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Abstract. In this paper we prove using Projective Geometry, Analytic Geometry
and Calculus the converse of the theorem, which is proved with Synthetic Projec-
tive Geometry in J. L. S. Hatton’s book The Principles of Projective Geometry
Applied to the Straight Line and Conic, Cambridge University Press, 1913, p. 287,
case (b). This theorem, as well as its converse, refer to properties that exist when
a conic C3 contacts two other intersecting conics C1 and C2 and specifically con-
cern the existing harmonic pencil between common chords of C1, C2 and the pair
of their contact chords with C3. With the proof of the converse theorem, which is
achieved here in the case of two concentric ellipses, the problem of constructing a
conic C3 is also addressed. In addition we investigate the type of conic C3, which
is tangent to C1, C2, and the condition that is required for C3 to be an ellipse, a
hyperbola or a degenerate parabola, either inscribed or circumscribed to C1, C2.
Finally, we refer to the existing involution between the common fixed chords and
the changing contact chords.
Key Words: harmonic pencil, concentric ellipses, conjugate points, double contact
conic, involution
MSC 2020: 51N15 (primary), 51N20, 68U05

1 Introduction

The notion of harmonic pencil of lines is a fundamental notion in Projective Geometry (s. [5,
p. 24]): In the real projective plane a pencil of four concurring lines OA, OB, OC, OD,
denoted by O(A, B, C, D), is called harmonic pencil or harmonic bundle, if the cross ratio
of the four lines (in that order), by times also denoted by O(A, B, C, D), is equal to −1
(s. Figure 1).
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Figure 1: A harmonic pencil i.e. O(A, B, C, D) = −1

Figure 2: C3 has double contact with C1, C2 and so O(A, B, M, R) = −1

In particular, four lines OA, OB, OC, OD through the origin O, with equations y = λix,
i = 1, 2, 3, 4, form a harmonic pencil O(A, B, C, D), if their gradients λi, i = 1, 2, 3, 4 satisfy
the following equation:

λ3 − λ1

λ2 − λ3
= −λ4 − λ1

λ2 − λ4
(1)

or equivalently

λ4 = 2λ1λ2 − λ3(λ1 + λ2)
λ1 + λ2 − 2λ3

. (2)

So, given two fixed lines through O, say OA, OB, determined by their gradients λ1, λ2, one
can correspond to each line OC : y = λ3x, the unique line OD : y = λ4x, where λ4 is given
by (2), so that the four lines form a harmonic pencil. This transformation is called harmonic
conjugation with respect to the two given lines.

J. L. S. Hatton in [2, p. 287], case (b) gives a property of two intersecting conics having
double contact with a third conic, which concerns a harmonic pencil:

Let two conics C1, C2 intersect at four points A, B, C, D, that define a complete quad-
rangle1. Let O be any of the three diagonal points of this quadrangle. If there exists a conic
C3, which has double contact with C1 at M , N and double contact with C2 at R, S, then
MN , RS, AC, BD meet at O and it holds O(A, B, M, R) = −1, i.e. the chords of contact

1S. [1, p. 388].



A. Taouktsoglou, G. Lefkaditis: Family of Conics Having Double Contact. . . 13

of C1, C2 with C3 and two of the chords of intersection of C1, C2 are concurring and form a
harmonic pencil (s. Figure 2).

Conversing the above theorem we will investigate the following question:

Let two conics C1, C2 intersect at four points A, B, C, D with diagonal point
O. Let MN , RS be chords of C1, C2 respectively passing through O and form-
ing a harmonic pencil with the chords of intersection AC, BD of C1, C2, i.e.
O(A, B, M, R) = −1. Is there a conic passing through M , N , R, S and having
double contact with C1 and C2 at M , N and R, S respectively?

In this initial question O can be any of the three diagonal points of the complete quad-
rangle defined by A, B, C, D, i.e. O can be any vertex of the common polar triangle of C1,
C2 (s. [1, p. 278, 294]). In what follows we will investigate this question especially in the case
of two ellipses C1, C2

2 having common centre O in relation to existence, number and type
of conics that pass through M , N , R, S and have double contact with C1 and C2 at M , N
and R, S respectively. Although we will study in depth the case that the diagonal point O
lies inside C1, C2, our investigation method can also be applied in case O lies outside C1, C2.
In our study we will use methods of Projective Geometry, Analytic Geometry and Calculus.

After the proof of the converse theorem, the two theorems are unified in the case of two
concentric ellipses as follows:

Theorem 1. For there to be a conic C3 having double contact with two intersecting ellipses
C1 and C2 with common centre O sufficient and necessary condition is the common chords of
C1, C2 and the pair of contact chords of C3 with C1 and C2 to form a harmonic pencil with
centre O.

Based on this Theorem we can construct any of the infinite number of conics C3, which
passes through the four points of contact and tangents to the corresponding tangent lines to
these four points.

Remark 1. The results of the above Theorem hold true for any two regular conics (not just
ellipses) C1 and C2 having four intersection points and for any vertex O of its common polar
triangle. If the configuration of the two conics C1 and C2 and the point O is not projectively
equivalent to that of the above Theorem, minor modifications of its proof are necessary. We
will occasionally hint at this possibility.

2 Two Concentric Intersecting Ellipses

In the real projective plane we consider two conics C1, C2 having four intersection points A,
B, C, D. The three diagonal points of A, B, C, D form the common polar triangle of both
conics. Let O be the diagonal point lying in the interior of C1. In what follows, we assume
that O is also in the interior of C2 and both, C1 and C2 are ellipses. Using a homology we
can always map two intersecting ellipses to two concentric ellipses. Therefore we assume that
O is the common centre of C1, C2. With no loss of generality we consider C2 as a circle, since
there is always a projectivity mapping an ellipse on a circle. We choose a coordinate system

2The case of two concentric intersecting ellipses is of a special interest investigating the Four Ellipses Problem
(s. [3, 4, 6]).
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Figure 3: Two concentric ellipses with O(A, B, M, R) = −1

so that C1, C2 have the following equations:

C1 : x2

a2 + y2

b2 = 1, (3)

C2 : x2 + y2 = r2, b < r < a (4)

(s. Figure 3). In this case lines OA, OB are symmetric with respect to x′x axis. If y = λix,
i = 1, 2 are the equations of OA, OB respectively, then it holds

λ1 = −λ2. (5)

Let MN : y = λ3x be the line of an arbitrary diameter of C1 and RS : y = λ4x the harmonic
conjugate line of MN with respect to the given lines OA, OB, intersecting C2 at R, S.
According to (2) and (5) it holds

λ4 = −λ1λ2

λ3
= λ2

1
λ3

. (6)

Since A(xA, yA) is an intersection point of C1, C2, the following hold

x2
A

a2 + y2
A

b2 = 1, yA = λ1xA, x2
A + y2

A = r2. (7)

Eliminating xA, yA we obtain
r2 = a2b2

b2 + λ2
1a

2 (1 + λ2
1). (8)

For M(xM , yM) and R(xR, yR) it holds respectively

x2
M

a2 + y2
M

b2 = 1, yM = λ3xM (9)

and
x2

R + y2
R = r2, yR = λ4xR. (10)
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Figure 4: M ′ is the conjugate point of M with respect to RS and C2

So, according to (6) and (8) we have

x2
M = a2b2

b2 + λ2
3a

2 , yM = λ3xM (11)

and
x2

R = λ2
3(1 + λ2

1)(b2 + λ2
3a

2)
(λ2

3 + λ4
1)(b2 + λ2

1a
2) x2

M , yR = λ2
1

λ3
xR. (12)

3 Construction of Conic C3

Let P be the pole of RS with respect to circle C2 and T be the intersection point of PM and
RS. We consider point M ′ so that M , M ′ are harmonic conjugate to P , T . In what follows
we will call M ′ the conjugate point of M with respect to RS and C2. Since conics C1, C2 are
concentric and so RS is a diameter of C2, the tangent lines of C2 at R, S are parallel and
point P lies at infinity. Consequently, PM is a line through M parallel to the tangent lines of
C2 at R, S and M ′ is the symmetric point of M with respect to T (s. Figure 4). The tangent
line of C2 at R or S is perpendicular to RS. So, its gradient and also the gradient of MM ′

is equal to (s. (6))
− 1

λ4
= −λ3

λ2
1
. (13)

So, point M ′(xM ′ , yM ′) satisfies the following equations:

yM ′ − yM = − 1
λ4

(xM ′ − xM), yM + yM ′

2 = λ4
xM ′ + xM

2 . (14)

According to (11) and (13) it holds:

xM ′ = λ2
3 − λ4

1 + 2λ2
1λ

2
3

λ4
1 + λ2

3
xM , yM ′ = (2λ2

1 − λ2
3 + λ4

1)λ3

λ4
1 + λ2

3
xM . (15)

Let C3 be the conic through M , N , R, S, M ′. We will prove that C3 has double contact with
C1 at M , N and double contact with C2 at R, S.
Remark 2. For more constructions of conics from five points or four points and a tangent line
in one of them we refer to [1, p. 162] and [5, p. 254].
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3.1 The Equation of Conic C3

The equation of C3 is given by

C3 :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 xy y2 x y 1
x2

M xMyM y2
M xM yM 1

x2
N xNyN y2

N xN yN 1
x2

R xRyR y2
R xR yR 1

x2
S xSyS y2

S xS yS 1
x2

M ′ xM ′yM ′ y2
M ′ xM ′ yM ′ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (16)

Substituting xN = −xM , yN = −yM , xS = −xR, yS = −yR in (16) and using determinant
properties we get

C3 :

∣∣∣∣∣∣∣∣∣
x2 xy y2 1
x2

M xMyM y2
M 1

x2
R xRyR y2

R 1
x2

M ′ xM ′yM ′ y2
M ′ 1

∣∣∣∣∣∣∣∣∣ = 0 (17)

considering that in general xM , xR ̸= 0 and λ3 ̸= λ4.
Remark 3. We notice that the conic C3 is concentric with C1, C2 (s. (17)).

Substituting xM , yM , xR, yR, xM ′ , yM ′ in (17) through (11), (12), (15) and considering
that in general λ3 ̸= λ1 , (17) turns to

F (x, y) := αx2 + 2βxy + γy2 + δ = 0 (18)

where

α = (λ2
1 − λ2

3)(b2 + a2λ2
1) − λ4

1(a2 − b2), (19)
β = λ2

1λ3(a2 − b2), (20)
γ = (1 + λ2

1)(b2λ2
1 − a2λ2

3) + λ4
1(a2 − b2), (21)

δ = (1 + λ2
1)(λ2

3 − λ2
1)a2b2. (22)

So, the equation of conic C3 is the following:

[(λ2
1 − λ2

3)(b2 + a2λ2
1) − λ4

1(a2 − b2)]x2 + 2λ2
1λ3(a2 − b2)xy

+ [(1 + λ2
1)(b2λ2

1 − a2λ2
3) + λ4

1(a2 − b2)]y2 + (1 + λ2
1)(λ2

3 − λ2
1)a2b2 = 0. (23)

Figure 5 shows the conic C3 passing through M , N , R, S, M ′.

3.2 Proof of the Double Contact of C3 with C1

The tangent line of C3 at M has the following equation:(
∂F

∂x

)
M

(x − xM) +
(

∂F

∂y

)
M

(y − yM) = 0 (24)

i.e.
(αxM + βyM)(x − xM) + (βxM + γyM)(y − yM) = 0. (25)
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Figure 5: The Double Contact Conic C3

On the other hand the tangent line of C1 at M has the following equation:
xMx

a2 + yMy

b2 = 1. (26)

In order for the two lines to coincide we have to show that∣∣∣∣∣αxM + βyM βxM + γyM

b2xM a2yM

∣∣∣∣∣ = 0. (27)

According to (11) we must prove equivalently∣∣∣∣∣α + βλ3 β + γλ3
b2 a2λ3

∣∣∣∣∣ = 0 (28)

which can be easily verified by substituting α,β, γ through (19), (20), (21). Since (28) depends
only on λ3 and not on point M , it is obvious that C3 and C1 have a double contact at M , N .

3.3 Proof of the Double Contact of C3 with C2

The tangent line of C3 at R has the following equation:(
∂F

∂x

)
R

(x − xR) +
(

∂F

∂y

)
R

(y − yR) = 0 (29)

i.e.
(αxR + βyR)(x − xR) + (βxR + γyR)(y − yR) = 0. (30)

On the other hand the tangent line of C2 at R has the following equation:

xRx + yRy = r2. (31)

In order for the two lines to coincide we have to show that∣∣∣∣∣αxR + βyR βxR + γyR

xR yR

∣∣∣∣∣ = 0. (32)
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According to (12) the above equation is equivalent to∣∣∣∣∣αλ3 + βλ2
1 βλ3 + γλ2

1
λ3 λ2

1

∣∣∣∣∣ = 0. (33)

Dividing by λ3 all elements of the determinant and using (6), equation (33) turns equivalently
to ∣∣∣∣∣α + βλ4 β + γλ4

1 λ4

∣∣∣∣∣ = 0, (34)

which can be easily verified by substituting α, β, γ through (19), (20), (21). Since (34)
depends only on λ4 and not on point R, it is obvious that C3 and C2 have a double contact at
R, S. Furthermore, in general case that no three of the points M, N, R, S, M ′ are collinear,
C3 is the unique conic that has double contact with C1 at M , N and double contact with C2
at R, S. So, we have proved the following:

Proposition 1. Let C1, C2 be two ellipses with common centre O intersecting at four points
A, B, C, D. Let MN , RS be chords of C1, C2 respectively passing through O and forming a
harmonic pencil with two of the chords of intersection, i.e. O(A, B, M, R) = −1. Then, there
is a unique conic C3 passing through M , N , R, S and having double contact with C1 and C2
at M , N and R, S, respectively.

In what follows the above constructed conic C3 will be called the double contact conic of
C1, C2 with respect to MN or simply the double contact conic of C1, C2.

Remark 4. Each diameter MN of C1 corresponds to a unique double contact conic C3 of
C1, C2. So, the family of conics having double contact with two intersecting ellipses is
a one-parameter family of conics. The parameter of the family is exactly the gradient of
diameter MN .

Remark 5. It is known from the Theory of Involution in Projective Geometry that if there
exists a pencil of rays with two fixed rays, say OA, OB, as well as a variable pair of corre-
sponding rays, say OM , OR, such that O(A, B, M, R) = −1, then there exists a hyperbolic
involution with double rays OA, OB in which the variable corresponds. Therefore, when
conic C3 runs through the one-parameter family of the double contact conics of the concen-
tric intersecting ellipses C1, C2, then a corresponding hyperbolic involution with centre O is
created with double lines the intersection lines AC, BD of C1, C2.

4 Characteristic Points of C3

Constructing conic C3 we considered point M ′ as the fifth point of the conic passing through
M , N , R, S. Let us now consider point N ′, the conjugate point of N with respect to RS
and C2. It can be easily verified in analytical way, that conic C3 passes also through N ′, since
xN = −xM , yN = −yM (s. (15) and (17)). It can also be verified in analytical way, that C3
passes through R′, S ′, the conjugate points of R, S respectively with respect to MN and C1
(s. Figure 6).

So, we have proved the following:
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Figure 6: The constructed conic C3 passes also through N ′, R′, S′

Figure 7: The double contact conic C3 passes through M ′

Proposition 2. Let C1, C2 be two ellipses with common centre O intersecting at four points
A, B, C, D. Let MN , RS be chords of C1, C2 respectively passing through O and forming a
harmonic pencil with two of the chords of intersection, i.e. O(A, B, M, R) = −1. Then, the
double contact conic C3 of C1, C2 passes through the conjugate points of M , N with respect
to RS and C2 and through the conjugate points of R, S with respect to MN and C1.

Remark 6. In the general case, let two conics C1, C2 intersect at four points A, B, C, D
with diagonal point O being the intersection point of AC,BD, which is not necessarily their
centre. Let MN , RS be chords of C1, C2 respectively passing through O and forming a
harmonic pencil with the chords of intersection AC, BD of C1, C2, i.e. O(A, B, M, R) = −1
(s. Figure 7). Let P be the pole of RS with respect to C2 and T be the intersection point
of PM and RS. We consider point M ′ so that M , M ′ are harmonic conjugate to P , T , i.e.
M ′ is the conjugate point of M with respect to RS and C2. If there is a conic C3 passing
through M , N , R, S and having double contact with C2 at R, S, then RS is the polar of
P with respect to C2, but also the polar of P with respect to C3. Considering PM as an
intersecting line through P , its point of intersection T with RS is the conjugate point of P
with respect to the intersection points M , M ′ of line PM with C3. So, C3 passes through
M ′. Similarly, C3 passes through N ′, which is the conjugate point of N with respect to RS
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Figure 8: Conic C3 in case C1 is a hyperbola and C2 an ellipse

Figure 9: Conic C3 in case C1, C2 are both hyperbolas

and C2, and also through R′, S ′, which are the conjugate points of R, S with respect to MN
and C1 respectively.

Figures 7, 8 and 9 show the double contact conic C3 in the following cases respectively:
C1, C2 are both ellipses, C1 is a hyperbola and C2 is an ellipse and C1, C2 are both hyperbolas.

Remark 7. Let now O be another diagonal point of the complete quadrangle defined by A,
B, C, D, say the intersection point of AB, CD (s. Figure 10). Let MN , RS be chords of
C1, C2 respectively and lines MN , RS pass through O and form a harmonic pencil with
the lines of the intersection chords AB, CD of C1, C2, i.e. O(A, C, M, R) = −1. Using the
same method we can construct the double contact conic C3 passing through M , N , R, S and
having double contact with C1 and C2 at M , N and R, S respectively. C3 passes through
M ′, N ′, the conjugate points of M , N with respect to RS and C2, and also through R′, S ′,
the conjugate points of R, S with respect to MN and C1 respectively.

Regarding this case, i.e. O being the intersecting point of AB, CD, Figures 10, 11 and 12
show the double contact conic C3 in the following cases respectively: C1, C2 are both ellipses,
C1 is a hyperbola and C2 is an ellipse and C1, C2 are both hyperbolas.

5 Type of Conic C3

Let C1, C2 be the conics with equations (3), (4) respectively. We consider now the common
tangent lines ε1, ε2, ε3, ε4 of C1, C2 (s. Figure 13). Let E1

i , E2
i , i = 1, 2, 3, 4 be the contact
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Figure 10: Conic C3 in case C1, C2 are both ellipses and O is the intersection point of AB, CD

Figure 11: Conic C3 in case C1 is a hyperbola, C2 is an ellipse and O is the intersection point of
AB, CD

Figure 12: Conic C3 in case C1, C2 are both hyperbolas and O is the intersection point of AB, CD

points of line εi and C1, C2 respectively. Since ε1 is the tangent line of C1 at E1
1 it holds

ε1 :
xxE1

1

a2 +
yyE1

1

b2 = 1 (35)

and
b2x2

E1
1

+ a2y2
E1

1
= a2b2. (36)

But ε1 is also a tangent line of C2. So, the distance between O and ε1 is equal to r. Therefore,
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Figure 13: The common tangent lines of conics C1, C2

it holds
a2b2√

b4x2
E1

1
+ a4y2

E1
1

= r. (37)

According to (8), (36) and (37) we get

xE1
1

= a√
1 + λ2

1

, yE1
1

= bλ1√
1 + λ2

1

. (38)

Then, the gradient of line OE1
1 is equal to

y
E1

1
x

E1
1

= bλ1
a

.
Since MN is an arbitrary diameter of C1, it is expected that the choice of MN effects

the type of the double contact conic C3 of C1, C2. We will prove the following (s. Figure 14):
• If M is a point inside the elliptic arc E1

4E1
1 or E1

2E1
3 , i.e. |λ3| < b|λ1|

a
, then conic C3 is

an ellipse.
• If M is a point outside circle C2 and outside the elliptic arcs E1

4E1
1 and E1

2E1
3 , i.e.

b|λ1|
a

< |λ3| < |λ1|, then conic C3 is a hyperbola.
• If M is a point inside the circle C2, i.e. |λ1| < |λ3|, then conic C3 is an ellipse.
• If M coincides to E1

1 or E1
3 , i.e. λ3 = bλ1

a
, then conic C3 degenerates to two parallel

lines ε1, ε3.
• If M coincides to E1

2 or E1
4 , i.e. λ3 = − bλ1

a
, then conic C3 degenerates to two parallel

lines ε2, ε4.
• If M coincides to A, C (resp. B, D), i.e. λ3 = λ1 (resp. λ3 = −λ1), then segments

MN , RS coincide with AC (resp. BD), and conic C3 degenerates to the double line
AC (resp. BD).

So, the following holds:
Proposition 3. Let C1, C2 be two ellipses with common centre O intersecting at four points
A, B, C, D. Let MN , RS be chords of C1, C2 respectively passing through O and forming a
harmonic pencil with two of the chords of intersection, i.e. O(A, B, M, R) = −1. The choice
of the chord MN determines the type of the double contact conic C3 of C1, C2 in the following
way:

If λ1, λ3 are the gradients of AB, MN respectively, then
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Figure 14: The choice of MN determines the type of C3

• C3 is an ellipse, if |λ3| < b|λ1|
a

or |λ3| > |λ1|,
• C3 is a hyperbola, if b|λ1|

a
< |λ3| < |λ1| and

• C3 is a degenerate parabola (i.e. a pair of parallel lines or a double line) in all other
cases.

Proof. The equation (18) of the conic C3 can be written in matrix notation as

C3 :
(
x y

)(α β
β γ

)(
x
y

)
+ δ = 0 (39)

or in homogeneous form as

C3 :
(
x y 1

)α β 0
β γ 0
0 0 δ


x

y
1

 = 0. (40)

It is known that the type of the conic (40) is determined by the invariants I = α + γ,
J = αγ − β2 and ∆ = δJ (s. [1, p. 362]).3 According to (19), (20), (21), (22) we get

I = (λ2
1 − λ2

3)(b2 + a2λ2
1) + (1 + λ2

1)(b2λ2
1 − a2λ2

3) (41)
J = (1 + λ2

1)(b2 + a2λ2
1)(λ2

1 − λ2
3)(b2λ2

1 − a2λ2
3) (42)

∆ = −(1 + λ2
1)(λ2

1 − λ2
3)a2b2J (43)

So, it holds (s. Figure 14):
• J > 0 if and only if |λ3| < b|λ1|

a
or |λ3| > |λ1|. In each case it holds I∆ < 0 and so C3

is an ellipse.
• J < 0 if and only if (λ2

1 − λ2
3)(b2λ2

1 − a2λ2
3) < 0, i.e. if b|λ1|

a
< |λ3| < |λ1|. In this case it

holds ∆ > 0 and so C3 is a hyperbola.
• J = 0 if and only if |λ3| = b|λ1|

a
or |λ3| = |λ1|. In this case it holds ∆ = 0 and so C3 is

never a parabola. Now C3 is a degerate conic and the invariant δI will determine the
type of C3:

3I and J are the trace and the determinant of matrix
(

α β
β γ

)
and ∆ is the determinant of matrix

(
α β 0
β γ 0
0 0 δ

)
.

I, J , ∆ are invariants under arbitrary rotations and translations of the coordinate axes.
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Figure 15: The constructed conic C3 is either circumscribed or inscribed to C1, C2

– If |λ3| = b|λ1|
a

, then δI < 0, so C3 degenerates to a pair of parallel lines. In
particular:

∗ If λ3 = bλ1
a

the equation (23) of C3 turns to

C3 : bx + aλ1y = ±ab
√

1 + λ2
1. (44)

i.e. C3 degenerates to the common tangent lines ε1, ε3 of C1, C2.
∗ If λ3 = − bλ1

a
the equation (23) of C3 turns to

C3 : bx − aλ1y = ±ab
√

1 + λ2
1 (45)

i.e. C3 degenerates to the common tangent lines ε2, ε4 of C1, C2 (s. Figure 13).
– If |λ3| = |λ1|, then δI = 0, so C3 is a double line. In particular:

∗ If λ3 = λ1 the equation (23) of C3 turns to C3 : y = λ1x i.e. C3 degenerates to
the double line AC.

∗ If λ3 = −λ1 the equation (23) of C3 turns to C3 : y = −λ1x i.e. C3 degenerates
to the double line BD (s. Figure 13).

We notice that in case J = 0, C3 degenerates to a pair of parallel lines or to a double line.
So, C3 is a degenerate parabola.

We can also verify the following:
• If |λ3| < |λ1|, then point M lies outside C2 and the above constructed conic C3 is

circumscribed to C1, C2.
• If |λ3| > |λ1|, then point M lies inside C2 and the above constructed conic C3 is inscribed

to C1, C2 (s. Figure 15).
• If |λ3| = |λ1|, then conic C3 degenerates to a double line.
So, the following holds:

Proposition 4. Let C1, C2 be two ellipses with common centre O intersecting at four points
A, B, C, D. Let MN , RS be chords of C1, C2 respectively passing through O and forming a
harmonic pencil with two of the chords of intersection, i.e. O(A, B, M, R) = −1. Then, the
double contact conic C3 of C1, C2 is circumscribed (resp. inscribed) to C1, C2 in case M lies
outside (resp. inside) C2 and degenerates to a double line in case M lies on C2.

Figure 16 shows the one-parameter family of conics having double contact with two con-
centric intersecting ellipses.
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Figure 16: The family of conics having double contact with two intersecting ellipses

Figure 17: Conic C3 in case O is the intersection point of AB, CD

Remark 8. Let now O be the intersection point of AB, CD, so O lies at infinity (s. Figure 17).
Let MN , RS be chords of C1, C2 respectively and lines MN , RS pass through O and
form a harmonic pencil with the lines of the intersection chords AB, CD of C1, C2, i.e.
O(A, C, M, R) = −1. Using the conjugate point of M ′ of M with respect to RS and C2, we
can construct the double contact conic C3 passing through M , N , R, S and having double
contact with C1 and C2 at M , N and R, S respectively. The choice of the chord MN
determines again the type of the double contact conic C3 of C1, C2. Figure 17 shows the
double contact conic C3 inscribed or circumscribed to C1, C2 in case O lies at infinity.

6 Canonical Form of the Equation of C3

We consider matrix
(

α β
β γ

)
of the equation (39) of conic C3. Let e1, e2 be the eigenvalues of

the matrix. It is known that the invariants I and J satisfy the equations I = e1 + e2 and
J = e1e2. Then, according to (41), (42) it can be easily verified that the eigenvalues of the
matrix are

e1 = (λ2
1 − λ2

3)(b2 + a2λ2
1), e2 = (1 + λ2

1)(b2λ2
1 − a2λ2

3) (46)

with corresponding eigenvectors

v1 =
(

λ3
λ2

1

)
, v2 =

(
−λ2

1
λ3

)
(47)
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i.e. (
α β
β γ

)(
λ3
λ2

1

)
= e1

(
λ3
λ2

1

)
and

(
α β
β γ

)(
−λ2

1
λ3

)
= e2

(
−λ2

1
λ3

)
.

Remark 9. Eigenvector v1 is parallel to line RS, since its gradient is equal to λ4 (s. (6)).
Eigenvector v2 is vertical to v1, since the above matrix is symmetric.

Hence, rotating the given coordinate axes through the origin O so that the new x̃′x̃ axis
is parallel to eigenvector v1 i.e. parallel to RS, the equation (39) of C3 (s. (39)) turns to

e1x̃
2 + e2ỹ

2 = −δ (48)

or equivalently
e1x̃

2 + e2ỹ
2 = (λ2

1 − λ2
3)(1 + λ2

1)a2b2. (49)

Since e1(−δ) ≥ 0, we give the following cases:
• If e1 < 0, e2 < 0 i.e. |λ3| > |λ1|, then C3 is an ellipse inscribed to C1, C2.
• If e1 > 0, e2 > 0 i.e. |λ3| < b|λ1|

a
, then C3 is an ellipse circumscribed to C1, C2.

• If e1 > 0, e2 < 0 i.e. b|λ1|
a

< |λ3| < |λ1|, then C3 is a hyperbola circumscribed to C1, C2.
• If e1 = 0 i.e. |λ3| = |λ1|, then C3 degenerates to a double line, in particular to line RS.

• If e2 = 0 i.e. |λ3| = b|λ1|
a

, then C3 degenerates to two common tangent lines of C1, C2

vertical to RS.
In case |λ3| ≠ |λ1|, we get the canonical form of the equation of C3 (s. (8)):

x̃2

r2 + (b2λ2
1 − a2λ2

3)
a2b2(λ2

1 − λ2
3)

ỹ2 = 1. (50)

Equation (50) states a well known result: If C3 is an ellipse inscribed to the circle C2, then its
major axis is equal to the diameter 2r of C2. If C3 is an ellipse (resp. hyperbola) circumscribed
to C2, then its minor (resp. major) axis is equal to the diameter 2r of C2. If C3 degenerates
to two tangent lines, then the distance between the lines is equal to the diameter 2r of C2. So,
the following holds:

Proposition 5. Let C1 and C2 be an ellipse and a circle respectively with common centre
O intersecting at four points A, B, C, D. Let MN , RS be chords of C1, C2 respectively
passing through O and forming a harmonic pencil with two of the chords of intersection, i.e.
O(A, B, M, R) = −1. Then, the diameter RS of C2 is one of the axes of the double contact
conic C3 of C1, C2, in case C3 is non-degenerate.

7 Double Contact Conics in Couples

Let C1, C2 be two ellipses with common centre O intersecting at four points A, B, C, D. Let
MN , RS be chords of C1, C2 respectively passing through O and forming a harmonic pencil
with two of the chords of intersection, i.e. O(A, B, M, R) = −1. We proved that there is a
unique conic C3 passing through M , N , R, S and having double contact with C1 and C2 at
M , N and R, S, respectively.

Let now R1, S1 be the intersection points of MN and C2 and M1, N1 be the intersection
points of RS and C1. Then, M1N1, R1S1 also form a harmonic pencil with the chords of
intersection AC, BD. So, there is a unique conic, say C ′

3, passing through M1, N1, R1, S1
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Figure 18: Couple of double contact conics C3, C ′
3

and having double contact with C1 and C2 at R1, S1 and M1, N1 respectively. Figure 18
shows the couple of conics C3, C ′

3.
Obviously, the equation of C ′

3 is obtained by the equation (23) of C3 substituting λ3 by
λ4 (s. (6)). So, C ′

3 belongs to the one-parameter family of conics (23) too. In the general
case one of the two conics C3, C ′

3 is an ellipse inscribed to C1, C2 and the other one is an
ellipse (resp. hyperbola) circumscribed to C1, C2. The major axis of the inscribed ellipse is
harmonic conjugate to the minor (resp. major) axis of the circumscribed one with respect to
the two chords of intersection. So, the following holds:

Proposition 6. Let C1, C2 be two ellipses with common centre O intersecting at four points
A, B, C, D. Every chord MN of C1 passing through O corresponds to two double contact
conics C3, C ′

3 of C1, C2. In the general case one of the two conics is an ellipse inscribed to
C1, C2 and the other one is an ellipse (resp. hyperbola) circumscribed to C1, C2. The major
axis of the inscribed ellipse and the minor (resp. major) axis of the circumscribed one with
the two chords of intersection are in hyperbolic involution with double lines the lines of the
chords of intersection of C1, C2.

8 Common Tangent Lines of C1, C2

In case |λ3| = b|λ1|
a

conic C3 degenerates to the common tangent lines ε1, ε3 or ε2, ε4 of C1,
C2. In the following we will give another construction of the common tangent lines of C1, C2
using a parallel homology. The general solution of the construction of the common tangents
of two conics using methods of Projective Geometry is given in [5, p. 226–229].

We consider an ellipse C1 and a concentric circle C2 having four intersection points A, B,
C, D. We will define a parallel homology that maps circle C2 to ellipse C1 in the following
way:

We take one of the common diameters of C1, C2, say AC. Let EF be the diameter of
C2, which is perpendicular to AC and GH the diameter of C1, which is conjugate to AC (s.
Figure 19). We define a parallel homology with axis of homology AC, which maps point E
to point G (resp. to point H). So, line EG (resp. EH) defines the direction of the parallel
homology.

Since perpendicular diameters AC, EF of C2 correspond to conjugate diameters AC, GH
of C1, then C1, C2 are in parallel homology. Let now KL be the diameter of C2 vertical to EG
(resp. EH) and ε2, ε4 (resp. ε1, ε3) the lines from K, L parallel to EG (resp. EH). Then
lines ε2, ε4 (resp. ε1, ε3) are tangent lines of C2, parallel to the direction of the homology.
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Figure 19: Construction of common tangents of C1, C2 using an homology

Therefore they are tangent lines to C1, too. So, ε2, ε4 (resp. ε1, ε3) are common tangent lines
of C1, C2. Hence the following holds:

Proposition 7. Let C1, C2 be two ellipses with common centre O intersecting at four points
A, B, C, D. Let GH, EF be the diameters of C1, C2 respectively conjugate to a common
diameter of C1, C2, say AC. Every line which joins one end point of GH with one end point
of EF defines the gradient of one couple of common tangent lines of C1, C2 and the line that
joins the remaining end points of GH and EF defines the gradient of the other couple of
common tangent lines of C1, C2.
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