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Abstract. We revisit the classical theorem stating that every non-a�ne homog-
raphy h : E2 → E2 de�ned on the extended Euclidean plane can be written as the
composition of an isometry with a perspective collineation. We show there are
exactly four such decompositions, such that the isometry is orientation preserving
or reversing, and the perspective collineation has positive or negative cross ratio.
This decomposition gives us a natural way to describe a cross-ratio of h itself, and
also to describe a measure we call anamorphic distance distortion at points in E2;
we show this distortion is invariant along circles in the image space. Applications
to analyzing perspective art include location of the camera in the domain plane
and interpretation of anamorphic art as a function of viewing distance.
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1. Introduction

A planar homography (sometimes also called a projective collineation) is a function that takes
points to points and lines to lines. Two standard examples of homographies include a�ne
transformations and perspective collineations; these two examples are, in fact, the only ex-
amples, up to composition with isometry.

A classical result of projective geometry states that every non-a�ne homography is the
composition of an isometry with a perspective collineation. It follows that there are many
aspects of this decomposition that are uniquely determined: each non-a�ne homography
comes with a unique principal point, a unique base point, a unique principal distance, and
a unique base distance. Moreover, we show that the homography can be decomposed as an
isometry with a perspective collineation in exactly four ways (see for example Figure 8), such
that the isometry is orientation preserving or reversing, and the perspective collineation has
positive or negative cross ratio. (In this sense, we can decompose the homography uniquely
as, say, an orientation preserving isometry composed with a positive-cross-ratio perspective
collineation).
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We give applications of this theorem to perspective art and photographic images. For
example, the principal point and base point and the associated distances correspond to the
location of the artist, both in relation to the scene being portrayed, and also in relation to the
canvas. The question of locating the camera for a given photographic image is a common one
(see for example references [3],[5], [20], and [23]); we describe a geometric, ruler-and-compass
construction in the ground plane (that is, the domain) for locating the camera. In addition, we
demonstrate that, for every non-a�ne homography, we can compute the anamorphic distance
distortion at various points in the plane; this measurement is closely related to standard
perspective art notions of anamorphism.

Here is an overview of the paper. In Section 2, we present de�nitions that give us a
geometric structure for analyzing homographies. In Section 3, we use the underlying structure
of the homography to give a geometric construction for locating the camera.

Section 4 presents our main theorem: every same-plane non-a�ne homography can be
decomposed as a perspective collineation composed with an isometry in exactly four ways. We
use �unfolding� arguments like those of Brook Taylor to motivate a notion of cross-ratio for
these homographies that corresponds in a natural way to the cross-ratios of the corresponding
perspective collineations.

Section 5 de�nes the anamorphic distance distortion measure, which depends on the dis-
tance between the principal vanishing point and image of the point; we conclude with two
examples from perspective art that further motivate the descriptiveness of this measure.

2. Principal point, line, and distance, together with base point, line,

and distance

Properties of the principal and base lines

We will work in E3, extended Euclidean space. We choose planes E2
b ,E2

v ⊂ E3 (possibly
identical), with the symbols b and v chosen to evoke �base plane� and �vertical picture plane�
(and for some objects in this latter plane, �vanishing points�).

The following theorem can be found in various guises in multiple sources (see, for example,
[2], [7], [8], [10], [16], and [21]), often stated as �every quadrangle is in perspective with a
square.�

Theorem 1. Given a non-a�ne homography h : E2
b → E2

v, we can write h = i ◦ p as the
composition of a perspective collineation p : E2

b → E2
v and an isometry i : E2

v → E2
v.

Our goal is to apply this theorem to interpreting images, using both same-plane and
two-plane interpretations of perspective collineations. We discuss the former interpretation in
Section 4, but our main focus is the standard form, illustrated in Figure 1, in which we consider
E2
b as the horizontal ground plane and E2

v as a vertical canvas; the line v is the horizon, meaning
that each collection of parallel lines in E2

b �converges� (or rather, intersects) at a vanishing
point on v. Figure 1 shows a perspective collineation and not a general homography; but from
Theorem 1 it follows that every non-a�ne homography can be interpreted as a perspective
mapping of this form followed by some isometric transformation of the picture plane.

Accordingly, we impose a structure on our planes using the following important lines:

• the base line b = h−1(iv), the preimage in E2
b of the ideal line iv ∈ E2

v, and

• the vanishing line v = h(ib), the image in E2
v of the ideal line ib ∈ E2

b .
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Figure 1: A perspective art interpretation of a homography mapping the ground plane
to a vertical picture plane, including other points and lines introduced in this section.

We will call the lines perpendicular to the base line b depth lines. Their images intersect
at a common point that we call V ∈ v, the principal point of the homography h. We designate
by b⊥ the unique line perpendicular to b whose image v⊥ = h(b⊥) is perpendicular to v and
passing through V . The intersection B = b∩b⊥ we will call the base point of the homography.

The base line and vanishing line play important roles in standard correspondences between
lines in E2

b and their images in E2
v. In particular, we will often refer to the correspondences

listed in the following lemma (see Figure 2).

Lemma 2. Let h : E2
b → E2

v be a non-a�ne homography with base line b, base point B,
principal line v, and principal point V . Suppose `, k ∈ E2

b are both ordinary lines. Then
a) ` ‖ k ⇐⇒ (h(`) ∩ h(k)) ∈ v;
b) ` ‖ b ⇐⇒ h(`) ‖ v;
c) ` ⊥ b ⇐⇒ h(`) 3 V ; and
d) ` 3 B ⇐⇒ h(`) ⊥ v.

A perspective art interpretation of statements (b) and (c) form the basis of one-point
perspective drawings: statement (b) tells us that lines on the ground that are parallel to the
vertical canvas have images on the canvas that are parallel to the horizon, and statement (c)
says that depth lines appear to converge to the vanishing point V . Statement (d) tells us the
not-entirely-intuitive fact that lines that pass directly under the artist's feet have images that
are vertical line segments on the canvas (see images of the two roads in Figure 3).

Points and lines of invariance

Let us assume an orientation on each of the lines b, b⊥, v and v⊥, so that we can describe
signed distances | ∗ |B and | ∗ |V along these lines (that is, we have |VµV |V = −|V Vµ|V, etc.).

Without loss of generality, we impose an orientation on the respective planes such that a
counter-clockwise 90◦ rotation brings the positive orientation of b to that of b⊥, and similarly
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Figure 2: (left) Lines parallel to the base line b have images parallel to the principal line
v; lines perpendicular to b have images that pass through the principal point V . (right)
Lines that pass through the base point B have images perpendicular to the principal
line v.

Figure 3: Gega Agulashvili's homage to a question that begins, �An artist stands at
the intersection of two roads�. The images of the center line of each road is a vertical
line segment, perpendicular to the horizon, illustrating statement (d) of Lemma 2.

with v and v⊥. Thus, we have introduced right-handed cartesian coordinate frames. Note that
observing the base plane or picture plane from the opposite direction reverses the orientation.

A consequence of Theorem 1 tells us the homography h has exactly two angle-preserving
points (see [8], [10], [16]). We can accordingly denote these points

O+ = h(A+), and O− = h(A−)

in such a way that h preserves angles and orientation at A+; consequently h preserves angles
and reverses orientation at A−. The de�nition does not assume or require that A+ and O+

are on the positive sides of their respective lines; note, however, that reversing the orientation
of both b and b⊥ leaves the resulting slope of lines in E2

b unchanged, and likewise for E2
v. We

will therefore assume in all that follows that we have chosen the orientations of the four main
lines so that the distances δb = |BA+|B and δv = |V O+|V are positive.

Similarly, Theorem 1 implies the homography h has exactly two distance-preserving lines;
we denote these by

o+ = h(a+) and o− = h(a−).
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in such a way that h : a+ → o+ preserves absolute distances and orientation; h : a− → o−
preserves absolute distances while reversing orientation.

Figure 1 illustrates the angle-preserving points in the particular instance in which the
homography is a perspective mapping via the center O and the axis o := o+ = a+. Note that
o ‖ b ‖ v, and that

δb = |BO|V = |BA+|B = |A−B|B = |o+v|V = |vo−|V (1)

and
δv = |V O|B = |V O+|V = |O−V |V = |a+b|B = |ba−|B. (2)

Equations 1 and 2 hold generally for homographies, as in Figure 4.

B
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O−

O+
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a+ o+
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v

v⊥

b

b⊥

δb
δv

δb
δv

X ′+

X ′

X
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Figure 4: The existence of distance-preserving lines for h. The points X, X+, X
′,

and X ′+ illustrate the proof of Theorem 6.

The proof of the following lemma is straightforward; we leave it to the reader.

Lemma 3. Let h : E2
b → E2

v be a non-a�ne homography with distances δb = |BA+|B and
δv = |V O+|V. Choose an ordinary line ` ⊂ E2

b . Then

1. slopeB(`) = µ if and only if the point Vµ = v ∩ h(`) satis�es |V Vµ|V = −δv/µ; and
2. slopeV(h(`)) = µ if and only if the point Bµ = b ∩ ` satis�es |BBµ|B = −δb/µ.
Suppose ` ‖ b, and let the distance |b`|B between these lines be given by the orientation of b⊥.
Then h(`) ‖ v, so the distance |vh(`)|V is likewise well de�ned, and moreover,

|b`|B · |vh(`)|V = δb · δv.
We conclude with a lovely geometric interpretation that describes the principal distance in

terms of images of perpendicular lines. In perspective art, this allows us to �see� the viewing
distance (principal distance) as a speci�c altitude of a semicircle bounded by two vanishing
points.

Corollary 4. Suppose ` and k are perpendicular ordinary lines in E2
b , with ideal points I`

and Ik. Then δv is the geometric mean of the distances |h(I`)V |V and |V h(Ik)|V.
Proof. See Figure 5. Suppose ` has slope µ; it follows that k has slope −1/µ. By Lemma 3
it follows that h(I`) = Vµ and h(Ik) = V−1/µ, so that√

|h(I`)V |V · |V h(Ik)|V =
√
|VµV |V · |V V−1/µ|V =

√(
−δv
µ

)
· (−δvµ) = δv.
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Vµ V− 1
µ

V
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δv =
√
|VµV |V · |V V−1/µ|V

v

Figure 5: Illustration of Corollary 4.

3. Construction of base point, base line, and base distance

The question �where was the artist?" is a standard question in perspective art, and is usually
determined by looking almost exclusively at the image (picture) plane. Here we provide
a geometric construction for locating the artist directly in the base (ground) plane. The
techniques avoid explicit computation, and can rely instead on straightedge-and-compass
constructions, which enable us to duplicate distances and also angles.

Figure 6 shows the beginning of a geometric construction. Imagine we have a set of lines,
such as train tracks (left), and their image (right). We may determine the principal point V
and a principal distance δv = |V O+|V in the standard way (see [1], [11], [12], etc).

In [14], Hartley and Silpa-Anan describe a technique for using of the angle-preserving
properties of O+ and O− (which they call conformal points of the homography) to determine
relative angles of lines in E2

b . We use their technique here to locate the base point B, as
follows (see Figure 6).

Choose points X1, X2 ∈ E2
b such that the line ` = X1X2 does not pass through B (that

is, the image X ′1X
′
2 is not perpendicular to the principal line v). In E2

v, draw lines x′1, x
′
2

through X ′1 and X ′2 perpendicular to the principal line v; by Lemma 2 those new lines must
necessarily be images of lines x1 and x2 that pass through B. The intersections V1 = x′1 ∩ v
and V2 = x′2 ∩ v tell us the angles that x1 and x2 make with ` = X1X2; that is, the angle
θ = ∠V2O+W is the same as the angle between x2 and `. Therefore, we can draw lines x1

and x2 through points X1 and X2 respectively. We thereby determine B = x1 ∩ x2.
Next we construct line b⊥ through B; we do so easily because the angle between b⊥ and

` is the same as the angle between v⊥ and WO+. We can accordingly construct the base line
b through B, perpendicular to b⊥.

From there, we can construct A+ and A−. To do this, we can use the Hartley/Silpa-
Anan construction again: for example, we could locate the intersection V3 = (X ′1O−) ∩ v,
and use the resulting angle ∠WO+V3 to construct a line through X1 that intersects b⊥ at A−.

We can interpret the distance δb = |A−B|B as something we might call a height factor.
That is, we imagine the artist is standing directly on top of B and places his or her eye at a
height of δb = |A−B|B. We can then construct the axis o for our perspective mapping as in
Figure 7. In this interpretation, the choice of placing the axis at a+ in E2

b and at o+ in E2
v

implies the artist is looking toward the train tracks through a window; if instead we placed
the axis at a− and o−, that would be like producing an image via a pin-hole camera.

We read the left side of Figure 7 as follows: an artist stands near the train tracks at point
B, facing A−, and places a canvas vertically upon the axis a+ that is a distance δv from B.
On the right, we see the vertical canvas, which intersects the ground line at the axis o+ that
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Figure 6: Constructing B and δb = |BA+|B, given an overhead view of train tracks and
their image, with the principal (vanishing) line v, principal point V , and the principal
distance δv = |V O+|V = |O−V |V.

lies a distance δb from the principal point V . As above, δv = |V O+|V = |ba+|B gives us the
distance from the artist to the canvas, and δb = |BA+|B = |o+v|V gives us the height of the
artist's eye above the ground.
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Figure 7: Constructing the axis for a perspective mapping or perspective collineation.

4. Isometries and folding

We are now ready to present our main theorem. In the remainder of the section, we will
use this theorem to explore the connection between two-plane perspective maps and same-
plane perspective collineations, and also to show that every homography comes with a natural
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measurement that is analogous to the cross-ratio of perspective collineations.

Theorem 5. Given a non-a�ne homography h : E2
b → E2

v, there are exactly four ways we
can write h as the composition of a perspective collineation p : E2

v → E2
v and an isometry

i : E2
b → E2

v.

Figure 8 illustrates the four decompositions for one such homography. It shows four same-
sized squares, each in perspective with the black/gray quadrangle h(S). The principal point
V that lies on the solid black vanishing/principal line is common to all four collineations.
There are two possible centers (O+ and O− ) and two possible axes (o+ and o−, equidistant
from the principal line v) for these collineations. Note that the blue squares are rotated
180 degrees about O+; likewise the yellow squares are rotated 180 degrees about O−. The
orientation of the yellow squares is reversed from that of the blue squares; indeed, they are
re�ections though respective axes of one another.

Proof. Let us choose orientations on E2
b and E2

v and de�ne points A+, A−, O+, and O− and
lines a+, a−, o+, and o− accordingly.

There are four ways we choose a pair of symbols �, ? from the set {+,−}. By Lemma 3,
for each of these four choices we can de�ne an isometry i�? : E2

b → E2
v such that i�?(A�) =

h(A�) = O� and i�?(X) = h(X) for all X ∈ a?. Note that, for each of these isometries, we
have i�?(b⊥) = v⊥, and so i�?(Ib⊥) = Iv⊥ .

h

V

O+ o−

o+

v

O−

same orientation,
negative cross-ratio

same orientation,
positive cross-ratio,

reverse orientation,
negative cross-ratio

reverse orientation,
positive cross-ratio S

Figure 8: The square S is mapped by four di�erent isometries to squares in perspective
with h(S).
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Figure 9: Folding a perspective map into two di�erent perspective collineations. While the
preimage plane is rotated about the axis o, the center O traces a circle with the axis v.

We claim that p�? := h ◦ i−1
�? is a perspective collineation with center O� and axis o?. Why is

this so? The function p�? �xes O� because

p�?(O�) = h ◦ i−1
�? (O�) = h(A�) = O�,

and similarly, p�? �xes every point on the line o?. It follows therefore that p�?(v⊥) = v⊥, and
that therefore

p�?(Iv⊥) = h ◦ i−1
�? (Iv⊥) = h(Ib⊥) = V.

By the Fundamental Theorem of Projective Geometry, which says that four points, no three
of which are collinear, determine a homography, it follows that p�? must be the perspective
collineation with center O�, axis o?, and with p�?(p∞) = v.

4.1. Homographies, perspective collineations, and folding

Theorem 5 allows us to describe a link between two-plane interpretations of homographies
as perspective mappings and the single-plane perspective collineations. We use a �folding�
analogy, described by many mathematical artists who have studied perspective mappings (see
Andersen's work on Brook Taylor's perspective mathematics [1], for example). In this
folding, we consider three planes, the �rst two of which we have seen before as in Figure 1: a
ground plane E2

b and a picture plane E2
v, which intersect along an axis o. In the description

below, we will assume o = o+ = a+, but the analysis works similarly for o = o− = a−. The
third plane, E2

O, is a plane containing the center O of the perspective mapping and the horizon
(principal line) v. This implies the third plane is parallel to E2

b .
To connect the two-plane model to a one-plane collineation, we rotate E2

b along the axis
o and E2

O along the principal vanishing line v into E2
v so that the former planes remain

parallel, as in Figure 9. If we rotate b⊥ �up� onto v⊥, then A+ rotates onto O+, and we get
a collineation with center O = A+ = O+ that can be described as in Malton's diagram
(Figure 10); we describe this construction in the next paragraph. If we rotate b⊥ �down�
(reversing orientation) onto v⊥, then the perspective collineation has center O = A− = O−.

In Figure 10 drawn byMalton in his 1775 book (�A compleat treatise . . . on the principles
of Dr. Brook Taylor Made Clear, by Various Moveable Schemes, and Diagrams, in the Most
Intelligent Manner� [18]), we see a typical perspective construction that divides the drawing
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Figure 10: Malton's diagrams of perspective constructions, after Taylor [18].

plane into three regions. The top region represents what we have called the plane E2
O folded

about the vanishing (principal) line; the point E in this �gure represents what we call O,
and the lines represent lines of sight to points on the vanishing line. The middle region
represents images in the plane E2

v. The bottom region represents objects from the base plane
E2
b . Theorem 5 notes we could have folded E2

O and E2
b in the other direction, but in this case

all three regions would fold on top of one another, making the diagram much harder to follow.
We draw a simpli�ed version of this phenomenon in Figure 11. Note that in both foldings,
the blue square and the purple quadrangle are in perspective from axis o− and from center
O+ or O−, and the construction methods Malton (etc) uses are equally valid, but in the O−
case, the diagram becomes much more confusing to follow.

4.2. Cross-ratios

In this section, we describe a generalization of the cross-ratio of a perspective collineation.
Suppose we have a perspective collineation p : E2

v → E2
v with axis o and center O; then for

every point X ∈ P , we can determine the points X ′ = p(X) and X? = o ∩ (XX ′). The
cross-ratio of p is de�ned by the cross-ratio of points:

〈O,X?;X,X
′〉 =

|OX|
|XX?|

∩ |X?X
′|

|X ′O|
.

It is well-known (see for example [15, 629�631]) that this ratio is independent both of the
choice of the point X and of the orientation | ∗ | on on the line XX ′. In the de�nition
and theorems that follow, we give an interpretation of the cross-ratio that comes from the
geometric structure illustrated in Figure 4.

De�nition. Given a non-a�ne homography h : E2
b → E2

v, we de�ne the oriented cross-ratio
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V
v
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Figure 11: On the left, we fold O up to O+; on the right, we fold O down to O−.

of h to be

|h|× =
|BA+|B
|Ba+|B

=
|V o+|V
|V O+|V

= − δb
δv
.

The next theorem describes two ways in which the de�nition above is a natural and
meaningful generalization of the usual cross-ratio.

Theorem 6. Given a non-a�ne homography h : E2
b → E2

v, choose orientations on E2
b and E2

v

so that we may de�ne the points A+, O+ (etc) and lines a+, o+ (etc).
a) If we decompose the homography as h = p�? ◦ i�? as in Theorem 5 above, then |h|× is

equal to the cross-ratio of p�? if i�? is orientation preserving (that is, if � = ?) and is the
opposite of the cross-ratio of p�? if i�? is orientation reversing.

b) Choose a point X ∈ E2
b , let X+ be the intersection of a+ with the line XA+, and let

X ′+ = h(X+) ∈ o+, as in Figure 4. Then

|h|× =
|A+X|B
|XX+|B

∩
|X ′+X ′|V
|X ′O+|V

.

Proof. (a) We compute the cross-ratio of p�? by choosing the point X = Iv⊥ . Note that
X ′ = p�?(Iv⊥) = V and X? = v⊥ ∩ o?, so

〈O�, X?;X,X
′〉 =

|O�Iv⊥ |
|Iv⊥X?|

∩ |X?V |
|V O�|

= (−1) ∩ |X?V |V
|V O�|V

= (−1) ∩ ?δb
�δv

=
?1

�1
∩ |h|×.

This proves part (a).

To prove part (b), we write h = p ◦ i = p++ ◦ i++. Using the fact that O+ = i(A+) and
X ′+ = i(X+), we get

|A+X|B
|XX+|B

∩
|X ′+X ′|V
|X ′O+|V

=
|O+i(X)|V
|i(X)X ′+|V

∩
|X ′+X ′|V
|X ′O+|V

= 〈O+, X
′
+; i(X), X ′〉.

Because X ′ = h(X) = p ◦ i(X), the expression gives us the cross-ratio of p, which by part
(a), is equal to |h|×.
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Remarks. Although the cross-ratio is generally thought of as �a ratio of ratios" or a �double
ratio�, the previous theorem implies there is a natural interpretation of the cross-ratio of a
homography as a simple ratio of two distances. In physical terms, the cross-ratio can be
interpreted as the height of the camera above the ground plane divided by the distance from
the camera to the vertical canvas.

5. Anamorphic distortion

In this section, we o�er an argument that traditional perspective, trompe-l'÷il, and anamor-
phic drawings�although they go by di�erent names�are not fundamentally di�erent mathe-
matically, but rather encompass similar techniques employed in di�erent regions of the image
plane. In particular, we argue that the anamorphic distortion of a homography at a point
X ∈ E2

b is proportional (in a sense we de�ne more explicitly below) to the distance between
the image h(X) and the principal point V .

Hartley and Zisserman, in describing projective cameras, give kind of a measure for
perspective distortion of a camera. They do this by analogy to a camera technique that
is known by various names including �dolly zoom� or �Hitchcock zoom�: they draw the
camera away from the canvas along the principal axis, but zoom in; they then compute the
resulting change in distance of the images. In our language, they let δv → ∞ while keeping
the axis constant (that is, keeping δb constant). They conclude [15, p. 169],

�From the expressions for x̃proj and x̃a�ne we can deduce

x̃a�ne − x̃proj = ∆
d0

(x̃proj − x̃0)

which shows the distance between the true perspective image position [x̃proj] and the

position [x̃a�ne] obtained using the a�ne camera approximation P∞ will be small
provided:
(i) The depth relief (∆) is small compared to the average depth d0, and

(ii) The distance of the point from the principal ray is small.�

However, the distance x̃a�ne − x̃proj ignores certain important geometric measures of dis-

tortion. We could argue, for instance, that in place of item (i) a better measure might use
the inverse of the distance to a point: a perspective image exaggerates objects that are very
close and blurs the distinctions between points that are far.

Let us look, instead, at a slightly modi�ed version of (ii), and examine the set of points
that in E2

b for which the distance of the image of the point to the principal ray [point] is small.
Indeed, points that get mapped to a circle of constant radius about V come from hyperbolas
in the base plane. Lemma 7 describes these hyperbolas explicitly.

Lemma 7. The preimage under h of Cρ(V ), a circle of radius ρδv centered at V , is a hyperbola

Hρ whose foci lie on b⊥ at distances ±δb
ρ

√
1 + ρ2 from B, and whose asymptotes pass through

B with slopes ±1/ρ. The hyperbola Hρ intersects b⊥ at distances ±δb/ρ from B.

Proof. See Figure 12. We draw the lines tangent to the circle that are parallel to v and v⊥.
By Lemma 3, the lines parallel to v⊥ have preimages containing B with slopes ±1/ρ; it is
evident that these lines are the asymptotes of the hyperbola. By the same lemma, the lines
parallel to v have preimages that are parallel to b at distances ±δb/ρ from B. These lines
therefore intersect the asymptotes at distances ±δb from b⊥.
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v⊥

v

b⊥

b

Hρ

Cρ

V

O+

Figure 12: (left) A hyperbola Hρ with axes passing through B with slopes ±1/ρ maps
under h to a circle of radius ρ. (right) Three images of cubes. The anamorphic distortion
of the tops and sides of the cubes increases with distance from the principal point V .

It follows that the foci of Hρ lie on b⊥ at distances

±

√(
δb
ρ

)2

+ δ2
b = ±δb

ρ

√
1 + ρ2

from B.

Now we return to the Hartley-Zisserman zoom in our setting. If we think (as earlier)
of E2

b as the ground plane and V as a vertical picture plane, then lines of sight from the center
O to points on this hyperbola Hρ all have slope ρ compared to the line OV . That is, if we
move the center O to in�nity, then the slope of each of these lines of sight changes by the
same magnitude�from ρ to 0.

This argument gives us a two-plane way to understand that anamorphic distortion, in
the sense of distortion of slope along lines of sight, is constant along circles centered at V ,
and that ρ itself seems to measure the distortion well. But there is a one-plane, distance
distortion, way to see this distortion even more clearly.

Let us consider a collection of cubes of various sizes drawn in one-point perspective;
Figure 12 (right) shows the images of three such cubes. Notice that the cube that is the
furthest from the artist has an image closest to the principal point V , and that the cube
that is closest to the artist, with an image furthest from V , seems to be stretched in a very
�un-cube-like� manner. Similarly, it is clear that the apparent distortion of the �middle� cube
seems to be greater than that of the �further� cube (with an image closer to V ), even though
it is closest to being at what Hartley-Zisserman might call �average depth�.

In contrast, Figure 13 shows three images of squares that we claim have equal anamorphic
distortion in a measurable sense. Each of these quadrangles has its perspective center lying
on the circle of of radius ρδv. We have further normalized the picture such that the squares
in E2

b are di�erent sizes, but the widths of the images in E2
v, measured across the perspective

centers, are identical (that is, those black bars have identical lengths, say Ω).
While the images of the depth lines change angles�so that the quadrangles have very

di�erent shapes�what is surprisingly constant about these shapes is the lengths of the gray
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V V−1V1

O+

ρδv

Figure 13: Images of squares whose perspective centers lie on the circle Cρ(V ). If the
lengths of the widths are constant, then the length of the depth lines (ringed here with
gray circles to make the lengths more visible) is likewise constant. See the proof of
Theorem 8.

depth lines, measured again through the perspective centers (see Figure 13). The following
de�nition and theorem make this relationship explicit.

De�nition. For a non-a�ne homography h : E2
b → E2

v , we de�ne the anamorphic distance
distortion, a.d.d.h(X), at a point X ∈ E2

b in the following way. Choose a square S ⊂ E2
b

satisfying
• X is the center point of S;
• the edges of S are parallel to b and b⊥;

• the line segment through X in S parallel to b has an image in E2
v of length Ω;

• the line segment through X in S parallel to b has an image in E2
v of length Γ.

Then the anamorphic distance distortion of h at X is de�ned as a.d.d.h(X) = limΩ→0 Γ/Ω.

Theorem 8. Let h : E2
b → E2

v be a non-a�ne homography as above. Suppose the point X ∈ E2
b

lies on the hyperbola Hρ whose image in E2
v is Cρ(V ), the circle of radius ρδv about V . Then

Γ =
4ρδ2

vΩ

4δ2
v − Ω2

.

Therefore, a.d.d.h(X) = ρ.

Proof. We prove a somewhat stronger version of the theorem, by demonstrating that the
depth-to-width ratio holds also for squares with one corner on the hyperbola. That is, we
break S into quarters and prove a similar result for each of the four quarters.

Consider a quarter-square of S, as in Figure 14 such that X lies on the edge closest to
b (that is, h(X) lies on of the edge farthest from v). The width of that edge is therefore
ω = Ω/2. Then we claim that the length γ of the other edge through X does not depend on
the location of X along the circle.

Why is this so? See Figure 14. By similar triangles, we have

ω

γ
=

δv
ρδv − γ

.

It follows that γ =
ρδvω

ω + δv
.
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ρδvV1 V−1V

ρδv
V1 V

ω
γ

ρδv − γ

Figure 14: (left) The circles are centered on the front left corner and pass through the
back left corner of the images of squares. The circles are all the same size; that is, the
length of the left edge of each image is invariant with location on the circle. (right) By
similar triangles, γ/ω = (ρ− γ)/1, so γ = ρω/(ω + 1).

Notice that as ω → 0 (that is, as we are drawing squares in�nitesimally small), we have

γ

ω
=

ρδv
ω + δv

→ ρ ;

that is, the anamorphic distortion of a square along the circle of radius ρδv about the primary
point is exactly ρ.
A similar argument yields the opposite quarter of the square has an image with one side

length ω and the other side of length γ′ =
ρδvω

δv − ω
. That gives us the length of the gray lines

as

Γ = γ + γ′ =
2ρδ2

vω

δ2
v − ω2

=
4ρδ2

vΩ

4δ2
v − Ω2

,

so that
Γ

Ω
=
γ + γ′

2ω
=

4ρδ2
v

4δ2
v − Ω2

→ ρ

as Ω → 0. In other words, ρ gives us a tangible measure of the change in shape (the
anamorphosis) at points along the circle of radius ρδv.

5.1. Two examples

We conclude with two examples that give applications of Theorem 8 to traditional perspec-
tive and anamorphic art. Figure 15, our �rst example, depicts two well-known perspective
drawings: the anamorphic 1546 painting King Edward VI by William Scrots (left) and the
1514 engraving St. Jerome in His Study by Albrecht Dürer. Although the Scrots painting
seems �distorted� and Dürer etching seems �realistic�, both pieces are excellent and largely
correct examples of perspective from a single viewpoint. To see the head of King Edward
undistorted (so that, for example, the ellipses appear to be circles), a viewer must stand to
the extreme right of, and fairly close to the plane of, the painting. The primary vanishing
point of Dürer's etching is also to the right, and the viewing distance is likewise known to
be uncomfortably close (see for example [19, p. 181] or [6]), yet the picture still looks �good�
seen from other locations. Why then does one image seem distorted and the other not?



80 A. Crannell et al.: An (Isometric) Perspective on Homographies

Figure 15: King Edward VI (from [22]) and St. Jerome in His Study (from [9]).

Figure 16: King Edward VI and St. Jerome in His Study, measured by ρ.

In Figure 16, we scale and translate the images to have the same primary distance δv and
the same primary vanishing point V ; observe that Scrots's anamorphic painting lies entirely
in a di�erent region of the plane E2

v than Dürer's more traditional engraving.
We can see the phenomenon again in a second example, which compares the skull from

Dürer's St. Jerome with the famous anamorphic skull from Hans Holbein the Younger's
The Ambassadors (see Figure 17). These images were painted almost contemporaneously (St.
Jerome in 1514 and The Ambassadors in 1533). Indeed Hart and Robson [13] note that
Dürer �frequently depicted a skull at the base of Christ on the cross in his woodcuts� and
that he was �an important in�uence on Holbein�. Their paper gives computer models for
rendering the undistorted skull, using the viewing angle 9.4◦. This viewing angle implies that
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Figure 17: (a) The skull from Dürer's St. Jerome; (b) Holbein's The Ambassadors with
a distorted skull; (c) Holbein's skull, seen from the extreme right edge of the painting.

Figure 18: Measuring height-to-width ratio in the undistorted and anamorphic skulls.

the distance from the principal point V to the center of the skull is approximately 6δv (that
is, ρ = 6.04). In contrast, Dürer's skull is relatively undistorted with a distance from the
principal point of approximately ρ ≈ 1.

The undistorted skull from Holbein's painting is nearly equal in height to width (see
Figure 18(a)). In the undistorted skull, the ratio of width to height is 90:85. In the anamorphic
version, however, those lines have images with ratio 130:20. That is, the anamorphic distance
distortion is approximately

130

20
· 85

90
≈ 6.14,

closely matching the Hart-Robson estimates for ρ.
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