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Abstract. Generalizing Fermat and Napoleon points of a triangle, we introduce
the notion of complementary Jacobi points, showing their collinearity with the
circumcenter of the given triangle. The coincidence of the associated perspective
lines for complementary Jacobi points is also proved, together with the orthog-
onality of this line with the one joining the circumcenter and the Jacobi points.
Involutions on the Kiepert hyperbola naturally arise, allowing a geometric insight
on the relationship between Jacobi points, their associated perspective lines and
Kiepert conics of a triangle.
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1 A Historical Introduction: Escher, Napoleon, Fermat

The theme of plane tessellations plays a role of outstanding relevance in the artistic produc-
tion of the Dutch graphic artist M. C. Escher. It is perhaps since his second journey to the
Alhambra in May/June 1936 that the idea of regularly organizing both Euclidean and hy-
perbolic plane surfaces by geometric tiles becomes an organic working plan. In 1937, Escher
got from his stepbrother Beer, geologist at the university of Leiden, an article [3] by the Ger-
man crystallographer F. Haag describing the properties of a particular hexagon built from an
equilateral triangle and an arbitrary point on the plane. Escher sketched Haag’s construction
in one of his notebooks [5]. Figure 1 reproduces the original picture (on the right) and the
related text (on the left), which can be translated from Dutch in the following way.
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Figure 1: Escher’s sketchpad (© M. C. Escher Company, Baarn NL)

From the vertex A of an equilateral triangle ABC, one draws a line AF of arbitrary
length and direction. (AF could, for example, be longer than AC and intersect
BC.)

AD = AF and ∠FAD = 120◦

BD = BE and ∠DBE = 120◦

CE = CF and ∠ECF = 120◦

(The plane is completely filled by congruent hexagons of the form ADBECF
arranged as in picture). The diagonals AE, BF and CD intersect in a single
point S.

Haag thus proved that the construction gives rise to a hexagon ADBECF and that this
hexagon, precisely because it is built on a lattice of equilateral triangles, produces a mono-
hedral tessellation of the Euclidean plane.

Studying Haag’s hexagons, which we will later call Escher’s hexagons, Escher noticed that
the diagonals joining opposite pairs of vertices are concurrent in one point. Escher stated
his result in the formal manner of mathematicians, that is in the form of a theorem: In fact,
in stating it, he uses the term “stelling”, the Dutch word to define the thesis of a theorem.
Escher’s statement is correct, even if he only verified it graphically, testing his thesis on
different hexagons built in this way. Escher’s son George had an engineering degree and had an
extensive correspondence with his father on the mathematical questions surrounding planar
tessellations. Asked for a proof of this “theorem”, George pointed out that the hexagons
could also be constructed in a different way. In fact, the centroids of the equilateral triangles
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externally erected on the sides of any given triangle DEF are the points A, B, C respectively,
since they are the 120◦ vertices in the isosceles triangles built on these sides. Moreover, they
are themselves vertices of an equilateral triangle (Figure 1): this result is known in geometry
as Napoleon’s theorem, since tradition attributes it to Napoleon Bonaparte, who seems to
have been a talented mathematical amateur.

It is not known whether Escher understood that his construction was actually linked to
this result. However, in 1942 he painted a watercolour in which, in addition to a multihedral
hexagonal tessellation of the plane, the equilateral triangles of Napoleon’s theorem are clearly
recognizable (Figure 2).

The concurrency of the diagonals of a hexagon obtained by building similar isosceles
triangles on the sides of an arbitrary given triangle is known as the Kiepert’s theorem; a
proof based on Ceva’s Theorem, can be found in [1]. A generalization of this result, obtained
by isogonal lines1 from the vertices, was seemingly discovered and published in 1825 by Carl
Friedrich Andreas Jacobi (see Section 2).

Later the theorem, in the special case described by Escher, was also proved by J. F. Rigby
in 1973 [4], by making use of rotation and translation symmetries of Escher’s tessellation.
This argument, based on the hexagon property of tessellating the plane, would certainly have
been liked by Escher.

The concurrent point in the general case of the Jacobi’s construction is called the Jacobi
point of the given triangle. In the special case of Escher’s hexagon, where the base angles
of the isosceles triangles are π/6, the point is often called in literature the Napoleon point
E (X17) of the triangle.2

Another notable hexagon is obtained when the angles at the base of the isosceles triangles
are π/3, and therefore, the triangles become equilateral. In this case, if the given triangle
does not contain angles greater than 2π/3, the point of concurrency of the diagonals is the
point of minimum distance from the vertices of the triangle. The point is known as the
Fermat point F (X13), as it was Pierre de Fermat who identified it in response to a question
posed by Evangelista Torricelli, giving rise to a close correspondence between the two great
mathematicians of the XVI century.

Drawing the two hexagons, starting from the same triangle, the collinearity of the corre-
sponding Napoleon and Fermat points with its circumcenter catches the eye.

It is worth pointing out that the construction of the isosceles triangles may be also per-
formed internally to the sides of the given triangle or, equivalently, by making use of negative
base angles. This gives rise to the second isogonic center (X14), also called second Fermat
point, and to the second Napoleon point (X18).

2 Centered hexagons and Jacobi points

Escher and Fermat hexagons, together with their associated points, are special cases of a
general situation given by “centered” hexagons. A hexagon AC ′BA′CB′ is said to be centered
if its opposite diagonals AA′, BB′, CC ′ (joining opposite pairs of vertices) are concurrent at
a point P . As a direct consequence of Desargues’s theorem applied to the triangles ABC

1Isogonal lines through a triangle vertex are obtained by reflecting an initial line about the corresponding
angle bisector.

2In order to identify central points of a triangle. T = ABC, we shall recall their notations, as listed by Clark
Kimberling in [8]; for example: Incenter I = X1, Centroid G = X2, Circumcenter O = X3, Ortocenter
H = X4.
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Figure 2: Escher’s watercolor Nr 10 (© M. C. Escher Company, Baarn NL) with tessellating motive
based on Haag’s hexagon
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Figure 3: Circumcenter O, Napoleon point E and Fermat point F of the base triangle ABC are
collinear and this line is orthogonal to the perspectrix rE = rF

and A′B′C ′, the intersection points K = AB ∩ A′B′, L = AC ∩ A′C ′, M = BC ∩ B′C ′ of
the “twin” lines are collinear in the perspectrix rP of P , which we will later refer to as its
Desargues axis.

The following statement, regarding the special case of Escher’s and Fermat’s hexagons
(Figure 3), is a collection of more general results which will be proved in the next sections.
Theorem 1. Let T be a triangle. Then,

(a) The circumcenter O, the Napoleon point E, and the Fermat point F of T are collinear.
(b) The Desargues axis rE of E coincides with the Desargues axis rF of F .
(c) The line OEF is orthogonal to the Desargues axis rE = rF .

Since the line rE = rF arises from Escher’s and Fermat’s hexagons, we call it Escher-
Fermat line of T . Of course, an analogous theorem may be stated for the second Napoleon
and Fermat points, giving rise to the second Escher-Fermat line of T .

Centered hexagons can be obtained by starting from a given triangle T = ABC and
considering isogonal lines arising from its vertices A, B, C with angles α, β, γ respectively. In
fact, the intersection points A′, B′, C ′ of the isogonal lines produce the hexagon AC ′BA′CB′

and Jacobi’s theorem states that the lines AA′, BB′, CC ′ are concurrent at a point Jα,β,γ,
the Jacobi {α, β, γ}-point of T . Among other proofs of Jacobi’s theorem, the one given in [7]
is based on Ceva’s theorem and allows us to obtain the areal coordinates of Jα,β,γ

3( 1
cot A + cot α

,
1

cot B + cot β
,

1
cot C + cot γ

)
3For the sake of conciseness, we identify each angle of T with the name of the corresponding vertex.
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Figure 4: Jacobi’s construction in Cartesian coordinates

If, in particular, we set α = β = γ, then A′BC, B′AC, C ′AB are similar isosceles triangles
with base angle α (−π/2 ≤ α ≤ π/2): The corresponding point of concurrency Jα is called the
Jacobi α-point of T 4. Note that the Jacobi π/6-point (resp. π/3-point) of T is its Napoleon
(resp. Fermat) point.

It is also worth noting that the isosceles triangles are erected externally (resp. internally)
on the sides of the given triangle if, and only if, α is positive (resp. negative). Given a positive
α, we will call Jα (resp. J−α) the first (resp. second) Jacobi α-point of T , in analogy with
the terminology used for Fermat or Napoleon first and second point.

Theorem 2. If T is a given triangle, O be its circumcenter and Jα be its Jacobi α-point,
then the line OJα is orthogonal to the Desargues axis rα of Jα.

Proof. In the special case in which T is isosceles5 (based on AB, say), all Jacobi α-points Jα

lie on the median line CO joining C with the circumcenter O. Moreover, the Desargues axis
of each Jα are parallel to AB and hence orthogonal to CG.

If T is non isosceles, the result can be proved by simple, but rather lengthy computations
in Cartesian coordinates. In fact, we may suppose that the coordinates of the vertices A, B,
C of T are (Figure 4)

A = (a, 0), B = (0, 0), C = (xC , yC), with a, yC > 0, xC ≥ 0.

and the coordinates of its circumcenter O are

O =
(

a

2 ,
x2

C + y2
C − xCa

2yC

)
.

If k := tan α, then the vertices A′, B′, C ′ of the isosceles triangles with base angle α are

A′ =
(

xC − yCk

2 ,
yC + xCk

2

)
, B′ =

(
xC + yCk + a

2 ,
−xCk + yC + ak

2

)
, C ′ =

(
a

2 , −a

2k
)

.

4The Jacobi α-point is often called the Kiepert α-perspector of T and the triangle A′B′C ′ its Kiepert α-
triangle.

5The case of an equilateral triangle T is trivial, since all Jacobi α-points coincide with the centroid G, whose
Desargues axis is the line at infinity. From now on, T is assumed to be non-equilateral.
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Since
AA′ : Y = (yC + xCk)(X − a)

xC − yCk − 2a

and
CC ′ : Y = (2yC + ak)X − a(yC + xCk)

2xC − a

we can obtain the following coordinates of the Jacobi point J = Jα = AA′ ∩ CC ′:

xJ = a[xCyC(1 + k2) + x2
Ck + y2

Ck + ayC + axCk]
2x2

Ck + 2y2
Ck − 2axCk + (3 + k2)ayC + 2a2k

,

yJ = a[2xCy2
C − 2x3

Ck2 + 2axCyCk − ay2
C + 3ax2

Ck2 − a2yCk − a2xCk2]
(2xC − a)[2x2

Ck + 2y2
Ck − 2axCk + (3 + k2)ayC + 2a2k] .

In the same way, K = AB ∩ A′B′:

AB : Y = 0, A′B′ : X = 1
−2xCk + ak

Y + 2x2
Ck + 2y2

Ck + ayC(1 + k2)
2k(2xC − a) ,

xK = 2x2
Ck + 2y2

Ck + ayC(1 + k2)
2k(2xC − a) , yK = 0,

and L = AC ∩ A′C ′

AC : X = xC − a

yC

Y + a, A′C ′ : X = xC − yCk − a

yC + xCk + ak
Y + ayC(1 − k2) + 2axCk

2(yC + xCk + ak) ,

xL = a[2x2
Ck + 2y2

Ck − xCyC(1 + k2) − 2axCk + ayC(1 + k2)]
2k(x2

C + y2
C − a2) ,

yL = −ayC [(1 + k2)yC + 2ak]
2k(x2

C + y2
C − a2) .

If −−→
LK ≡ (−−→LKx,

−−→
LKy), with −−→

LKx = xK − xL,
−−→
LKy = yK − yL, and −→

OJ ≡ (−→OJx,
−→
OJy), with

−→
OJx = xJ − xO,

−→
OJy = yJ − yO, from the coordinates of O, J, L, K we obtain:

−−→
LKx =

−−→
LKxn
−−→
LKxd

,
−−→
LKy =

−−→
LKyn
−−→
LKyd

,
−→
OJx =

−→
OJxn
−→
OJxd

,
−→
OJy =

−→
OJyn
−→
OJyd

,

with
−−→
LKxn = 2a3xck − 4a2xC

2k + 3a2xCyC(1 + k2) + 4axC
3k + 4axCyC

2k

− 3axC
2yC(1 + k2) − ayC

3(1 + k2) − 2xC
4k − 4kxC

2yC
2k − 2yC

4k,
−−→
LKxd = 2k(a − 2xC)(−a2 + xC

2 + yC
2),

−−→
LKyn = ayC(2ak + yC(1 + k2)),
−−→
LKyd = 2k(−a2 + xC

2 + yC
2),

−→
OJxn = −a(a − 2xC)(2ak + yC(1 + k2)),
−→
OJxd = 2(2a2k − 2axCk + ayC(3 + k2) + 2xC

2k + 2yC
2k),

−→
OJyn = 2a3xck − 4a2xC

2k + 3a2xCyC(1 + k2) + 4axC
3k + 4axCyC

2k

− 3axC
2yC(1 + k2) − ayC

3(1 + k2) − 2xC
4k − 4kxC

2yC
2k − 2yC

4k,
−→
OJyd = 2yC(2a2k − 2axCk + ayC(3 + k2) + 2xC

2k + 2yC
2k).
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Since the orthogonality condition between −−→
LK and −→

OJ is

−−→
LKx

−→
OJx + −−→

LKy

−→
OJy =

−−→
LKxn

−→
OJxn

−−→
LKxd

−→
OJxd

+
−−→
LKyn

−→
OJyn

−−→
LKyd

−→
OJyd

= 0 (1)

and

−−→
LKxn = −→

OJyn,
−→
OJyd = yC

−→
OJxd,

−−→
LKyd =

−−→
LKxd

(a − 2xC) ,
−→
OJxn = −(a − 2xC)−−→LKyn

yC

,

by substituting into (1), we obtain

−
−→
OJyn

−−→
LKyn(a − 2xC)

−−→
LKxd

−→
OJxd yC

+
−−→
LKyn

−→
OJyn(a − 2xC)

−−→
LKxd

−→
OJxd yC

= 0

which shows that (1) holds true.

3 Jacobi complementary points

Let Jα (resp. Jα′ ) be a Jacobi α-point (resp. α′-point) of T : Jα and Jα′ are said to be
complementary if α and α′ are complementary angles. Since the range of α and α′ is the
interval [−π/2, π/2], the complementarity between α and α′ means α + α′ = π/2 (resp.
−π/2) if α and α′ belongs to [0, π/2] (resp. to [−π/2, 0]).

We call the line containing Jα and Jα′ the α-line of T .

Theorem 3. Let O be the circumcenter of the triangle T = ABC and let Jα and Jα′ be a
pair of complementary Jacobi points. Then, O, Jα, and Jα′, are collinear.

Proof. It is sufficient to proof that the determinant of the matrix M whose rows are the areal
coordinates of O, Jα, and Jα′ , equals 0.

By using the areal coordinates of the three points [7], since α and α′ are complementary,
we have

M =


sin(2A) sin(2B) sin(2C)

1
cot A + cot α

1
cot B + cot α

1
cot C + cot α

1
cot A + tan α

1
cot B + tan α

1
cot C + tan α

 .

By applying double-angle formulae in the first row and by expressing cot, tan by sin, cos in
the 2nd and 3rd row, we obtain

det M = 2 sin α cos α sin A sin B sin C det M ′,

and hence

M ′ =


cos A cos B cos C

1
cos A sin α + sin A cos α

1
cos B sin α + sin B cos α

1
cos C sin α + sin C cos α

1
cos A cos α + sin A sin α

1
cos B cos α + sin B sin α

1
cos C cos α + sin C sin α

 .
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Therefore O, Jα, and Jα′ are collinear if, and only if, det M ′ = 0.
Note that the three denominators of the 2nd row can be expressed as sin(A+α), sin(B+α),

sin(C + α), while those of the 3rd row as cos(A − α), cos(B − α), cos(C − α). Therefore, we
have

M ′ =



cos A cos B cos C

1
sin (A + α)

1
sin (B + α)

1
sin (C + α)

1
cos (A − α)

1
cos (B − α)

1
cos (C − α)


with det M ′ = cos A det M ′

11 + cos B det M ′
12 + cos C det M ′

13, where

M ′
11 =


1

sin (B + α)
1

sin (C + α)
1

cos (B − α)
1

cos (C − α)

 , M ′
12 =


1

sin (C + α)
1

sin (A + α)
1

cos (C − α)
1

cos (A − α)

 ,

M ′
13 =


1

sin (A + α)
1

sin (B + α)
1

cos (A − α)
1

cos (B − α)

 .

After some simple computations and by defining Y1, Y2, Y3, X1, X2, X3 as

Y1 = sin(C + α) cos(B − α) − sin(B + α) cos(C − α),
Y2 = sin(A + α) cos(C − α) − sin(C + α) cos(A − α),
Y3 = sin(B + α)cos(A − α) − sin(A + α) cos(B − α),

X1 = cos A sin(A + α) cos(A − α),
X2 = cos B sin(B + α) cos(B − α),
X3 = cos C sin(C + α) cos(C − α),

we obtain the following expression for det M ′:

det M ′ = X1Y1 + X2Y2 + X3Y3

sin(A + α) sin(B + α) sin(C + α) cos(A − α) cos(B − α) cos(C − α) (2)

and then, det M ′ = 0 if, and only if, Y = X1Y1 + X2Y2 + X3Y3 = 0.
The application of the prostaphaeresis formulae sin(θ) cos(φ) = 1

2(sin(θ + φ) + sin(θ − φ))
to Y1, Y2, Y3 yields

Y1 = − sin(B − C) cos(2α), Y2 = − sin(C − A) cos(2α), Y3 = − sin(A − B) cos(2α),

while the application to X1 ,X2 ,X3 yields

X1 = cos A(sin A cos A + sin α cos α),
X2 = cos B(sin B cos B + sin α cos α),
X3 = cos C(sin C cos C + sin α cos α).

Therefore, we obtain

Y = − cos A(sin A cos A + sin α cos α) sin(B − C) cos(2α)
− cos B(sin B cos B + sin α cos α) sin(C − A) cos(2α)
− cos C(sin C cos C + sin α cos α) sin(A − B) cos(2α).
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Figure 5: Kiepert hyperbola K and complementary Jacobi points

Now, we write Y in the following way

Y = − cos(2α)(Y ′ + Y ′′)

where

Y ′ = sin A cos2 A sin(B − C) + sin B cos2 B sin(C − A) + sin C cos2 C sin(A − B)

and

Y ′′ = cos A sin α cos α sin(B − C) + cos B sin α cos α sin(C − A) + cos C sin α cos α sin(A − B).

A simple computation gives Y ′′ = 0. Hence Y = 0 if, and only if, Y ′ = 0.
Finally, recall that C = π − (A + B), and hence,

sin C = sin(A + B) = sin A cos B + sin B cos A,

cos C = − cos(A + B) = − cos A cos B + sin A sin B.

By substituting these formulas, a straightforward computation gives Y ′ = 0.
Summarizing, O, Jα, and Jα′ are collinear because det M = 0. In fact, by reducing det M

to (2) and decomposing the numerator Y = X1Y1 + X2Y2 + X3Y3 via the prostaphaeresis
formulae into the additive terms Y ′ + Y ′′, one can prove that both Y ′ and Y ′′ evaluate
identically equal to zero (regardless of α).
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Note that a direct consequence of Theorem 3 is statement (a) of Theorem 1: In this
way, the Escher-Fermat line of T is its π/6-line. It is also worth noting that the degenerate
situations given by α = 0 and α = π/2 respectively produces the complementary Jacobi
points J0 = G and Jπ/2 = H, where G denotes the centroid of T and H its orthocenter:
Thus, the Euler-line of T is its 0-line.
Remark 3.1. By a slight modification in the proof of Theorem 3, it can be shown that the
Lemoine or symmedian point U (X6) of T is the intersection of all lines joining the first and
second Jacobi α-points of T . This result appears as Exercise 2, Page 48 in [9].

4 An Involution on the Kiepert hyperbola

Theorem 3, together with Theorem 2, puts in evidence the role of the circumcenter in the
geometry of the triangle related to Kiepert conics.

The Kiepert hyperbola K of a (non-equilateral) triangle T is the (unique) rectangular
hyperbola containing the vertices A, B, C of T and its centroid G (Figure 5). Note that K is
degenerate if, and only if, T is isosceles (whose base is AB, say). In fact, K reduces to a pair
of perpendicular lines, namely to the side AB and the opposite median CG. Moreover, the
circumcenter O, together with any Jacobi point, lies on CG. Thus, suppose T is non-isosceles,
i.e., K is non-degenerate. It is well-known (see for example [2] or [6]) that many remarkable
points of T are contained in K, among them the orthocenter H, the Fermat points and the
Napoleon points.

Each point X in the plane induces an involution ωX on K, centered in X, defined as
follows. For each P ∈ K, if the line XP is a secant of K, then ωX(P ) is the other intersection
point of XP with K. If XP is tangent to K at P , then set ωX(P ) = P . The point X and
its polar line pX are respectively center and axis of the involution ωX . Recall that pX is the
locus of all intersection points of line pairs which are associated in ωX .

The perspective collineation φX on the plane inducing the involution ωX on K is a har-
monic (involutory) homology with center X and axis pX . Its center X and all points of pX

are fixed points in φX , while pX and any line containing X is mapped into itself. Moreover,
since φX is harmonic, if P , P ′ are corresponding points (collinear with X) and P ∗ denotes
the intersection point of the line PP ′ with the axis pX of φX , then P ∗ is the harmonic con-
jugate of X with respect to P and P ′. In other words: The cross ratio of the ordered points
P, P ′, X, P ∗ is (P, P ′, X, P ∗) = −1.

The line d1 (resp. d2) from X which is parallel to the asymptote a1 (resp. a2) of K
intersects the hyperbola in the point at infinity D∞

1 of a1 (resp. D∞
2 of a2) and in a proper

point D1 (resp. D2). Therefore, the intersection point of D1D2 with D∞
1 D∞

2 , i.e., the point
at infinity of D1D2, lies on the axis pX of ωX . In other words: D1D2 and pX are parallel.
Note that D1D2 and the line at infinity are corresponding elements in φX : this proves that
D1D2 is equidistant from X and the axis pX . Moreover, the fourth point D in the rectangle
XD1D2D, i.e., the intersection point of the corresponding lines D1D

∞
2 and D2D

∞
1 , lies on

the axis pX . On the other side, D lies on the diameter of K containing X. In fact, with
respect to the canonical Cartesian coordinate system whose axes are the asymptotes of K,
the coordinates of D and X are reciprocal each other and hence these points are collinear
with the origin of the reference system, i.e., the center of the hyperbola. Since this diameter
is the polar line of the point at infinity of the axis pX (or of D1D2), the intersection points
V1, V2 of the hyperbola with pX are symmetric with respect to the diameter XD along pX ,
and then, D is the midpoint between V1 and V2.
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Figure 6: Autopolar triangle OUN with respect to Kiepert hyperbola

If, in particular, we take the circumcenter O of T as the center of the involution, we can
reformulate Theorem 3 in the following way: Complementary Jacobi points of T are pairs of
corresponding points in the involution ωO on K.

The following remarks are direct consequences of the above result:
Remark 4.1. If E1, E2 (resp. F1, F2) are the first and the second Napoleon (resp. Fermat)
point, the pairs (G, H), (E1, F1), (E2, F2) are corresponding points in the involution ωO, via
the Euler line and the Escher-Fermat lines, respectively.
Remark 4.2. If tO and t′

O denote the tangent lines from O to K, then the tangent points V1
and V2 are the first and second Jacobi π/4-point6. Therefore, tO (resp. t′

O) is the polar line
of V1 (resp. V2) and the line joining these two tangent points is the polar line pO of O, with
respect to K, i.e., the axis of ωO and φO: We will call it the V ecten line of T . Note that,
if N is the intersection point of pO with the Euler line, the cross ratio (G, H, O, N) is −1.
This proves that N is the midpoint of OH and hence N is the nine-point center of T (see X5
properties in [8]).

Remark 4.3. Let d1 (resp. d2) denote the line from O which is parallel to the asymptote a1
(resp. a2) of K and let D1 (resp. D2) be the proper intersection point of the hyperbola with
d1 (resp. with d2)7. Then, the line D1D2 is parallel to the axis pO and is equidistant from O

6These points are also known as Vecten Points X485 and X486.
7By using Peter J. C. Moses’s “6, 9, 13 Search Function” in [8], we identify D1, D2 as the triangle centers

X6177 and X6178, the Ceva points of the real (resp. imaginary) foci of the Steiner inellipse.
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and pO. As a consequence, the fourth point8 D in the rectangle OD1D2D lies on the Vecten
line pO and is the midpoint between the Vecten points.

Remark 4.4. Recall (see Remark 3.1) that the Lemoine point U belongs to the Fermat line f
(resp. to the Escher line e) joining the Fermat points F1, F2 (resp. the Napoleon points E1,
E2). In other words, U is the intersection point of f and e. Thus, U belongs to the axis pO

of ωO, and hence, its polar line pU contains O. On another side, U belongs to the diameter
f = F1F2 of the hyperbola. Therefore, the tangent lines to K at F1 and F2 are parallel and
pU is the line through O which is parallel to these tangent lines. In fact, later we will see that
it is the Euler line.

Besides the circumcenter O of T , other remarkable points P may be considered as centers
of the involution ωP on K defined in the beginning of this section (Figure 6). In particular,
since the Lemoine point U is the intersection point of all lines joining the first and second
Jacobi α − points Jα and J−α of T (Remark 3.1), then Jα and J−α are pairs of corresponding
points in the involution ωU .

Another interesting involution arises if we consider the nine-point center N of T , as we
may see in what follows.

First of all, recall that four distinct points on a conic define an autopolar triangle, whose
vertices are the diagonal points of the quadrilateral. Now, if E1, E2 (resp. F1, F2) are the first
and the second Escher (resp. Fermat) points of T , then the vertices of the autopolar triangle
defined by these four points on Kiepert hyperbola K are the circumcenter O, the Lemoine
point U , and the nine-point center N .

This property which brings us back to the classical context of the historical introduction,
may be obtained as a special case of the following theorem, summarizing, in some sense, the
results obtained in the present section.

Theorem 4. Let T be a triangle and let α, α′ be complementary angles.
(a) The intersection point of the lines JαJα′ and J−αJ−α′ is the circumcenter O of T .
(b) The intersection point of the lines JαJ−α and Jα′J−α′ is the Lemoine point U of T .
(c) The intersection point of the lines JαJ−α′ and J−αJα′ is the nine-point center N of T .

Moreover, the triangle OUN is autopolar with respect to Kiepert hyperbola K and its sides
are the Brocard axis OU , the Euler line ON , and the Vecten line UN .

Proof. The statement (a) (resp. (b)) is a direct consequence of Theorem 3 (resp. of Re-
mark 3.1). Recall that the polar line pO of the circumcenter O is the Vecten line, containing
N and U (Remarks 4.2 and 4.4). The fixed points of the involution ωU are the centroid
G = J0 and the orthocenter H = J−π/2 of T . Hence, the tangent lines to K from U are the
lines UG and UH: Equivalently, the polar line pU , i.e., the axis of the involution ωU , is the
Euler line (containing O). Remark 3.1 states that the intersection point of the Euler line pU

with the polar line pO of the circumcenter O is the nine-point center N (Figure 6): Therefore,
the polar line pN of N is the line OU , the Brocard axis of T (cf. [2, p. 195]). This proves
the last part of the theorem. Finally, if N ′ identifies the intersection point of the lines JαJ−α′

and J−αJα′ , the triangle OUN ′ is autopolar and then N ′ is the pole of the Brocard axis OU .
This proves N = N ′ and hence statement (c).
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Figure 7: Desarguesian configuration

5 Desarguesian configurations and Kiepert parabola

Now we describe a configuration which allows to obtain an interesting consequence of the
collinearity of O with complementary Jacobi points given in Theorem 3.

Let be given in the plane an extended Desargues configuration, i.e., nine distinct points
A1, A2, A3, B1, B2, B3, C1, C2, C3 such that all the triads of points (A1, A2, A3), (B1, B2, B3),
(C1, C2, C3) and, for each i = 1, 2, 3, (Ai, Bi, Ci), are not collinear.

In what follows, (i, j) ∈ {(1, 2), (1, 3), (2, 3)}. Then, for each (i, j) set Ki,j = AiBi ∩AjBj,
Li,j = AiCi ∩ AjCj, Mi,j = BiCi ∩ BjCj and Ri,j = AiAj ∩ BiBj, Si,j = AiAj ∩ CiCj,
Ti,j = BiBj ∩ CiCj (Figure 7).

Lemma 1. For each (i, j), we have Ri,j = Si,j = Ti,j if, and only if, Ki,j, Li,j, Mi,j are
collinear.

Proof. It is Desargues’s theorem applied to the triangles Ai, Bi, Ci and Aj, Bj, Cj.

Lemma 2. With the above notations, we have:
(a) K12 = K13 = K23 if, and only if, R12, R13, R23 are collinear.
(b) L12 = L13 = L23 if, and only if, S12, S13, S23 are collinear.
(c) M12 = M13 = M23 if, and only if, T12, T13, T23 are collinear.

Proof. It is sufficient to apply Desargues’s theorem to the triangle pairs (A1A2A3, B1B2B3),
(A1A2A3, C1C2C3), (B1B2B3, C1C2C3) respectively (Figure 7).

8This point is the intersection point of the Vecten line and the line joining the circumcenter with the center
X115 of the Kiepert hyperbola and could not be found in [8].
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Figure 8: Desargues’s theorem applied to triangles (A, A′, A′′), (B, B′, B′′), and (C, C ′, C ′′)
.

The following result is a direct consequence of the previous lemmas:

Theorem 5. For each (i, j), we have Rij = Sij = Tij = Zij with Z12, Z13, Z23 collinear if,
and only if, K12 = K13 = K23 = K, L12 = L13 = L23 = L, M12 = M13 = M23 = M with K,
L, M collinear.

Let now T = ABC be a given triangle and let A′, B′, C ′ (resp. A′′, B′′, C ′′ ) denote the
vertices opposite to the three vertices of the similar isosceles triangles with base BC, AC,
AB and base angle α (resp. α′ ), with α and α′ complementary (Figure 8). We refer to the
pair (T , α) as the Jacobi α-triangle ABC. Then, we have:

R12 = S12 = T12 = A′A′′ ∩ B′B′′ ∩ C ′C ′′ = circumcenter O of T , R13 = S13 = T13 =
AA′ ∩ BB′ ∩ CC ′ = Jacobi α-point Jα of T , R23 = S23 = T23 = AA′′ ∩ BB′′ ∩ CC ′′ =
Jacobi α′-point Jα′ of T .

Note that Jα and Jα′ are complementary Jacobi points.

Theorem 6. In each Jacobi α-triangle ABC, the lines AB, A′B′, A′′B′′ are concurrent in a
point K, the lines AC, A′C ′, A′′C ′′ are concurrent in a point L, the lines BC, B′C ′, B′′C ′′ are
concurrent in a point M .

Moreover, K, L, and M are collinear on a line rα, which is the common Desargues axis of
the complementary Jacobi points Jα and Jα′ of T and is orthogonal to the α-line JαJα′ of T .

Proof. Since O, Jα, Jα′ are collinear (Theorem 3), Lemma 2 proves K12 = K13 = K23 = K,
L12 = L13 = L23 = L and M12 = M13 = M23 = M , with K, L, M collinear. This implies,
in particular, that the line containing the collinear points K13, L13, M13 (the Desargues axis
of Jα) and the line containing the collinear points K23, L23, M23 (the Desargues axis of Jα′)
actually coincide. The last statement of the Theorem follows from Theorem 2.
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Figure 9: Kiepert hyberbola K and Kiepert parabola P

Note that direct consequences of Theorem 6 are statements (b) and (c) of Theorem 1.
Theorem 6 leads to an alternative construction of the Desargues axis rα of the comple-

mentary Jacobi points Jα and Jα′ and to a deeper insight on the relations between the Kiepert
hyperbola and the Kiepert parabola of the given triangle. Following [2], we recall that the
Kiepert parabola P of a triangle T is the envelope of the Desargues axes of all α-Jacobi points
of T . Moreover, P is inscribed into T and the Euler line is the directrix of P (Figure 9).

Corollary 6.1. Let T be a triangle and let Jα, Jα′ denote complementary Jacobi points of T .
Then, the common Desargues axis rα of Jα and Jα′ is the (unique) line which is orthogonal
to the α-line JαJα′ and tangent to the Kiepert parabola P.

Proof. The statement is a direct consequence of Theorem 6. In fact, recall that the foot of
the perpendicular from the focus of a parabola to any tangent belongs to the tangent at the
vertex. So, if sα is the line from the focus of P which is parallel to the α-line JαJα′ and if
Sα denotes the intersection point of sα with the tangent to P at its vertex, then the common
Desargues axis rα is the tangent to P simply obtained as the line from Sα which is orthogonal
to sα (or to JαJα′).

In fact, the construction of rα described in the proof of Corollary 6.1 induces a correspon-
dence Φ which associates to each α-line JαJα′ of T the Desargues axis rα of Jα and Jα′ .

Reversing this construction, given a line t enveloping the Kiepert parabola P , we may
consider the line from O which is orthogonal to t. In this way, besides the Euler line whose
associated Desargues axis is the line at infinity, we can deduce, for example, that the line
of the pencil centered in O associated to the Lemoine axis of the triangle, the so-called fifth
tangent to P [2], is just its Brocard axis OU .

Another remarkable example may be considered by recalling that the axes s1, s2 of the
Steiner ellipse of a triangle T are parallel to the asymptotes of its Kiepert hyperbola and
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tangent to its Kiepert parabola (see [6], Theorem 3). In this case, if d1 (resp. d2) is the α-line
(resp. β-line) from the circumcenter O of T which is parallel to the asymptote a1 (resp. a2)
of K (recall Remark 4.3), we have Φ(d1) = s2 and Φ(d2) = s1. Therefore, the intersections
D1, D∞

1 (resp. D2, D∞
2 ) of d1 (resp. d2) with K are complementary Jacobi α-points (resp.

β-points) of T , for a suitable base angle α (resp. β), whose common Desargues axis is just
the Steiner axis s1 (resp. s2). Note that, if Qi denotes the tangent point of the Steiner axis si

with P , the polar line of the centroid G is the line Q1Q2, which, for the polarity reciprocity
law, also contains the focus of P .
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