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Abstract. The paper presents a computational technique to determine the vol-
ume of an n-dimensional polyhedron. Initially, the volume is computed for an
n-dimensional simplex which is used later to calculate the volume of an arbitrary
polytope using the method of signed simplex decomposition. A recursive algo-
rithm is used to compute the volume in n-dimensions. The proposed algorithm
not only calculates the volume efficiently but also avoids complex calculations in
higher dimensions.
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1 Introduction

The calculation of volume for a n-dimensional polyhedron is a very difficult problem. One
can visualize the objects up-to three dimension but for the objects of dimensions more than
three, it is quite challenging to analyze its geometry. The area of an arbitrary polygon can be
determined by decomposing it into number of non overlapping triangles with common edges.
Analogously, the volume of a convex polyhedron can also be determined by decomposing it
into number of non overlapping tetrahedrons (3-simplex). The volume of a simplex can be
determined by Cayley-Menger determinant but it cannot be used directly for an arbitrary
polyhedron. Polyhedrons can be decomposed into simplices using signed simplex decomposi-
tion.

Cho [4] derived a three dimensional formula for volume of a tetrahedron in terms of six
dihedral angles. Cho used the Cayley-Menger determinant to compute the volume of the
tetrahedron inscribed into a sphere. Bhattacharyya and Pal [2] proposed a three dimensional
volume formula for tetrahedron in terms face angles, inradii and circumradii of the faces of
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the tetrahedron. In this article, authors derived two volume formulas for a tetrahedron using
Caley-Menger determinant. They also assumed the tetrahedron circumscribed by a sphere.
They used Sine law and the properties of triangles to compute the exact volume. Choudhury
et al. [5] described the formula for volume of a pentahedron in terms of dihedral angles, face
angles and the sides of the tetrahedrons to which the pentahedron is decomposed. Caley-
Menger determinant is again used by the authors and some tensorial notation of volume for
the pentahedron is also given in this article. Sabitov [9] described the volume invariance
of a continuously deforming polyhedron through its dihedral angles. Dompierre et al. [6]
discussed the technique of subdividing hexahedra, pyramids, prisms into tetrahedra. This
technique is basically applied to use efficient algorithm for volume rendering in computer
graphics. Buchholz and Smith [3] proposed a tensorial version of volume for a simplex in n
dimensions. Newson [8] deduced a general formula for volume of a polyhedron with n number
of faces. Károlyi and Lovász [7] determined the existence of a signed sum decomposition of a
convex polytope in d-dimensional Euclidean space into number of simplices with its facets in
general position.

In this work, we have focused to calculate the volume of a general polyhedron in n-
dimensions. The organization of this paper is described as follows. Section 2 describes the
methodology used to derive the volume. Section 3 consists the justification of the proposed
method. Section 4 describes how signed simplex decomposition works. In Section 5, signed
simplex decomposition is established by the help of an example. Section 6 describes the
volume calculation for n-dimensional simplex using two algorithms. In Section 7, volume of
n-dimensional polyhedron is described and finally we have summarized our work in Section 8.

2 Method Outlines

In this method, it is assumed that the simplex is circumscribed by a sphere of radius R, i.e.
the simplex is well centered. The method initiates with a general expression for edge of the
simplex in terms of inradii or circumradii and face angles of the faces of the simplex. Using
this, a new expression defining a relation between the inradii or circumradii corresponding to
the faces of the simplex has been obtained. Finally the volume of the simplex is derived in
terms of inradii or circumradii and face angles of the faces of the simplex using the obtained
expressions in the expansion of Caley-Menger determinant. For a non simplex polytope, it is
decomposed into finite number of simplices using signed simplex decomposition and taking
the algebraic sum over the individual volumes to obtain the original volume of the polytope.

2.1 Signed Simplex Decomposition

This is a computation technique which can be used to subdivide polyhedrons into compo-
nent tetrahedral (3-simplex). This technique is widely used in computer graphics to write
efficient algorithms for volume rendering. This technique helps us to decompose an arbitrary
n-dimensional convex polyhedron into n-dimensional simplices whose volumes are already
determined by the proposed algorithm. The algebraic sum over the computed volumes of the
component simplices will give the desired volume of the polyhedron.
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3 Justification of the Methodology

The elements of Caley-Menger determinant are the distances between the points of the sim-
plex. As the dimension increases, it is very difficult to explain the results analytically due
to huge number of calculations and also a significant amount of error can be associated with
it. So we use a different technique to compute the volume which enables us to define the
edges of simplex in terms of inradii or circumradii and face angles of its faces. The proposed
methodology follows a computational approach to calculate the volume in higher dimensions
which not only reduces the complex calculations but also produces a computer generated
solution.

4 Volume of the Polyhedron Using Signed Simplex Decomposition

Let us consider a polyhedron with n vertices and m edges is circumscribed by a sphere of
radius R. Let the polyhedron be subdivided into p number of tetrahedrons in such a way
that all the p tetrahedrons are non overlapping and covering all the edges of the polyhedron.
Now it has been observed that the number of non overlapping decomposed tetrahedrons may
not be unique and depends on the mechanism of decomposition. e.g. a polyhedron with nine
edges can be decomposed in two or three non overlapping tetrahedrons as a tetrahedron have
six edges and obviously only one tetrahedron is not sufficient to cover all the nine edges. Now,
if we cut the polyhedron using a plane then it is obvious that the number of non overlapping
tetrahedrons covering all the edges of polyhedron to which it is decomposed depends on how
the plane cut the polyhedron.

Now, applying the technique of signed simplex decomposition on the results described by
Bhattacharyya and Pal [2], we can propose two generalized formula for volume of the given
polyhedron, one is in terms of inradii and another is in terms of circumradii along with the
face angles of the faces of the component tetrahedrons. The volume of the polyhedron is
determined by adding the volumes of its component tetrahedrons. The results are as follows:

4.1 Result 1
Let rt

i , i ∈ {0, 1, 2, 3}, t ∈ {1, 2, 3, . . . , p} be the inradii and θt
ij, i, j ∈ {0, 1, 2, 3}, i ̸= j, t ∈

{1, 2, 3 . . . , p} be the face angles of the faces of p component tetrahedrons of the polyhedron.
The volume of the polyhedron is given by

V =
p∑

t=1

rt
1

2
rt

3
2

24RDt
2

√
(−Mt) (1)

where
Mt = A4

t + B4
t + C4

t − 2A2
t B

2
t − 2B2

t C2
t − 2C2

t A2
t ,

At = 1
8 sin θt

32 sin θt
21 sin θt

10,

Bt = 1
8 sin θt

31 sin θt
20 sin θt

12,

Ct = 1
8 sin θt

30 sin θt
21 sin θt

12,

Dt = sin θt
32
2 sin θt

30
2 sin θt

31
2 sin θt

21
2 sin θt

10
2 sin θt

13
2 sin θt

12
2 cos θt

21
2

and R is the radius of the sphere circumscribing the polyhedron.
Similarly, we can write the other formula as
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4.2 Result 2
Let Rt

i, i ∈ {0, 1, 2, 3}, t ∈ {1, 2, 3, . . . , p} be the circumradii corresponding to the faces and
θt

ij, i, j ∈ {0, 1, 2, 3}, i ̸= j, t ∈ {1, 2, 3, . . . , p} be the face angles of the faces of p component
tetrahedrons of the polyhedron. The volume of the polyhedron is given by

V =
p∑

t=1

2Rt
1

2
Rt

3
2

3R

√
(−Nt) (2)

where
Nt = A4

t + B4
t + C4

t − 2A2
t B

2
t − 2B2

t C2
t − 2C2

t A2
t ,

At = sin θt
32 sin θt

10,

Bt = sin θt
31 sin θt

20 sin θt
12

sin θt
21

,

Ct = sin θt
30 sin θt

12

and R is the radius of the sphere circumscribing the polyhedron.

5 Illustration of Signed Simplex Decomposition

Figure 1: A squared base polyhedron having edge length 1.

Let us consider a polyhedron OABCD (Figure 1) having squared base OABC with the
point O is at the origin. Let the lengths of the edges of the polyhedron be 1. Let us assume a
vertical plane decomposing the polyhedron diagonally (AC) into two identical tetrahedrons
OACD and ABCD keeping two co-planner triangles in base. The coordinates of A, B,
C and D are (1, 0, 0), (1, 1, 0), (0, 1, 0) and (1/2, 1/2, 1/

√
2) respectively. The component

tetrahedrons are OACD and ACBD. It is assumed that the polyhedron is circumscribed by
a sphere of radius R. Let the equation of the sphere circumscribing the polyhedron be

x2 + y2 + z2 − 2gx− 2fy − 2hz + c = 0. (3)

Since the sphere passes through the origin, hence we have c = 0. Again the sphere passes
through the points A, B and D respectively. So Equation (3) gives g = −1

2 , f = −1
2 and

h = 0 respectively. Using the values of f , g, h and c, we get the radius of the sphere
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R =
√

g2 + f 2 + h2 − c =
√

1
2 . The four faces of the tetrahedron OACD are OAC, OAD,

OCD and ACD respectively. The twelve face angles are

θ1
01 = π

2 , θ1
02 = π

4 , θ1
03 = π

4 , θ1
10 = π

3 , θ1
12 = π

3 , θ1
13 = π

3 ,

θ1
20 = π

3 , θ1
21 = π

3 , θ1
23 = π

3 , θ1
30 = π

2 , θ1
31 = π

4 , θ1
32 = π

4
corresponding to the triangular faces OAC, OAD, OCD, ACD respectively. Similarly the
face angles of the corresponding faces of the tetrahedron ABCD are

θ2
01 = π

2 , θ2
02 = π

4 , θ2
03 = π

4 , θ2
10 = π

3 , θ2
12 = π

3 , θ2
13 = π

3 ,

θ2
20 = π

3 , θ2
21 = π

3 , θ2
23 = π

3 , θ2
30 = π

2 , θ2
31 = π

4 , θ2
32 = π

4 .

5.1 Volume Computation Using the Formula Described in
Section 4.1

Let r1
0, r1

1, r1
2, and r1

3 be the inradii of the faces OAC, OAD, OCD, and ACD respectively.
Now we have to calculate the values of r1

1 and r1
3. Here r1

1 is the radius of the inscribed circle
of the triangular face OAD and r1

3 be the radius of the inscribed circle of the triangular face
ADC. It is obvious from Figure 1 that the face OAD is an equilateral triangle with the side
length 1. Hence using geometry, we get r1

1 = 1
2
√

3 . Similarly we can find the value of inradii
of the face ACD i.e. r1

3 = 2−
√

2
2 .

Now using the above data from the Figure 1, we can compute the values of

A1 = 1
8 sin θ1

32 sin θ1
21 sin θ1

10 = 3
32

√
2 ,

B1 = 1
8 sin θ1

31 sin θ1
20 sin θ1

12 = 3
32

√
2 ,

C1 = 1
8 sin θ1

30 sin θ1
21 sin θ1

12 = 3
32 ,

D1 = sin θ1
32
2 sin θ1

30
2 sin θ1

31
2 sin θ1

21
2 sin θ1

10
2 sin θ1

13
2 sin θ1

12
2 cos θ1

21
2 = (

√
2−1)

√
3

128 ,

M1 = A4
1 + B4

1 + C4
1 − 2A2

1B
2
1 − 2B2

1C2
1 − 2C2

1A2
1 = − 34

324

As we know that the two component tetrahedrons are identical, we can easily find the values
r2

1 = 1
2
√

3 and r2
3 = 2−

√
2

2 and also

A2 = 1
8 sin θ2

32 sin θ2
21 sin θ2

10 = 3
32

√
2 ,

B2 = 1
8 sin θ2

31 sin θ2
20 sin θ2

12 = 3
32

√
2 ,

C2 = 1
8 sin θ2

30 sin θ2
21 sin θ2

12 = 3
32 ,

D2 = sin θ2
32
2 sin θ2

30
2 sin θ2

31
2 sin θ2

21
2 sin θ2

10
2 sin θ2

13
2 sin θ2

12
2 cos θ2

21
2 = (

√
2−1)

√
3

128 ,

M2 = A4
2 + B4

2 + C4
2 − 2A2

2B
2
2 − 2B2

2C2
2 − 2C2

2A2
2 = − 34

324

Therefore using the result of Theorem 1. of section 3.1, the volume V of the polyhedron can
be given by

V = r1
1

2
r1

3
2

24RD2
1

√
(−M1) + r2

1
2
r2

3
2

24RD2
2

√
(−M2) (4)

Now substituting the above values in Equation (4), we get the volume of the polyhedron
V = 0.23570226039.
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5.2 Volume Computation Using the Formula Described in
Section 4.2

Let R1
0, R1

1, R1
2, and R1

3 be the circumradii of the faces OAC, OAD, OCD, and ACD
respectively. Using the basic geometry we can calculate the value of R1

1 = 1√
3 and R1

3 = 1√
2 .

Now from the data from Figure 1, in Section 5, we can calculate

A1 = sin θ1
32 sin θ1

10 =
√

3
2
√

2 ,

B1 = sin θ1
31 sin θ1

20 sin θ1
12

sin θ1
21

=
√

3
2
√

2 ,

C1 = sin θ1
30 sin θ1

12 =
√

3
2 ,

N1 = A4
1 + B4

1 + C4
1 − 2A2

1B
2
1 − 2B2

1C2
1 − 2C2

1A2
1 = −36

64

Similarly for another identical component, we have R2
1 = 1√

3 and R2
3 = 1√

2 and also

A2 = sin θ2
32 sin θ2

10 =
√

3
2
√

2 ,

B2 = sin θ2
31 sin θ2

20 sin θ2
12

sin θ2
21

=
√

3
2
√

2 ,

C2 = sin θ2
30 sin θ2

12 =
√

3
2 ,

N2 = A4
2 + B4

2 + C4
2 − 2A2

2B
2
2 − 2B2

2C2
2 − 2C2

2A2
2 = −36

64

Therefore using the result of Theorem 2. of Section 4.1, the volume V of the polyhedron can
be given by

V = 2
3

R1
1

2
R1

3
2

3R

√
(−N1) + 2

3
R2

1
2
R2

3
2

3R

√
(−N2) (5)

Now substituting the above values in Equation (5), we get the volume of the polyhedron
V = 0.23570226039.

6 Volume of n-Dimensional Simplex

In this section, our aim is to extend the above result to n-dimensions. The volume of n-
dimensional simplex is given by the formula

V 2
n (S) = (−1)n+1

2n(n!)2 det(M ′) (6)

where, det(M ′) can be written as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1 1 1
1 0 a2

01 · · · a2
0,n−2 a2

0,n−1 a2
0n

1 a2
10 0 · · · a2

1,n−2 a2
1,n−1 a2

1n
... ... ... . . . ... ... ...
1 a2

n−2,0 a2
n−2,1 · · · 0 a2

n−2,n−1 a2
n−2,n

1 a2
n−1,0 a2

n−1,1 · · · a2
n−1,n−2 0 a2

n−1,n

1 a2
n,0 a2

n,1 · · · a2
n,n−2 a2

n,n−1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
From Section 9.7 of Berger [1], the circumradius R can be given by

R2 = −1
2

det(M ′′)
det(M ′) (7)
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where det(M ′′) is given by ∣∣∣∣∣∣∣∣∣∣∣∣∣

0 a2
01 · · · a2

0,n−1 a2
0n

a2
10 0 · · · a2

1,n−1 a2
1n

... ... . . . ... ...
a2

n−1,0 a2
n−1,1 · · · 0 a2

n−1,n

a2
n,0 a2

n,1 · · · a2
n,n−1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
Now substituting the value of det(M ′) from (7) in (6), we have

V 2
n (S) = − (−1)n+1

2n+1(n!)2R2 det(M ′′) (8)

In the proposed methodology, it has been observed that the volume of the tetrahedron is
computed by expanding the Cayley-Menger determinant. Now it is obvious that the order of
the determinant increases with the increase of the dimension. It is not feasible to expand an
(n × n) determinant, so we suggest to use a recursive algorithm to compute the volume in
n-dimension.

Algorithm 1 Volume calculation using inradii and face angles
Input A[][], r[], θ[][], R, n

A[0][1]← r[2] cos θ[2][3]
2

sin θ[2][0]
2 sin θ[2][1]

2
, A[0][2]← r[1] cos θ[1][3]

2
sin θ[1][0]

2 sin θ[1][2]
2

, A[0][3]← r[1] cos θ[1][2]
2

sin θ[1][0]
2 sin θ[1][3]

2
,

A[1][2]← r[0] cos θ[0][3]
2

sin θ[0][1]
2 sin θ[0][2]

2
, A[1][3]← r[2] cos θ[2][0]

2
sin θ[2][1]

2 sin θ[2][3]
2

, A[2][3]← r[0] cos θ[0][1]
2

sin θ[0][2]
2 sin θ[0][3]

2

function volinrad(A, n)
if n = 3 then

return (− 1
576R2 det(A, 4)) ▷ Determinant of 4× 4 matrix.

else
return (− (−1)n+1

4n2R2volinrad(A,n−1) det(A, n + 1))
▷ Determinant of (n + 1)× (n + 1) matrix.

end if
end function

Algorithm 2 Volume calculation using circumradii and face angles
Input A[][], r[], θ[][], R, n

A[0][1]← 2R[2] sin θ[2][3], A[0][2]← 2R[1] sin θ[1][3], A[0][3]← 2R[1] sin θ[1][2]
A[1][2]← 2R[0] sin θ[0][3], A[1][3]← 2R[2] sin θ[2][0], A[2][3]← 2R[0] sin θ[0][1]
function volcircumrad(A, n)

if n = 3 then
return − 1

576R2 det(A, 4) ▷ Determinant of 4× 4 matrix.
else

return − (−1)n+1

4n2R2volcircumrad(A,n−1) det(A, n + 1)
▷ Determinant of (n + 1)× (n + 1) matrix.

end if
end function
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In the proposed algorithm, we calculate the volume of the polyhedron in two ways. In
the first one, we define a recursive function volinrad which takes a two dimensional array A
and the dimension n as the arguments. The array stores values of edges of the simplex which
are defined in terms inradii and face angles of the faces of the simplex. Two more arrays
are used to store inradii and face angles respectively. Another recursive function det(A, n) is
used to calculate (n × n) determinants. The recursive function volinrad terminates when
the dimension reaches to n = 3.

In the second method the process is same but the inputs to the array are the edges in
terms of circumradii and the face angles of the faces of the simplex. The method volcircumrad
takes two arguments, one is a two dimensional array A and another is the dimension n.

7 Volume of n-Dimensional Polyhedron

In Section 5, we have already calculated the volume of a general polyhedron in three dimen-
sions. The result is also demonstrated using a suitable example. The volume calculation for
a polyhedron in n-dimensions is much more complicated. Now for a polyhedron which is a
simplex, we derived the volume formula in the previous section. For a polyhedron which is not
a simplex, we can not use the methodology directly described in the previous section. Signed
simplex decomposition is a technique by which a convex polyhedron can be decomposed into
number of component simplices. Thus a n-dimensional polyhedron can also be decomposed
into number of component n-simplices. Now taking the algebraic sum over the volume of
such n-simplices, we can calculate the volume of the proposed polyhedron.

7.1 Analysis
On the basis of observations by Károlyi Lovász [7], a polygon can be decomposed into its
component triangles if the edges of the triangles lie on the same line as that of the polygon.
The possible generalization of this observation for a convex polytope P in d-dimensional
euclidean space is that the polytope can be decomposed into component simplices if its facets
are parallel to P. Such decomposition is also possible even if the faces of the polytope are in
general position. In this situation the decomposition is performed by allowing an auxiliary
hyperplane to which the facets of the polytope are parallel. Let us consider a convex m-
polytope P. Let us define a set of hyperplanes KP determined by the m-1 facets of P. If the
normals of KP are in general position such that the simplices P1, P2, . . . , Pn ⊂ Rm with ϵ1,
ϵ2, . . . , ϵn having signs {+1,−1} then we can write

P = ϵ1P1 + ϵ2P2 + · · ·+ ϵnPn

In Section 6, we already computed the volume for n-dimensional simplex in terms of inradii,
circumradii and face angles of the faces of the simplex. As we have decomposed the polytope
into the number of simplices in n-dimension, we can separately calculate the volumes of each
of the component simplices of the polytope and take the summation to get the volume of the
required polytope.

In light of above discussion, we can derive the volume(VP ) of n-dimensional polyhedron
as

VP = ϵ1V1 + ϵ2V2 + · · ·+ ϵnVn

where, V1, V2, . . . , Vn be the volumes of component simplices respectively.
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8 Conclusion

In this article, the volume of a polyhedron is computed using the technique of singed simplex
decomposition. According to this technique the polyhedron is decomposed into component
tetrahedrons and the volume is calculated by taking the algebraic sum of the volumes of the
tetrahedrons. Two formulas have been proposed by the authors in which the first one is in
terms of inradii, face angles of the faces of the component tetrahedrons and the radius of the
sphere circumscribing the polyhedron whereas the second formula is computed the volume
in terms of circumradii, face angles of the faces of the component tetrahedrons along with
the radius of the sphere circumscribing it. A squared base pyramid with all the edges of unit
length is taken as an example to verify the result. An algorithm is designed to compute the
volume of an n-dimensional simplex. Finally the volume of a n-dimensional polyhedron is
described. This method may be extended to evaluate the volume of a general polyhedron in
non euclidean spaces.
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[7] G. Károlyi and L. Lovász: Decomposition of convex polytopes into simplices. Preprint,
1991.

[8] H. Newson: On the volume of a polyhedron. Ann. of Math. (2) 1(1/4), 108–110, 1899.
doi: https://doi.org/10.2307/1967277.

[9] I. K. Sabitov: The volume as a metric invariant of polyhedra. Discrete Comput. Geom.
20(4), 405–425, 1998. doi: https://doi.org/10.1007/PL00009393.

Received November 3, 2022; final form March 3, 2023.

https://doi.org/10.2478/dema-2014-0019
https://doi.org/10.1016/S0893-9659(99)00206-2
https://dx.doi.org/https://doi.org/10.2307/1967277
https://dx.doi.org/https://doi.org/10.1007/PL00009393

	Introduction
	Method Outlines
	Signed Simplex Decomposition

	Justification of the Methodology
	Volume of the Polyhedron Using Signed Simplex Decomposition
	Result 1
	Result 2

	Illustration of Signed Simplex Decomposition
	Volume Computation Using the Formula Described in Section 4.1
	Volume Computation Using the Formula Described in Section 4.2

	Volume of n-Dimensional Simplex
	Volume of n-Dimensional Polyhedron
	Analysis

	Conclusion

