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Abstract. In this paper we prove some properties of tangential quadrilateral in
an isotropic plane. We also determine a condition for tangential quadrilateral to
be cyclic.
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1 Motivation

The concept of cyclic quadrangle in an isotropic plane was introduced and studied in [12],
and its specilal case, harmonic quadrangle, was discussed in [5]. Non-tangential quadrilaterals
were observed in [1] and [11]. On the other hand, tangential quadrilaterals have been some-
how neglected. Motivated by that fact, in this paper we study the properties of tangential
quadrilaterals in the isotropic plane.

In Euclidean geometry, tangential quadrilateral or circumscribed quadrilateral is a convex
quadrilateral whose sides are tangent to a circle within the quadrilateral. The tangential
quadrilateral PQRS is characterized by the fact that the two pairs of opposite sides add up
to the same total length i.e.

d(P, Q) + d(R, S) = d(Q, R) + d(S, P ). (1)

An ex-tangential quadrilateral or exscriptible quadrilateral is a convex quadrilateral where
the extensions of its sides are tangent to a circle outside the quadrilateral. The convex
quadrilateral PQRS is ex-tangential quadrilateral if and only if the sum of two adjacent sides
is equal to the sum of the other two sides. This is possible if

d(P, Q) + d(Q, R) = d(R, S) + d(S, P ) (2)

or
d(Q, P ) + d(P, S) = d(Q, R) + d(R, S). (3)

We will prove that in the isotropic plane a tangential quadrilateral is characterized with
relation similar to (1) i.e.

d(P, Q) = −d(R, S), d(Q, R) = −d(S, P ). (4)

It should be noticed that relations (2) and (3) always hold in the isotropic plane.
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2 Introduction

All metric quantities and notations related to the geometry of the isotropic plane can be found
in [9]. Here we recall only same basic definitions and facts about such a plane. It is a real
projective plane where the metric is induced by a real line f and a real point F incident with
it. All lines through the absolute point F are called isotropic lines, and all points incident
with the absolute line f are called isotropic points. Two lines are parallel if they pass through
the same isotropic point, and two points are parallel if they lie on the same isotropic line. In
the affine model of the isotropic plane where the coordinates of points are defined by x = x1

x0
,

y = x2
x0

, the absolute line has the equation x0 = 0 and the absolute point has the coordinates
(0, 0, 1). For two non-parallel points A = (xA, yA) and B = (xB, yB) the distance is defined by
d(A, B) = xB −xA, and for two parallel points A = (x, yA) and B = (x, yB) the span is defined
by s(A, B) = yB − yA. Two non-parallel lines p and q given by the equations y = kpx + lp
and y = kqx + lq form the angle defined by ∠(p, q) = kq − kp. The midpoint of points A and
B is given by

(
1
2(xA + xB), 1

2(yA + yB)
)
, while the bisector of lines p and q is given by the

equation y = 1
2(kp + kq)x + 1

2(lp + lq). A circle is defined as a conic touching the absolute
line at the absolute point and therefore it has an equation of the form y = ux2 + vx + w,
u, v, w ∈ R.

A figure consisting of four lines A, B, C and D and their six intersections is called a
complete quadrilateral ABCD. The pairs of points P = A ∩ B, R = C ∩ D; M = A ∩ C,
N = B ∩D and S = A∩D, Q = B ∩C are called the opposite vertices of quadrilateral. There
is unique conic touching lines A, B, C, D and the absolute line of the isotropic plane. If that
conic is a circle, ABCD is a tangential quadrilateral. If that conic is a parabola, ABCD is a
non-tangential quadrilateral, [11].

Let a circle k with the equation
y = x2 (5)

be given. Let the lines A, B, C, D be its tangents with respective contact points

A = (a, a2), B = (b, b2), C = (c, c2), D = (d, d2). (6)

Then lines A, B, C, D have equations

A . . . y = 2ax − a2, B . . . y = 2bx − b2,

C . . . y = 2cx − c2, D . . . y = 2dx − d2.
(7)

The vertices of the quadrilateral ABCD are

P = A ∩ B =
(

a + b

2 , ab
)

, R = C ∩ D =
(

c + d

2 , cd
)

,

Q = B ∩ C =
(

b + c

2 , bc
)

, S = D ∩ A =
(

d + a

2 , da
)

,

M = A ∩ C =
(

a + c

2 , ac
)

, N = B ∩ D =
(

b + d

2 , bd
)

.

(8)

Since d(P, Q) = c−a
2 , d(Q, R) = d−b

2 , d(R, S) = a−c
2 and d(S, P ) = b−d

2 , it follows immedi-
ately d(P, Q) = −d(R, S) and d(Q, R) = −d(S, P ). Similarly we get d(M, P ) = −d(N, R),
d(P, N) = −d(R, M) and also d(M, S) = −d(N, Q), d(S, N) = −d(Q, M).
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Therefore, we can conclude that if ABCD is tangential quadrilateral and P, R; Q, S and
M, N are the pairs of its opposite vertices, the following six equalities hold:

d(P, Q) = −d(R, S), d(Q, R) = −d(S, P ),
d(M, P ) = −d(N, R), d(P, N) = −d(R, M),
d(M, S) = −d(N, Q), d(S, N) = −d(Q, M).

(9)

Let us now prove the opposite. We will assume that A, B, C are tangent to a circle and that
D is a line. We have to show that if (9) holds, then D is tangent to the same circle. Let
A, B, C be tangent to the circle k with equation y = x2. Thus, they have equations of the
following form

A . . . y = 2ax − a2, B . . . y = 2bx − b2, C . . . y = 2cx − c2

and
D . . . y = kx + l. (10)

Now we have,

P = A ∩ B =
(

a + b

2 , ab
)

, R = C ∩ D =
(

c2 + l

2c − k
,
c(kc + 2l)

2c − k

)
,

Q = B ∩ C =
(

b + c

2 , bc
)

, S = D ∩ A =
(

a2 + l

2a − k
,
a(ka + 2l)

2a − k

)
,

M = A ∩ C =
(

a + c

2 , ac
)

, N = B ∩ D =
(

b2 + l

2b − k
,
b(kb + 2l)

2b − k

)
.

(11)

If, d(P, Q) = −d(R, S) then c−a
2 = c2+l

2c−k
− a2+l

2a−k
. That is true precisely when (2c−k)(2a−k) =

2(2ac − k (a + c) − 2l) which holds if and only if l = −k2

4 i.e. if D is tangent to k. If we
used some of the other five equalities from (9), a similar calculation would lead to the same
result. Thus, if one of the six equalities stated in (9) holds, the other five are also valid. Our
observation gives a characterization of the tangential quadrilaterals:

Theorem 1. The quadrilateral ABCD with the pairs of the opposite verices P, R; Q, S and
M, N is a tangential quadrilateral if and only if

d(P, Q) = −d(R, S), d(Q, R) = −d(S, P ),
d(M, P ) = −d(N, R), d(P, N) = −d(R, M),
d(M, S) = −d(N, Q), d(S, N) = −d(Q, M).

3 Some properties of tangential quadrilateral

In this section, we will prove several theorems dealing with the properties of the tangential
quadrilateral ABCD. In the proofs we use equations of the sides of ABCD given by (7) and
coordinates of the vertices given by (8).

Theorem 2. Let ABCD be a tangential quadrilateral with sides A, B, C, D touching a circle
k at points A, B, C, D, respectively. Vertices P = A∩B, R = C ∩D, M = A∩C, N = B∩D,
S = A ∩ D, Q = B ∩ C are parallel to the midpoints MAB, MCD, MAC, MBD, MAD, MBC of
the line segments AB, CD, AC, BD, AD, BC, respectively.
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Figure 1: Tangential quadrilateral ABCD with vertices P , R, Q, S, M , N .

Proof. Let ABCD be a tangential quadrilateral with sides given by (7) and vertices given by
(8). The point MAB has coordinates

(
a+b

2 , a2+b2

2

)
and is parallel to the point P =

(
a+b

2 , ab
)
.

Theorem 3. Let ABCD be a tangential quadrilateral. Midpoints MP R, MSQ, MMN of the
line segments formed by the pairs of opposite vertices are parallel points, Figure 1.

Proof. Let ABCD be a tangential quadrilateral with vertices given by (8). The points MP R,
MSQ, MMN have coordinates

(
a + b + c + d

4 ,
ab + cd

2

)
,

(
a + b + c + d

4 ,
bc + da

2

)
,

(
a + b + c + d

4 ,
ac + bd

2

)
, (12)

respectively. They lie on the isotropic line with the equation x = a+b+c+d
4 .
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The sides of the diagonal triangle of the tangential quadrilateral ABCD are given by

PR . . . y = 2(ab − cd)
a + b − c − d

x − ab(c + d) − cd(a + b)
a + b − c − d

,

SQ . . . y = 2(ad − bc)
a − b − c + d

x − ad(b + c) − bc(a + d)
a − b − c + d

,

MN . . . y = 2(ac − bd)
a − b + c − d

x − ac(b + d) − bd(a + c)
a − b + c − d

,

(13)

and its vertices are

U = PR ∩ SQ =
(

ac − bd

a − b + c − d
,
ac(b + d) − bd(a + c)

a − b + c − d

)
,

V = SQ ∩ MN =
(

ab − cd

a + b − c − d
,
ab(c + d) − cd(a + b)

a + b − c − d

)
,

W = MN ∩ PR =
(

ad − bc

a − b − c + d
,
ad(b + c) − bc(a + d)

a − b − c + d

)
.

(14)

Theorem 4. Let ABCD be a tangential quadrilateral with sides A, B, C, D touching a circle
k at the points A, B, C, D, respectively. The diagonal triangle of the quadrilateral ABCD
coincide with the diagonal triangle of the contact quadrangle ABCD, Figure 1. Particularly,

U = PR ∩ SQ = AC ∩ BD,

V = SQ ∩ MN = AB ∩ CD,

W = MN ∩ PR = AD ∩ BC.

Proof. It follows from (6) that the lines AB and CD have equations y = (a + b)x − ab and
y = (c + d)x − cd, respectively. Therefore, AC ∩ BD =

(
ac−bd

a−b+c−d
, ac(b+d)−bd(a+c)

a−b+c−d

)
. The other

two claims can be proved similarly.

Theorem 5. Let ABCD be a tangential quadrilateral with sides A, B, C, D touching a circle
k at the points A, B, C, D, respectively, and the pairs of the opposite vertices P = A ∩ B,
R = C ∩ D; M = A ∩ C, N = B ∩ D; S = A ∩ D, Q = B ∩ C. The following equalities are
valid:

d2(B, D)
d2(A, C) = d(P, S) · d(Q, R)

d(S, R) · d(P, Q) ,

d2(C, D)
d2(A, B) = d(M, S) · d(Q, N)

d(S, N) · d(M, Q) ,

d2(B, C)
d2(A, D) = d(P, M) · d(N, R)

d(M, R) · d(P, N) .

Proof. From (6) and (8) we get

d(P, S) · d(Q, R)
d(S, R) · d(P, Q) =

d−b
2 · d−b

2
c−a

2 · c−a
2

= (d − b)2

(c − a)2 = d2(B, D)
d2(A, C)

The other two equalities can be proved similarly.

Theorem 6. Let ABCD be a tangential quadrilateral with sides A, B, C, D touching a circle
k at the points A, B, C, D, respectively, and the pairs of the opposite vertices P = A ∩ B,
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R = C ∩ D; M = A ∩ C, N = B ∩ D; S = A ∩ D, Q = B ∩ C. The following equalities are
valid:

d(A, P ) = d(P, B), d(C, R) = d(R, D),
d(A, S) = d(S, D), d(C, Q) = d(Q, B),

d(A, M) = d(M, C), d(B, N) = d(N, D).

Proof. From (6) and (8) we get

d(A, P ) = a + b

2 − a = b − a

2 = b − a + b

2 = d(P, B).

The other five equalities can be proved similarly.

Theorem 7. Let ABCD be a tangential quadrilateral with sides A, B, C, D touching a circle
k at the points A, B, C, D, respectively, and the pairs of the opposite vertices P = A ∩ B,
R = C∩D; M = A∩C, N = B∩D; S = A∩D, Q = B∩C. Let U = PR∩SQ, V = SQ∩MN
and W = MN ∩ PR be its diagonal points. The following equalities are valid:

d(P, U)
d(U, R) = d(P, B)

d(R, D) ,
d(S, U)
d(U, Q) = d(S, D)

d(Q, B) ,

d(M, V )
d(V, N) = d(M, C)

d(N, D) ,
d(S, V )
d(V, Q) = d(S, D)

d(Q, C) ,

d(M, W )
d(W, N) = d(M, C)

d(N, B) ,
d(P, W )
d(W, R) = d(P, B)

d(R, C) .

Proof. We will prove the first equality and other five can be proved similarly. From (6), (8)
and (14) we get

d(P, U)
d(U, R) = 2(ac − bd) − (a + b)(a − b + c − d)

(c + d)(a − b + c − d) − 2(ac − bd) = (a − b)(c + d − a − b)
(d − c)(a + b − c − d) = b − a

d − c
= d(P, B)

d(R, D) .

Theorems 4–7 are also valid in the Euclidean plane, [3], [10], [14].
Using the notation from the previous theorem we can state:

Theorem 8. Let UA, UB, UC, UD, VA, VB, VC, VD, WA, WB, WC, WD be the points parallel
to the diagonal points U , V , W , and lying on the A, B, C, D, respectively. The following
equalities are valid:

1
s(U, UA) + 1

s(U, UC) = 1
s(U, UB) + 1

s(U, UD)
1

s(V, VA) + 1
s(V, VB) = 1

s(V, VC) + 1
s(V, VD)

1
s(W, WA) + 1

s(W, WD) = 1
s(W, WB) + 1

s(W, WC)

where by s the span between two parallel points is denoted.

Proof. We will prove the first equality, and the other two can be proved similarly. According
to (7) and (14) the intersection point UA of the isotropic line through U and line A has co-
ordinates

(
ac−bd

a−b+c−d
, 2a ac−bd

a−b+c−d
− a2

)
. Therefore, s(U, UA) = 2a ac−bd

a−b+c−d
− a2 − ac(b+d)−bd(a+c)

a−b+c−d
=
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− (a−b)(a−c)(a−d)
a−b+c−d

. Analogously we get spans s(U, UB) = (b−a)(b−c)(b−d)
a−b+c−d

, s(U, UC) = − (c−a)(c−b)(c−d)
a−b+c−d

and s(U, UD) = (d−a)(d−b)(d−c)
a−b+c−d

. Thus,

1
s(U, UA) + 1

s(U, UC) = (a − b + c − d)2

(a − b)(b − c)(a − d)(d − c) = 1
s(U, UB) + 1

s(U, UD) .

In [6] the author presented the Euclidean version of Theorem 8 in which the isotropic
lines through a diagonal point are substituted by the perpendicular lines to the sides of the
quadrilateral.

Let us consider two of three sides of diagonal triangle of ABCD, e.g. PR and SQ. If ki,
i = 1, . . . , 4, with equations y = Eix

2 + Fix + Gi are circles touching two observed diagonals
and sides A, B, C, D, respectively, then we have: E1 = −E3 and E2 = −E4. Indeed, a short
calculation in program Wolfram Mathematica results with

E1 = (a − c)(a − b + c − d)
(a + b − c − d)(a − b − c + d) = −E3

and
E2 = (b − d)(a − b + c − d)

(a + b − c − d)(a − b − c + d) = −E4.

The Euclidean version of this property can be found in [13], while the version of the property
that follows can be found in [4].

Let us now consider one diagonal point of ABCD, e.g. U = PR ∪ SQ. If kj, j = 1, . . . , 4,
with equations y = Ijx

2 + Jjx + Kj are circles passing through U and the pairs of vertices
P, S; P, Q; R, Q; R, S, respectively, then we have: I1 = −I3 and I2 = −I4. Indeed, a short
calculation in program Wolfram Mathematica results with

I1 = 4(a − c)(a − b + c − d)
(a + b − c − d)(a − b − c + d) = −I3

and
I2 = 4(b − d)(a − b + c − d)

(a + b − c − d)(a − b − c + d) = −I4.

In the Euclidean plane tangential quadrilateral PQRS is also cyclic if and only if d(P, A) ·
d(R, C) = d(Q, C) · d(S, A), [2]. In the isotropic plane the same condition leads to different
result:
Theorem 9. Let ABCD be a tangential quadrilateral with sides A, B, C, D touching a circle
k at the points A, B, C, D, respectively, and the pairs of the opposite vertices P = A ∩ B,
R = C ∩ D; S = A ∩ D, Q = B ∩ C. Equality

|d(P, A) · d(R, C)| = |d(Q, C) · d(S, A)| (15)
holds if and only if ABCD is a harmonic quadrangle.
Proof. Condition (15) can be fulfilled in two different ways. The equality d(P, A) · d(R, C) =
d(Q, C) · d(S, A) is not possible since a ̸= c and b ̸= d. On the other hand, condition
d(P, A) · d(R, C) = −d(Q, C) · d(S, A) is fulfilled if and only if 2(ac + bd) = (a + c)(b + d)
which is according to [5] true precisely when ABCD is a harmonic quadrangle, i.e. M = A∩C
lies on BD and N = B ∩ D lies on AC.

One more characterization of bicentric quadrilateral PQRS in the Euclidean plane is
given in [8] by: d(P,R)

d(Q,S) = d(P,B)+d(R,D)
d(Q,C)+d(S,A) , but this condition does not hold in the isotropic plane

since the given equality leads to the contradiction b = d.
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4 Condition for tangential quadrilateral to be cyclic

Theorem 10. The pairs of the opposite vertices P , R; M , N ; S, Q of a tangential quadrilat-
eral ABCD form three quadrangles PRMN , PRQS and QSMN . The following statements
hold

• PRMN is cyclic if and only if d(B, A) = d(D, C), d(C, A) = d(D, B).
• PRQS is cyclic if and only if d(C, B) = d(D, A), d(A, B) = d(D, C).
• QSMN is cyclic if and only if d(A, C) = d(D, B), d(B, C) = d(D, A).

Proof. We will prove the first statement. The other two can be proved similarly. The circle
PRM has the equation

y = 4(a − c)
a + b − c − d

x2 − 2(a2 − bc − c2 + ad)
a + b − c − d

x + a2c − ac2 − bc2 + a2d

a + b − c − d
,

while the circle PRN has the equation

y = 4(b − d)
a + b − c − d

x2 − 2(b2 + bc − ad − d2)
a + b − c − d

x + b2c + b2d − ad2 − bd2

a + b − c − d
.

They coincide precisely when the following three conditions are fulfilled:
(i) a − c = b − d
(ii) a2 − bc − c2 + ad = b2 + bc − ad − d2

(iii) a2c − ac2 − bc2 + a2d = b2c + b2d − ad2 − bd2.
Condition (i) is equivalent to the condition a + d = b + c, and condition (ii) is equivalent
to (a + d)2 = (b + c)2. Condition (iii) is equivalent to the condition (a − b)(a + b)(c + d) =
(c − d)(c + d)(a + b). Therefore, if condition (i) is fulfilled the other two are fulfilled as well.
Now we have d(B, A) = a − b = c − d = d(D, C) and d(C, A) = a − c = b − d = d(D, B).

If a, b, c, d are real numbers chosen such that a < b < c < d, then only quadrangle PRMN
can be a cyclic quadrangle, Figure 2. That case is described in the following theorem.

Theorem 11. Let the pairs of the opposite vertices of a tangential quadrilateral ABCD form
a cyclic quadrangle PRMN with circumscribed circle K. The following statements hold

• The diagonal point W is an isotropic point, i.e. the lines AD, BC, PR and MN are
parallel lines.

• The joint line of the intersection points of the circles k and K passes through W .
• The midpoint MSQ lies on K.
• The midpoints MP R, MMN coincide with the diagonal points U , V respectively.
• The bisectors of the pairs of sides of ABCD at vertices P , R, M and N are concurrent

in the midpoint MSQ.
• The bisectors of the pairs of sides of ABCD at vertices S and Q pass through the isotropic

point W .

Proof. Let m be a real number such that a + d = b + c = m, i.e. d = m − a, c = m − b. From
(13) we get

PR . . . y = mx + ab − m(a + b)
2 ,

MN . . . y = mx − ab + m(a + b) − m2

2 .
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Figure 2: Tangential quadrilateral ABCD with cyclic quadrangle PRMN .

Thus, PR and MN are the parallel lines and W is an isotropic point. The circle K has the
equation

y = 2x2 − mx + m(a + b) − a2 − b2

2 . (16)

The intersection points of the circles k and K have coordinatesm ±
√

(a + b − m)2 + (a − b)2

2 ,
a2 + b2 + m2 − m(a + b) ± m

√
(a + b − m)2 + (a − b)2

2


and their joint line has the equation

y = mx + a2 + b2 − m(a + b)
2
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being therefore parallel to PR and MN . The coordinates of the point MSQ =
(

m
2 , m(a+b)−a2−b2

2

)
obviously satisfy (16). Therefore, MSQ lies on K. From (12) and (14) we get MP R =(

m
2 , ab + m2−m(a+b)

2

)
= U and MMN =

(
m
2 , −ab + m(a+b)

2

)
= V .

Let bP , bR, bM , bN , bQ, bS denote the bisectors of the pair of lines A, B; C, D; A, C; B, D;
B, C; A, D, respectively. Using (7) and d = m − a, c = m − b, after some short calculations
we get

bP . . . y = (a + b)x − a2 + b2

2

bR . . . y = (2m − a − b)x − m2 + m(a + b) − a2 + b2

2

bM . . . y = (a − b + m)x + bm − a2 + b2 + m2

2

bN . . . y = (b − a + m)x + am − a2 + b2 + m2

2

bQ . . . y = mx − b2 + bm − m2

2

bS . . . y = mx − a2 + am − m2

2 .

The coordinates of the point MSQ =
(

m
2 , m(a+b)−a2−b2

2

)
satisfy the first four equations, which

proves that bP , bR, bM , bN are concurrent. The last two equations represent the parallel lines
passing through the isotropic point W .

5 On centroids and Nagel points of tangential quadrilateral

In [7] the Nagel line of a circumscriptible quadrilateral, the line containing the Nagel point,
centroid and incenter of the quadrilateral, in the Euclidean plane was studied. In this section
we will study the analogous points in the isotropic plane. It is well known that in the isotropic
plane the center of any circle coincide with the absolute point.

The pairs of the opposite vertices P , R; M , N ; S, Q of a tangential quadrilateral ABCD
form three quadrangles PRMN , PRQS and QSMN . Let us denote their centroids by G1,
G2, G3, and their Nagel points by N1, N2 and N3, respectively.

According to (8) the coordinates of this centroids are given by

G1 =
(

a + b + c + d

4 ,
ab + cd + ac + bd

4

)
G2 =

(
a + b + c + d

4 ,
ab + cd + bc + da

4

)
G3 =

(
a + b + c + d

4 ,
bc + da + ac + bd

4

)

while the centroid G of the contact quadrangle ABCD has coordinates

G =
(

a + b + c + d

4 ,
a2 + b2 + c2 + d2

4

)
.

They obviously lie on the isotropic line x = a+b+c+d
4 and we can conclude:
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Theorem 12. The centroids of the three quadrangles PRMN , PRQS and QSMN formed
by the pairs of the opposite vertices of a tangential quadrilateral ABCD and the centroid of
the contact quadrangle ABCD are parallel points.

Let us notice that in the case when PRMN is a cyclic quadrangle, then G1 lies on the
circle k. Indeed, G1 =

(
a+b+c+d

4 , ab+cd+ac+bd
4

)
=

(
2m
4 , (a+d)(b+c)

4

)
=

(
m
2 , m2

4

)
.

We will now consider one of the three quadrangles, e.g. PRMN . Let A1 be the isotomic
conjugate of A with respect to the segment PM and D1 be the isotomic conjugate of D with
respect to the segment RN . The points B1 and D1 are defined in the same way. The point
A1 has coordinates

(
b+c

2 , a(b+c−a)
)

since b+c
2 +a = a+b

2 + a+c
2 and a(b+c−a)+a2 = ab+ac.

Similarly we get D1 =
(

b+c
2 , d(b+c−d)

)
, C1 =

(
a+d

2 , c(a+d−c)
)

and B1 =
(

a+d
2 , b(a+d−b)

)
.

The lines A1D1 and B1C1 are isotropic lines passing through Q and S, respectively, and
intersecting at the absolute point of the isotropic plane. Thus, N1 coincide with the absolute
point. The same result holds for the other two quadrangles PRQS and QSMN and their
Nagel points N2 and N3.

At the end let us notice that in the case when PRMN is a cyclic quadrangle, then A1
and D1 coincide with Q, while B1 and C1 coincide with S. Indeed, A1 =

(
m
2 , ad

)
= D1 = Q

and B1 =
(

m
2 , bc

)
= C1 = S, where m = a + d = b + c.
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