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Abstract. We use homogeneous coordinates in the plane of a triangle to define a
family of ellipses having the centroid of the triangle as center. The family, which
includes the Steiner circumscribed and inscribed ellipses, is closed under many
operations, including permutation of coordinates, complements and anticomple-
ments, duality, and inversion.
Key Words: barycentric coordinates, Steiner circumellipse, Steiner inellipse, com-
plement and anticomplement, dual conic, inversion in ellipse, Frégier ellipse
MSC 2020: 51N20, 51N15

1 Introduction

In 1827, something revolutionary happened in triangle geometry. A descendant of Martin
Luther named Möbius introduced barycentric coordinates. Suddenly, points and lines in
the plane of a triangle ABC with sidelengths a, b, c had a new kind of representation, and
traditional geometric relationships found new algebraic kinds of expression. The lengths a, b, c
came to be regarded as variables or indeterminates, and a criterion for collinearity of three
points became the zeroness of a determinant, as did the concurrence of three lines.

More recently, algebraic concepts have been imposed on the objects of triangle geometry.
You can make up a suitable function f(a, b, c) and say “Let P be the point with barycentric
coordinates f(a, b, c) : f(b, c, a) : f(c, a, b)” and then use algebra to find geometrically notable
properties of P . For example, the Conway point, a4 + b2c2 : b4 + c2a2 : c4 + a2b2, is proved
by a zero determinant to lie on the Euler line of ABC. (John Horton Conway made several
nifty contributions to triangle geometry.)

The purpose of this article is to introduce another example of the imposing of algebraic
concepts and methods in triangle geometry. For the reader already familiar with barycentric
coordinates, the example can be stated as follows. Formally, a point P = p : q : r belongs to
a set of six permutation points:

p : q : r, p : r : q, q : r : p, q : p : r, r : p : q, r : q : p.
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Figure 1: Permutation Ellipse, E(P)

The fact that a certain determinant equals zero proves that the six points lie on a conic—
which turns out to be an ellipse having as center the centroid, G, of ABC; see Figure 1. If
we include G as a degenerate ellipse, then the family of these permutation ellipses partitions
the plane of ABC. Every point (e.g., incenter, circumcenter, Fermat point) lies on exactly
one permutation ellipse.

Now let’s back up to say what it means for a point P to have barycentric coordinates
p : q : r. Let σ = area(ABC). Then using

σ′1 = area(PBC), σ′2 = area(PCA), σ′3 = area(PAB),

we define signed areas, depending on the fact that the line BC separates the plane into a
positive region, containing A, and a negative region—the half-plane not containing A. If P
lies in the negative region, then its signed area is −σ′1, denoted by σ1. Otherwise, σ1 = σ′1,
and similarly for σ2 and σ3. The triple (σ1/σ, σ2/σ, σ3/σ), called the normalized barycentric
coordinates of P , satisfy the simple equation

x+ y + z = 1.

Any triple (p, q, r) proportional to (σ1, σ2, σ3) are called homogeneous barycentric coordi-
nates, or simply barycentrics, for P . Such a triple is written as p : q : r. For example, the
normalized barycentrics for G are (1/3, 1/3, 1/3), but also, we can represent G as

G = 1 : 1 : 1 = 2 : 2 : 2 = abc : abc : abc.

As a second example, the circumcenter (where the perpendicular bisectors of the sides of
ABC meet) is

O = sin 2A : sin 2B : sin 2C, alias a2(b2 + c2 − a2) :: .
You can see here a switch to algebra (a homogeneous polynomial of degree 4), as well as
the sufficiency of only the first of the three barycentrics, followed by two colons, if certain
algebraic properties are understood. Specifically, if the first barycentric is f(a, b, c), then
the second and third are f(b, c, a) and f(c, a, b), respectively. Also, we follow the common
practice of using the symbols A,B,C in two different ways: for the vertices of the reference
triangle ABC, and also for the angles: A = ∠CAB, B = ∠ABC, C = ∠BCA.
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Figure 2: Circumcenter, O

Near the end of the second millennium, Philip J. Davis [1] made some observations and
predictions concerning triangle geometry. Along with the influence of algebraic and function-
theoretic methods is the role of computers, or, more specifically, powerful programs such as
Mathematica. Many deep results in triangle geometry depend on computer-algebra systems
to simplify elaborate expressions. One source of the complexity of these expressions is the
distance between two points. If they are written as P = p : q : r and U = u : v : w, then the
distance between them is given ([8], p. 90) by

|PU | = 1
(p+ q + r)(u+ v + w)

√
Ψ, where (1)

Ψ = SA[(v + w)p− u(q + r)]2 + SB[(w + u)q − v(r + p)]2 + SC [(u+ v)r − w(p+ q)]2,
SA = (b2 + c2 − a2)/2, SB = (c2 + a2 − b2)/2, SC = (a2 + b2 − c2)/2.

Computer-dependent reduction of elaborate expressions leads to a certain style for presenting
proofs of theorems, in which the steps in a proof are essentially instructions to be followed
by a computer. This should be kept in mind regarding some of the proofs in this article.

2 First facts

We call a point P a regular point if it is not one of these four:

A = 1 : 0 : 0, B = 0 : 1 : 0, C = 0 : 0 : 1, G = 1 : 1 : 1.

Theorem 1. Suppose that P = p : q : r is a regular point. The six points

p : q : r, p : r : q, q : r : p, q : p : r, r : p : q, r : q : p (2)

lie on the curve

(qr + rp+ pq)(x2 + y2 + z2)− (p2 + q2 + r2)(yz + zx+ xy) = 0, (3)

which is an ellipse, E(P ), with center G. If U = u : v : w is a point on E(P ), then
E(U) = E(P ).
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Proof. The equation (3) has the form

fx2 + gy2 + hz2 + 2f ′yz + 2g′zx+ 2h′xy = 0,

so that it represents a conic (e.g., [8], p. 117). Clearly each of the six permutation points
satisfies (3). Using a type detector and equation for the center of a conic ([8], p. 127), we
conclude that the points (2) lie on an ellipse with center G.

Now suppose that a point U = u : v : w lies on E(P ). Then by (3),
qr + rp+ pq

p2 + q2 + r2 = vw + wu+ uv

u2 + v2 + w2 . (4)

To see that E(U) = E(P ), suppose that X = x : y : z is a point on E(U), so that
yz + zx+ xy

x2 + y2 + z2 = vw + wu+ uv

u2 + v2 + w2 .

This equation and (4) imply (3), so that E(U) ⊆ E(P ). Likewise, E(P ) ⊆ E(U).

If qr + rp+ pq 6= 0, then (3) can be written as

x2 + y2 + z2 − t(yz + zx+ xy) = 0, (5)

where
t = p2 + q2 + r2

qr + rp+ pq
(6)

is a function t = t(a, b, c). It is natural to ask, if we start with an equation of the form (5),
what conditions on t result in a permutation ellipse? We consider this only in the case that
t is a constant, as in the next theorem.

Theorem 2. If t is a real number, then the equation (5) represents a permutation ellipse if
and only if t < −2 or t > 1.

Proof. Putting y = z in (5), we find

x = y(t±
√

(t+ 2)(t− 1)) (7)

which is real if and only if t ≤ −2 or t ≥ 1. However, if t = −2, then (5) reduces to
x+ y + z = 0, not an ellipse, and if t = 1, the result is the single point G = 1 : 1 : 1.

For the converse, if t < −2 or t > 1, then there must exist k close enough to 1 that the
line y = kz meets the ellipse in a point x : y : z such that x, y, z are distinct, so that the six
points

x : y : z, x : y : z, y : z : x, y : x : z, z : x : y, z : y : x
are distinct. It is clear from the symmetry of x, y, z in (5) that all six points lie on the ellipse,
so that it is a permutation ellipse.

The next theorem may be a surprise—that for any pair of permutation ellipses, each is a
dilation from G of the other! Equivalently, we shall prove that every permutation ellipse is a
dilation of the Steiner circumellipse, to be discussed in Section 3, given by

yz + zx+ xy = 0. (8)

Let A′ denote the point where the ray GA meets E(P ). Then |GA′|/|GA| is the dilation
factor for E(P ). Each point U on E(A), which is the Steiner circumellipse, is dilated by the
factor |GA′|/|GA| to a point on E(A′), which is also E(P ).
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Figure 3: Configuration for Theorem 2

Theorem 3. Suppose E(P ) is a permutation ellipse given by

x2 + y2 + z2 − t(yz + zx+ xy) = 0.

Then the dilation factor for E(P ) is √
t− 1
t+ 2 . (9)

Proof. Let A′ be the point where the ray PA meets E(P ), so that A′ is given by normalized
barycentrics

( ∆
2 + ∆ ,

1
2 + ∆ ,

1
2 + ∆),

where ∆ = t+
√

(t− 1)(t+ 2). The distance formula (1) gives

|GA|2 = (1/9)(4SA + SB + SC),

and

|GA′|2 = SA

( ∆
2 + ∆ −

1
3

)2
+ SB( 1

2 + ∆ −
1
3)2 + SC( 1

2 + ∆ −
1
3)2

= ( ∆− 1
3(∆ + 2))2(4SA + SB + SC)

Simplifying, we obtain |GA′|/|GA| as in (9).

Regarding Theorem 3, note first that the domain is the union of the intervals t < 2 and
t ≥ 1 and that the ellipse E(P ) lies inside the Steiner circumellipse, for which t =∞, if and
only if t > 1. If t = 2, then the dilation factor is 1/2 and the dilated ellipse is the Steiner
inellipse; that is, the ellipse inscribed in ABC.

A further note is that regarding (7), one could choose ∆ = t −
√

(t− 1)(t+ 2) instead
of ∆ = t +

√
(t− 1)(t+ 2). The resulting dilation maps A to the reflection of A′ in G; see

Figure 3.
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Theorem 4. Suppose that P = p : q : r is a regular point, so that the six points

P1 = p : q : r, P2 = p : r : q,
Q1 = q : r : p, Q2 = q : p : r,
R1 = r : p : q, R2 = r : q : p

are distinct. In each of the three sets of four lines listed below, each pair are parallel:

{BC,P1P2, Q1Q2, R1R2}
{CA,P1R2, Q1P2, R1Q2}
{AB,P1Q2, Q1R2, R1P2}.

Proof. The lines P1P2 and Q1Q2 are given by the equations (q + r)x − py − pz = 0 and
(p + r)x − qy − qz = 0, and the line BC, by x = 0. Clearly, the point A∗ = 0 : 1 : −1 lies
on all three lines, which lines must be parallel because A∗ lies on the line at infinity, given by
the equation

x+ y + z = 0. (10)
The same argument applies to all the asserted parallelisms.

Theorem 5. Let M and m be the lengths of the semi-major and semi-minor axes of the
permutation ellipse E(P ) given by

(qr + rp+ pq)(x2 + y2 + z2)− (p2 + q2 + r2)(yz + zx+ xy) = 0,

respectively. Then

M2 = p2

9p2
1
(a1 +

√
a2

1 − 48σ2 ) and m2 = p2

9p2
1
(a1 −

√
a2

1 − 48σ2 ), where

p1 = p+ q + r

p2 = p2 + q2 + r2 − qr − rp− pq
a1 = a2 + b2 + c2

σ = area(ABC).

Proof. Starting with any five of the six points (2), construct the major and minor axes of
E(P ), as in ([8], p. 150). Then find the points of intersection of E(P ) and the two axes ([8],
p. 151). Finally, apply (1) to find the distance from G to an endpoint of each axis.

The lengths M and m for a permutation ellipse

(x2 + y2 + z2)− t(yz + zx+ xy) = 0

can be more compactly written than in Theorem 5 in terms of the Brocard angle, ω, of ABC
and the symbol e so effectively used by Gallatly ([2], p. 96):

e =
√

1− 4 sin2 ω,

M = 2
3

√
t− 1
t+ 2σ(cosω + e) cscω, m = 2

3

√
t− 1
t+ 2σ(cosω − e) cscω,

where σ = area(ABC). The eccentricity of all permutation ellipses is

M

m
=
√

2e
e+ cosω .
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Figure 4: Steiner circumellipse (SCE) and Steiner inellipse (SIE)

3 Special ellipses: SCE and SIE

The Steiner circumellipse, given by (8), henceforth simply SCE, passes through the vertices
A,B,C, as does the circumcircle, and it also passes through a fourth point of intersection
with the circumcircle, the Steiner point, indexed as X(99) in the Encyclopedia of Triangle
Centers (ETC) [7]. Barycentrics for the Steiner point are

(c2 − a2)(a2 − b2) : (a2 − b2)(b2 − c2) : (b2 − c2)(c2 − a2).

ETC includes more than 100 triangle centers on SCE, so that there are more than 600 “known
points” on SCE. This ellipse is given by an especially simple equation:

yz + zx+ xy = 0, or, equivalently, 1/x+ 1/y + 1/z = 0.

A second well-known ellipse that is a permutation ellipse is the Steiner inellipse (SIE), which
is E(X(115)), given by

x2 + y2 + z2 − 2(yz + zx+ xy) = 0.
According to Marden’s theorem [5] if the vertices A,B,C have complex coordinates

za, zb, zc, and
f(z) = (z − za)(z − zb)(z − zc),

then the roots of the derivative f ′(z) are the foci of SIE. One could switch to barycentrics
and find the foci of all permutation ellipses. However, the results are too long to appear here;
see ([7]: X(39158)–X(39165) for the foci of SCE and SCI, and X(39202)–X(39209) for the
vertices.)

Among points in ETC that lie on SIE are these:

X(115) = (b2 − c2)2 ::
X(1015) = a2(b− c)2 ::
X(1084) = a4(b2 − c2)2 ::
X(1086) = (b− c)2 ::

It is easy to prove that if a point P = p : q : r is on the line (10) at infinity, then its barycentric
square, p2 : q2 : r2 is on SIE; indeed, algebraically, SIE is the square of the line at infinity.
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4 Complements and anticomplements

Suppose that P = p : q : r is a point other than G. The complement of P , denoted by m1(P ),
is defined algebraically by

m1(P ) = q + r : r + p : p+ q,

and the anticomplement of P , denoted by m−1(G), is defined by

m−1(P ) = −p+ q + r : p− q + r : p+ q − r.

The classical geometric definitions are as follows: the complement of P is the point P ′ sat-
isfying the vector equation PG = 2GP ′; the anticomplement of P is the point P ′′ satisfying
P ′′G = 2GP . Letting m0(P ) = P , inductively we define, for i ≥ 1,

mi(P ) = m1(mi−1(P )) and m−i(P ) = m−1(m−i+1(P )),

so that

m2(P ) = 2p+ q + r : p+ 2q + r : p+ q + 2r
m3(P ) = 2p+ 3q + 3r : 3p+ 2q + 3r : 3p+ 3q + 2r
m4(P ) = 6p+ 5q + 5r : 5p+ 6q + 5r : 5p+ 5q + 6r

and

m−2(P ) = 3p− q − r : −p+ 3q − r : −p− q + 3r
m−3(P ) = −5p+ 3q + 3r : 3p− 5q + 3r : 3p+ 3q − 5r
m−4(P ) = −11p− 5q − 5r : −5p+ 11q − 5r : −5p− 5q + 11r.

As a corollary to Theorem 1, if P is a regular point, then E(mi(P )) = mi(E(P )) for every
integer i. The permutation ellipses E(mi(P )) are nested, as shown here:

· · · ⊂ E(m2(P )) ⊂ E(m1(P )) ⊂ E(P ) ⊂ E(m−1(P )) ⊂ E(m−2(P )) ⊂ · · ·

5 Dual ellipses

The dual of a conic Γ is the conic consisting of points p : q : r such that the line px+qy+rz = 0
is tangent to Γ (e.g., [8], p. 125).

Theorem 6. The dual of a permutation ellipse is a permutation ellipse. Specifically, if E(P )
is given by

x2 + y2 + z2 − t(yz + zx+ xy) = 0, (11)
then the dual of E(P ) is given by

(t− 2)(x2 + y2 + z2)− 2t(yz + zx+ xy) = 0. (12)

Proof. This is obtained directly from a formula ([8], p. 125) for a dual conic.

corollary 1. There is exactly one self-dual permutation ellipse:

x2 + y2 + z2 − 4(yz + zx+ xy) = 0.
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Proof. Self-duality is equivalent to −t = 2t/(t+ 2) with t 6= 0.

If P = p : q : r is a point on SCE, then the point

∆(P ) = 3p+ δ : 3q + δ : 3r + δ,

where δ = (
√

2−1)(p+q+r), is on the self-dual ellipse. Examples in ETC include X(39103) =
∆(X(99)) and X(39105) = ∆(X(671)).

corollary 2. The ellipse (11) lies in the interior of its dual (12) if and only if 1 < t < 4.

Proof. This follows from a comparison of the dilation factors for the two ellipses:√
t− 1
t+ 2 and

√
t+ 2
4t− 4 .

6 Inverses of ellipses in ellipses

Suppose that U and P are distinct points. Let E be an ellipse with center U . Let Q be the
point of intersection of the ray UP and E. The E-inverse of P is defined [4] as the point P ′
satisfying

|UP ||UP ′| = |UQ|2. (13)

Theorem 7. In the plane of a triangle ABC, the inverse of a permutation ellipse in a
permutation ellipse is a permutation ellipse. Specifically, if E is given by

x2 + y2 + z2 − h(yz + zx+ xy) = 0 (14)

and E(P ) by
x2 + y2 + z2 − k(yz + zx+ xy) = 0, (15)

then the inverse of E(P ) in E is given by

x2 + y2 + z2 − t(yz + zx+ xy) = 0, (16)

where
t = −h

2k + h2 + 2k − 4h
h2 − 2hk − k + 2 . (17)

Proof. In (13), put U = G, and choose Q to be the point of intersection of the ray GA and
the ellipse (14); i.e.,

Q = h+
√

(h− 1)(h+ 2) : 1 : 1.
Next, for any P on the line GA except G, we have P = x : 1 : 1 for some x 6= 1. The distance
formula (1) gives

|GP |2 = ( x− 1
3(x+ 2))2(4SA + SB + SC).

Similarly, writing P ′ = w : 1 : 1, we have

|GP ′|2 = ( w − 1
3(w + 2))2(4SA + SB + SC).
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and

|GQ|2 = ( H − 1
3(H + 2))2(4SA + SB + SC).

where
H = h+

√
(h− 1)(h+ 2).

Consequently,
(x− 1)(w − 1)
(x+ 2)(w + 2) = (H − 1

H + 2)2,

which leads to

w = 2− h− hx
h− x

. (18)

As x : 1 : 1 is on E(P ), we find

x = k +
√

(k − 1)(k + 2). (19)

Next, we need some t such that w : 1 : 1 satisfies (16), where

t = p′2 + q′2 + r′2

q′r′ + r′p′ + p′q′

for any p′ : q′ : r′ on E. Taking p′ : q′ : r′ = w : 1 : 1 gives

t = w2 + 2
2w + 1 . (20)

Substitute the right side of (19) into (18) and then substitute w into (20). The result simplifies
to (17).

corollary 3. The inverse of an ellipse (15) in SCE is given by (16) with t = −k − 1.

Proof.

lim
h→∞
−h

2k + h2 + 2k − 4h
h2 − 2hk − k + 2 = −k − 1.

corollary 4. The inverse of SCE in an ellipse (14) is given by (16) with t = h2+2
2h+1 .

Proof.

lim
k→∞
−h

2k + h2 + 2k − 4h
h2 − 2hk − k + 2 = h2 + 2

2h+ 1 .

The inverse of SIE in SCE is given by t(a, b, c) = −3 in (3). This ellipse, which is the
anticomplement of SCE, is E(X(148)). The inverse of SCE in SIE is given by t(a, b, c) = 6/5
in (3). This ellipse, which is the complement of the complement of SCE, is E(X(620)).
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7 Frégier ellipses

Frégier’s theorem starts with any point P on a conic C. Let U be any point on C except
P , and let U ′ be the point on C such that the segment UU ′ is the hypotenuse of the right
triangle UPU ′. As U traverses C the segments UU ′ all pass through a fixed point, F (P ),
called the Frégier point of P . It is known (e.g., [6], p. 279) that if C is an ellipse, then the
locus of F (P ) as P traverses C is an ellipse. We call it the Frégier ellipse of C.

Theorem 8. Suppose that E is an ellipse with center G. Let M and m denote, respectively,
the lengths of the semi-major and semi-minor axes of E. Then the Frégier ellipse F (E) is
the dilation from G of E, and the dilation factor is

M2 −m2

M2 +m2 .

(Thus, the Frégier ellipse of a permutation ellipse is a permutation ellipse.)

Proof. See [3], pp. 256-257.

Theorem 9. Suppose that P = p : q : r is a point on SCE. If P /∈ {A,B,C}, then the Frégier
point of P is given by

F (P ) = (p2 + q2 + pq)(p2 + r2 + pr)p′ ::,where
p′ =

(
(3a2 − b2 − c2)qr + (a2 + b2 − c2)q2 + (a2 − b2 + c2)r2

)
.

For the remaining cases,

F (A) = a1 : c1 : b1

F (B) = c1 : b1 : a1

F (C) = b1 : a1 : c1,

where
a1 = b2 + c2 − a2, b1 = c2 + a2 − b2, c1 = a2 + b2 − c2.

Proof. Let B′ be the point, other than B, where the line through B perpendicular to line PB
meets SCE. Let C ′ be the point, other than C, where the line through C perpendicular to
PC meets SCE. Then F (P ) = BB′ ∩ CC ′.

A second, more laborious, way to prove Theorem 9 is to dilate P from G using the dilation
factor in Theorem 8.

The Frégier ellipse of SCE is the ellipse E(X(69)), since

F (X(99)) = X(69) = a1 : b1 : c1.

Likewise, the Frégier ellipse of SIE is E(X(6)), where X(6) is the symmedian point of ABC.
An equation for E(X(6)) is

(b2c2 + c2a2 + a2b2)(x2 + y2 + z2)− (a4 + b4 + c4)(yz + zx+ xy) = 0.

(For Frégier points of selected rectangular hyperbolas, see [7], points X(30181)–X(30257) and
the preamble just before X(30182), contributed by César Eliud Lozada. See also the preamble
just before X(34341).)
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8 Axes of permutation ellipses

Since every permutation ellipse is a dilation from G of SCE, these ellipses all have the same
major and minor axes. Points in ETC that lie on the major axis include X(i) for

i = 2, 1341, 1348, 2542, 3413, 5638, 13722, 14899, 30509, 31863, 35607, 35913,
39158, 39159, 39162, 39163, 39202, 39203, 39206, 39207, 39300, 39301, 39304, 39305.

Points on the minor axis include X(i) for

i = 2, 1340, 1349, 2543, 3414, 5639, 13636, 30508, 31862, 35608, 35609, 35914,
39160, 39161, 39164, 39165, 39204, 39205, 39208, 39209, 39302, 39303, 39306, 39307.

Theorem 10. The major axis of SCE, SCI, and all permutation ellipses, lies in the line
given by

f(a, b, c)x+ f(b, c, a)y + f(c, a, b)z = 0, (21)
where

f(a, b, c) = (b2 − c2)(a2b2 + a2c2 − b4 − c4 − (a2 − b2 − c2)
√
D),

D = a4 + b4 + c4 − b2c2 − c2a2 − a2b2.

Equation (21) also gives the line containing the minor axis if, in the equation for f(a, b, c)
just above,

√
D is replaced by −

√
D.

Proof. Let U = u(a, b, c) : v(a, b, c) : w(a, b, c) be an endpoint of the major axis, constructed
as in the proof of Theorem 5. The major axis lies in the line GU , given by (21), where

f(a, b, c) = v(a, b, c)− w(a, b, c).

The same steps, starting with an endpoint of the minor axis, give the line of the minor
axis.

9 Antipodes

Suppose that P = p : q : r is a regular point and U = u : v : w is a point other than P .
The line PU meets the permutation ellipse E(P ) formally in two points. One of them is
P , and the other we call the U-antipode of P . If U = G, the antipode is quite simple (see
Corollary 5), but in general, the result is not so simple, as indicated in the next theorem.

Theorem 11. If P and U are distinct regular points, then the U-antipode of P is the point

f(p, q, r, u, v, w) : f(q, r, p, v, w, u) : f(r, p, q, w, u, v), where

f(p, q, r, u, v, w) = [(q + r)(q2 + r2)− pqr]u2

+ p(qr + rp+ pq)(v2 + w2)
− p(p2 + q2 + r2)vw
+ [q(p2 + q2 + r2)− 2pr(q + r)]wu
+ [r(p2 + q2 + r2)− 2pq(q + r)]uv.
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Proof. The line PU is given by

(qw − rv)x+ (ru− pw)y + (pv − qu)z = 0. (22)

Solve this for z and substitute the result into (3). Then solve the resulting equation for y,
obtaining a multiple of x other than y = px/q, so that, using (22) to express z, we have the
required antipode x : y : z. Simplification gives the required form.

corollary 5. In the permutation ellipse E(P ), the G-antipode of a point U is the point

p− 2q − 2r : q − 2r − 2p : r − 2p− 2q.

Proof. In Theorem 11, put (u, v, w) = (1, 1, 1).

corollary 6. In the permutation ellipse E(P ), the A-antipode of P is the point

(q + r)(q2 + r2)− pqr : q(qr + rp+ pq) : r(qr + rp+ pq).

Proof. In Theorem 11, put (u, v, w) = A = (1, 0, 0).

10 A special family

In the previous sections, most of the permutation ellipses E(P ) are “central” in the sense
that the point P is a triangle center—that is, P has barycentrics of the form

f(a, b, c) : f(b, c, a) : f(c, a, b), (23)

where the function f is homogeneous in a, b, c and satisfies f(a, c, b) = f(a, b, c). However,
there are some interesting permutation ellipses E(P ) for which P is not a triangle center.
One can start with any three integers, i, j, k, not all zero, and ask: which “integer points”
i′ : j′ : k′ lie on the ellipse E(i : j : k)? For starters, it is easy to verify that all integer points

−n : n+ 1 : n2 + n

lie on SCE, and all integer points

n2 : k2 : (n+ k)2

lie on SIE.

The trisector ellipse. Consider the permutation ellipse that passes through these six
points:

0 : 1 : 2, 0 : 2 : 1, 1 : 0 : 2, 2 : 0 : 1, 1 : 2 : 0, 2 : 1 : 0.
We call this the trisector ellipse because the six points are the trisectors of the sides of ABC.
As shown in Figure 5, the same six points are the points in which lines through G parallel to
lines BC,CA,AB meet these same lines. An equation for the trisector ellipse is

2(x2 + y2 + z2)− 5(yz + zx+ xy) = 0,

and the dilation factor is
√

1/3. Among integer points on this ellipse are

−2 : 24 : 35, −1 : 10 : 12, 2 : 4 : 15, 3 : 14 : 40, 5 : 6 : 28.

Points on its complement and anticomplement are 1 : 2 : 3 and 1 : −1 : 3, respectively, as in
Section 4.
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Figure 5: The Trisector Ellipse, E(0:1:1)

The Steiner midway ellipse. For each P on SCI, let P ′ be the midpoint of G and P . The
set of all such midpoints comprise the Steiner midway ellipse, SME, given by the equation

7(x2 + y2 + z2)− 34(yz + zx+ xy) = 0.

The dilation factor is 3/4, and among integer points on SME are these:

−11 : 34 : 61, −11 : 106 : 421, −2 : 43 : 187, 1 : 154 : 721, 7 : 70 : 367.

11 Open problems

Thousands of triangle centers in ETC are polynomial centers in the sense that they have a
representation (23) in which f(a, b, c) is a polynomial. One wonders if a reasonable charac-
terization can be found for integer points P such that the permutation ellipse E(P ) passes
through at least one polynomial triangle center. Examples are SCE and SIE, whereas it
appears that SME and the trisector ellipse pass through no polynomial triangle centers.
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