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Abstra
t. New results are dis
ussed in terms of the Rupert property of polyhe-

dra, whi
h is about �nding a hole (a straight tunnel) in a solid through whi
h a


ongruent 
opy of the solid 
an pass. Re
ently it is proved in [7℄ that 8 of the 13

Ar
himedean solids have this property. In our paper we prove that the simplest

Ar
himedean solid, the trun
ated tetrahedron is also of Rupert property. More-

over, we prove general results on the Nieuwland 
onstant, a s
aling fa
tor between

the passing and the original solids if a larger 
opy 
an also pass through. We

also de�ne a generalised Nieuwland 
onstant for those solids not possessing this

property and prove that this 
onstant 
an be arbitrary small.
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1. Introdu
tion

More than 300 years ago Prin
e Rupert of Rhine with fellow mathemati
ian JohnWallis


onsidered and solved the problem of �nding a straight hole in a 
ube through whi
h a


ongruent 
ube 
an pass [5℄. Around 100 years later, Pieter Nieuwland proved that even a

larger 
ube 
an pass through, and the maximum s
ale of the passing 
ube has been found to

be

3
√
2

4
. In 1950 S
hrek published a detailed overview of the problem of Rupert and the

proof of Nieuwland [3℄. Now the Rupert problem is still in the forefront of resear
h with

relevant new results in re
ent years.

At �rst we de�ne the basi
 notions, based on [2℄.

De�nition 1. By a hole we mean the interse
tion of the given solid and a generalised 
ylinder,

where the interse
tion is entirely in the inner part of the solid, that is ea
h generator line

of the 
ylinder interse
ts the solid in a single line segment and generators 
annot even be

tangent lines of the surfa
e of the solid.
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De�nition 2. A solid is 
alled Rupert (or having Rupert property), if there exists a hole in

the solid in a way that a 
ongruent solid 
an pass through this hole.

De�nition 3. Suppose that the solid has Rupert property. If a larger 
opy of the solid 
an

also pass through a proper hole, than the ratio of the s
ale of the maximally enlarged solid

and the original one is 
alled Nieuwland 
onstant.

Based on the above mentioned fa
t, the Nieuwland 
onstant of the 
ube is

3
√
2

4
. Here we

note, that 
ontinuously enlarging a solid passing through the enlarging hole, sooner or later

we rea
h the limit when the solid (and one of the generators of the hole) will tou
h the surfa
e

of the initial solid, whi
h is not allowed by de�nition. Consequently, the exa
t Nieuwland


onstant is in fa
t an upper limit of the s
ale.

As it is des
ribed in [2℄, it is easy to see that the sear
h for the appropriate hole in a


onvex solid is identi
al to the sear
h for two di�erent orthogonal parallel proje
tions of the

solid to two di�erent planes in a way, that one proje
ted shape 
an entirely �t into the inner

part of the other proje
tion. Based on this view it is also trivial that not all 
onvex solids

possess the Rupert property: for example all orthogonal proje
tions of a sphere are 
ongruent


ir
les, none of whi
h 
an �t entirely into the inner part of another.

Ba
k to polyhedra, S
riba proved that, beside the 
ube, the tetrahedron and the o
ta-

hedron also have this property [4℄. Finally, in 2017 Jerrard, Wetzel and Yuan proved

the Rupert property for the dode
ahedron and the i
osahedron, 
ompleting the dis
ussion of

Rupert property of Platoni
 solids in a positive manner [2℄. In 2018 Huber et al. proved that

the n-
ube is also Rupert [1℄.

Re
ently Ying, Yuan and Zamfires
u studied Ar
himedean solids and proved that 8 of

the 13 polyhedra possess the Rupert property (
ubo
tahedron, trun
ated o
tahedron, trun-


ated 
ube, rhombi
uboo
tahedron, trun
ated 
ubo
tahedron, i
osidode
ahedron, trun
ated

i
osahedron and trun
ated dode
ahedron) [7℄. Moreover, the Nieuwland 
onstants of these

Platoni
 and Ar
himedean solids were also estimated [2, 7℄. However, the existen
e of the

Rupert hole of �ve of the Ar
himedean solids are still unsolved.

In this paper we extend the results of Ying, Yuan and Zamfires
u, by proving in

Se
tion 2, that the Ar
himedean trun
ated tetrahedron also has this property. In Se
tion 3

we study and generalise the notion of Nieuwland 
onstant for those solids having no Rupert

property. If there is no hole in the solid where a 
ongruent 
opy 
an pass through, we will


onsider the largest downs
ale 
opy (where the s
aling fa
tor is less than 1) for whi
h one


an �nd a hole. This fa
tor will be 
alled generalised Nieuwland 
onstant. Moreover here we

prove, that the Nieuwland 
onstant 
an be arbitrary large and arbitrary small. The existen
e

of a solid with arbitrary large Nieuwland 
onstant is more or less trivial, thinking about an

ellipsoid with properly sele
ted axes a >> b >> c. Based on this idea here we prove that for

any k > 1, k ∈ R, there exists a symmetri
 
onvex polytope in R
n
(a
tually an n-orthotope)

with a Nieuwland 
onstant larger than k. Furthermore, we prove that for any 0 < k ≤ 1,
k ∈ R, there exists a polyhedron with generalised Nieuwland 
onstant smaller than k.

2. The Rupert property of the trun
ated tetrahedron

In this se
tion we prove that there is a hole in the Ar
himedean trun
ated tetrahedron through

whi
h a 
ongruent trun
ated tetrahedron 
an pass. We will follow the idea des
ribed in [7℄,

�nding two appropriate orthogonal proje
tions, one of whi
h 
an entirely be pla
ed into the
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Figure 1: Two important orthogonal proje
tions of the trun
ated tetrahedron

other one. We will pay spe
ial attention to the important restri
tion that all of the verti
es

and edges of the �rst proje
tion must be in the inner part of the other proje
tion.

Theorem 1. The trun
ated tetrahedron has the Rupert property.

Proof. To prove that the trun
ated tetrahedron is Rupert, let us 
onsider two di�erent initial

orthogonal proje
tions, seen in Figure 1. One of them (Figure 1, left) is a diamond shape

image mapped onto a symmetry plane of the solid passing through the 
ommon edge LM of

two hexagons. The other proje
tion (Figure 1, right) is mapping the solid onto the plane of

one of the hexagonal side, in our 
ase onto the plane of hexagon ACDFGI. In both 
ases the

horizontal diagonals of the mapped hexagons, KN, AF, and BE, and the horizontal sides of

the hexagons, LM and CD, are parallel to the image planes, 
onsequently they 
an be seen

in real length. Sin
e AF and BE are of equal lengths, for symmetry reasons the quadrilateral

ABEF is a re
tangle. In their 
urrent positions, the left diamond shape image is higher than

the right one, that is, the distan
e between vertex J and edge LM is longer than the distan
e

between vertex H and edge CD. Consequently, the left image 
annot �t into the right one.

However, rotating the polyhedron around the edge CD, whilst keeping the image plane

identi
al, the height of the right image 
an be in
reased. With edge length

√
8 of the poly-

hedron, it is easy to 
al
ulate that the height of the left image is 6, but the maximum height

of the right image of the rotating polyhedron 
an be in
reased up to

√
38. This maximum

happens when the spatial segment between vertex H and midpoint of edge CD, along whi
h

the distan
e of vertex H and edge CD is measured, will be parallel to the image plane. Dur-

ing this rotation the length of the horizontal diagonals and horizontal edges does not 
hange.

Therefore, after this rotation the left image 
an �t into the modi�ed (verti
ally stre
hed) right

image in a way, that edge LM is parallel but slightly above edge CD, vertex K is on edge AB,

and vertex N is on edge EF. Due to the di�eren
e in height, vertex J is still below vertex H,

inside the modi�ed right image. By a su�
iently small rotation around the 
entroid of the

diamond shape image, the verti
es L, M and J will still be inside the modi�ed right image,

whilst verti
es K and N will leave the sides of the re
tangle ABEF and will also be inner

points of the modi�ed right image. The �nal position of these two proje
tions 
an be seen in

Figure 2 with enlarged images of the surroundings of verti
es of the diamond shape image to

show that ea
h vertex is inside the larger image. And this was to be proved.
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Figure 2: The Rupert property of the trun
ated tetrahedron with s
aled images of the verti
es.

Note that the �gure does not show symmetry due to the �nal (su�
iently small) rotation

around 
entroid O

An upper limit of the Nieuwland 
onstant 
an easily be 
al
ulated by the ratio of the

original height of the diamond shape image and the maximal height of the right image, whi
h

is

√
38

6
.

3. The generalised Nieuwland 
onstant

So far the Nieuwland 
onstant has been de�ned and 
al
ulated only for those 
ases when a

spe
i�
 polyhedron has had the Rupert property. Instead of 
onsidering the solid at �rst,

let us introdu
e a di�erent approa
h, and 
onsider the problem from the viewpoint of the

Nieuwland 
onstant: if an arbitrary positive real number is given, 
an we �nd a proper

polyhedron with this number or larger as Nieuwland 
onstant? Moreover, what happens, if a
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solid has no Rupert property? Can we �nd a hole through whi
h a smaller 
opy of the solid


an pass? How small 
an be the largest hole? These question will be dis
ussed in this se
tion.

The �rst question will be answered in R
n
using the approa
h of [1℄.

Theorem 2. For any k > 1, k ∈ R, there exists an n-dimensional 
onvex polytope with

Nieuwland 
onstant larger than k.

Proof. Consider a re
tangular n-dimensional 
uboid (an n-orthotope) with mutually orthog-

onal edges of length a1 = 1, a2 = k + 1, . . . , an = (k + 1)(n−1)
. Consider the hyperplane

determined by edges a2, a3, . . . , an, onto whi
h the orthogonal proje
tion of the polytope is

a (n− 1)-dimensional 
uboid with edge lengths k + 1, . . . , (k + 1)(n−1)
.

Now 
onsider the hyperplane determined by edges a1, . . . , an−1, onto whi
h the orthogonal

proje
tion of the original polytope is another (n − 1)-dimensional 
uboid with edge lengths

1, k + 1, . . . , (k + 1)(n−2)
. The s
ale of this latter polytope by a fa
tor k + 1

k
yields a (n −

1)-dimensional 
uboid with edge lengths k + 1
k
, (k + 1)(k + 1

k
), . . . , (k + 1)(n−2)(k + 1

k
).

This enlarged polytope still �ts into the proje
tion on the hyperplane of a2, a3, . . . , an if the


orresponding edges are parallel, respe
tively, sin
e k + 1
k
< k + 1 and (k + 1)(m)(k + 1

k
) <

(k + 1)(m+1)
for any m = 1, . . . , n − 2 and k > 1. Consequently the Nieuwland 
onstant of

this re
tangular polytope is at least k + 1
k
.

So our answer is a�rmative if k > 1. For other positive values, however, we have to

re
onsider the 
on
ept of Nieuwland. The 
onstant is originally de�ned for solids with Rupert

property. But even if a solid has no Rupert property, there 
an be a smaller 
opy of this solid

whi
h 
an pass through a proper hole. This is to be de�ned as a generalisation of the original


on
ept.

De�nition 4. The s
ale fa
tor 0 < k ≤ 1 is 
alled generalised Nieuwland 
onstant of a given

solid, if there is a 
opy of this solid downs
aled by k, whi
h 
an pass through a proper hole

in the original solid, but there is no larger 
opy with this property.

The 
ase k = 1 is enabled, sin
e the generalised Nieuwland 
onstant is, as well as the

original 
on
ept of the 
onstant, an upper limit. For instan
e, the generalised Nieuwland


onstant of the sphere is 1, be
ause s
aling the sphere by a fa
tor arbitrarily 
lose to 1 (but

less than 1) the s
aled sphere 
an obviously pass through a 
entrally lo
ated 
ir
ular hole in

the original sphere.

It is evident, that for any solid with no Rupert property a generalised Nieuwland 
onstant


an be assigned. Given a solid, there exists a se
ant line 
lose enough to the surfa
e of the

solid interse
ting the solid in one single 
hord segment. Considering a right 
ir
ular 
ylinder

with this 
hord as rotational axis and with su�
iently small radius, the interse
tion of the


ylinder and the solid 
an fun
tion as a hole through whi
h an appropriately downs
aled solid

(the bounding sphere of whi
h is of smaller radius than the 
ylinder) 
an pass.

It is however not evident, if for any arbitrarily small k there exists a solid with Nieuwland


onstant smaller than k. Sin
e the Wetzel-
onje
ture states that every 
onvex polyhedron has

the Rupert-property [2℄, we will try to �nd 
on
ave polyhedra to prove this statement.

Theorem 3. For any real number 0 < k < 1 there exists a polyhedron, su
h that its generalised
Nieuwland 
onstant is smaller than k.
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Figure 3: The unit 
ube, and iterations of the Menger-sponge (sour
e: [6℄)

Proof. Consider the �rst iteration of the Menger-sponge in the unit 
ube (see the se
ond

polyhedron in Figure 3). The generalised Nieuwland 
onstant of this solid 
annot be greater

than

1
2
, sin
e the edges are trise
ted in 
onstru
ting the Menger-sponge. Therefore a 
ube

s
aled by

1
2

annot be pla
ed in a way that it is entirely 
overed by the original polyhedron.

Consequently, it is impossible to �nd a hole for the polyhedron downs
aled by

1
2
.

However, along the original edge of the unit 
ube there is an

1
3
× 1

3
× 1 
uboid. In

this 
uboid one 
an easily �nd a hole for a Menger-sponge downs
aled by

1
3
. Thus, the

generalised Nieuwland 
onstant of the �rst iteration of the Menger-sponge is between

1
2
and

1
3
. Analogously, the generalised Nieuwland 
onstant of the nth

iteration of the Menger-sponge

is between

1

2n
and

1

3n
. Sin
e the series

1
2n


onverges to 0, when n tends to in�nity, for any

0 < k < 1 there exists an integer number n, for whi
h 1
2n

< k. Consequently, for any 0 < k < 1
there exists an iteration of the Menger-sponge, the generalised Nieuwland 
onstant of whi
h

is smaller than k, and this was to be proved.

Here we note that there are also many solids for whi
h the generalised Nieuwland 
onstant

is between

1
2
< k < 1.

4. Con
lusion and future work

We have proved that the trun
ated tetrahedron has the Rupert property and introdu
ed the

generalised Nieuwland 
onstant also for those polyhedra not having the Rupert property.

However, there are many problems still unsolved: to prove that the remaining Ar
himedean

solids have the Rupert property and if every 
onvex polyhedron has this property. Although

we provided polyhedra with generalised Nieuwland 
onstant smaller or larger than a prede-

�ned k, it would be interesting to show a polyhedron with generalised Nieuwland 
onstant

equal to a prede�ned k.
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