedrons.
Hence, the volume of the space H3 is equal to iπ2ρ3. When we calculate the space H3 volume
by means of Lobachevski�� geometry, we �nd the number −iπ2ρ3 (see, for instance, [29, Section
3.3.2]). Thus, the equality VΛ3(H3) = −VĤ3(H3) holds. This result is fully in line with the
volume de�nitions accepted for the spaces Λ3 and Ĥ3 (see Formula (3.10)).

5.3. Volumes of the bodies bounded by hyperspheres

Consider an arbitrary elliptic plane α and its pole A relative to the absolute surface γ of the
space H3. Let ς be a closed two-sided curve in the plane α and let ς0 be the domain bounded
by ς in the plane α. Assume that the domain ς0 is homeomorphic to the interior domain with
respect to an oval curve. The plane α divides the interior domain of the cone with the vertex
A and the base curve ς into two components. The closings of these components are called
adjacent orthogonal e-cones with the vertex A and the polar base ς0. The symbol e indicates
the elliptic type of the base plane α.

Let eC be an orthogonal e-cone with vertex A and a polar base ς0 in the plane α. Each line
passing through the point A is orthogonal to the plane α. In the space Ĥ3 the hypersphere
ω with centre A divides the e-cone eC into two components. The component, which contains
the polar base ς0, is called the hyperspherical keg of the e-cone eC. Denote it by hK. The
second component is called the hyperspherical sector of the e-cone eC. Denote it by hS. This
component consists of two parts. One of them belongs to the space Ĥ3 while the second part
belongs to the space Λ3. The height (radius) of the hypersphere ω is called the height (radius)
of the hyperspherical keg hK (hyperspherical sector hS). If the polar base ς0 is a circle, then
the e-cone, the hyperspherical keg, and the hyperspherical sector are called circular. In this
case denote them by eCo, hKo, and hSo, respectively.
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To calculate the volumes of the de�ned bodies, we choose a canonical frame R∗ =
{A1, A2, A3, A,E} of the �rst type. In this frame the plane A1A2A3 coincides with the base
plane α of the e-cone eC. We attach the orthogonal coordinate system C1 to the frame R∗.
In the system C1 the coordinate pair (u, v) belongs to the domain ς which determines the
polar base ς0 of eC. The area S of the domain ς0 can be expressed by the formula

S = ρ2

∫∫
ς

cos v du dv (5.7)

which can be obtained by analogy with Formula (32) from [25] via Formulae (4.3) with w = 0.
Let h, h ∈ R+, be the height of the hypersphere ω. Then for the body Φ the hyperbolic

coordinate w of the system C1 accepts the following values:
1) w ∈ [0, h/ρ] if Φ is the hyperspherical keg hK;

2) w ∈ [h/ρ, iπ/2] if Φ is the hyperspherical sector hS of radius r = iπρ/2− h;
3) w ∈ [0, iπ/2] if Φ is the e-cone eC.

Therefore, we obtain for the volumes of the bodies hK, hS, and eC:

V (hK) = ρ3

∫∫
Φ

∫
cos v cosh2w du dv dw = ρS

∫ h
ρ

0

cosh2w dw

=
ρS

2

(
h

ρ
+ sinh

h

ρ
cosh

h

ρ

)
=
ρS

4

(
2h

ρ
+ sinh

2h

ρ

)
,

V (hS) = ρ3

∫∫
Φ

∫
cos v cosh2w du dv dw = ρS

∫ iπ
2

h
ρ

cosh2w dw

=
ρS

2

(
i
π

2
+ sinh

iπ

2
cosh

iπ

2
− h

ρ
− sinh

h

ρ
cosh

h

ρ

)
=
ρS

4

(
2r

ρ
− sinh

2r

ρ

)
,

V (eC) = ρ3

∫∫
Φ

∫
cos v cosh2w du dv dw = ρS

∫ iπ
2

0

cosh2w dw =
iπρS

4
.

Based on the obtained results, let us formulate the following theorem.

Theorem 3. In the space Ĥ3 of curvature radius ρ, ρ ∈ R+, the following formulae hold for

the respective volumes V (hK), V (hS), and V (eC) of a hyperspherical keg hK, a hyperspherical

sector hS and an orthogonal e-cone eC:

V (hK) =
ρS

4

(
2h

ρ
+ sinh

2h

ρ

)
, V (hS) =

ρS

4

(
2r

ρ
− sinh

2r

ρ

)
, V (eC) =

iπρS

4
, (5.8)

where h (r) is the height (radius) of hK (hS) and S is the area of the polar base of the body.

The third formula of (5.8) determines, in particular, the volume of any in�nite pyramid
of the space Ĥ3 with the ideal vertex which is orthogonal to the base.

In the elliptic plane the area of the circle of radius ro is equal to 4πρ2 sin2(ro/2ρ) (see, for
instance, the �rst formula from (2.64) in [29]). Hence, the volumes of circular bodies can be
expressed by the formulae

V (hKo) = πρ3 sin2 ro
2ρ

(
2h

ρ
+ sinh

2h

ρ

)
,

V (hSo) = πρ3 sin2 ro
2ρ

(
2r

ρ
− sinh

2r

ρ

)
, V (eCo) = iπ2ρ3 sin2 ro

2ρ
,

(5.9)
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where h (r) is the height (radius) of hKo (hSo) and ro is the base radius of the circular body.
Via Formulae (5.9), we �nd the following volumes formulae for sectors hKo

s , hS
o
s , and eC

o
s

of the respective circular bodies hKo, hSo, and eCo with the angle α of the base sector:

V (hKo
s ) =

αρ3

2
sin2 ro

2ρ

(
2h

ρ
+ sinh

2h

ρ

)
,

V (hSos ) =
αρ3

2
sin2 ro

2ρ

(
2r

ρ
− sinh

2r

ρ

)
, V (eCo

s ) =
iαπρ3

2
sin2 ro

2ρ
.

Assume that the polar base ς0 of a hyperspherical keg hK1 is the triangle A1A2A3, where
A1, A2, and A3 are the vertices from the frame R∗. Then we have S(ς0) = πρ2/2. In this
case, according to the �rst formula from (5.8), we obtain for the volume V (hK1)

V
(
hK1

)
=
πρ3

8

(
2h

ρ
+ sinh

2h

ρ

)
. (5.10)

Eight hyperspherical kegs, each of which is congruent to the keg hK1, form the exterior
domain ωext of the space Ĥ3 relative to the hypersphere ω. Via Formula (5.10) the volume of
the Möbius body ωext with boundary ω can be expressed by the formula

V (ωext) = πρ3

(
2h

ρ
+ sinh

2h

ρ

)
.

The volume V (ωext) is a real positive number while the volume V (ωint) of the interior do-
main ωint of the space H3 with respect to the hypersphere ω, that is, the volume of the full
hypersphere ω, is a complex number. Indeed, the third formula from (5.8) yields

V (ωint) = πρ3

(
2r

ρ
− sinh

2r

ρ

)
, (5.11)

where the complex number r = iπρ/2− h, h ∈ R+, is the radius of the hypersphere ω.
After the coordination via Formula (3.10), Formula (5.11) coincides with the known for-

mula of the sphere volume in Lobachevski�� geometry (see, for instance, the second formula
from (3.83) in [29]).
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