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1. Introduction

In the last twenty years Gröbner base constructions (Buchberger’s algo-
rithm) have found a greater interest for many computer algebra applications. At
the first time the main field was of course due to (commutative) polynomial rings,
algebraic equations etc., but in recent time there is an increasing number of pa-
pers concerning constructions in noncommutative rings and algebras, especially
Lie algebras [1,2,8], too. With respect to this topic the case of rings of differential
operators is very important, since the corresponding algorithmic constructions are
closely related to methods for the systematic simplification of systems of linear dif-
ferential equations. The basic ideas in this field have already been known for many
years ago [7,10]. But in the last time they were used and developed with respect
to algorithmic and computational aspects [11,13,14]. A very important field for
applications is the symmetry computation for differential equations. Here, there
exist some methods and algorithms, this paper is related to an algorithm presented
by G. J. Reid [11], whose kernel is the systematic evaluation of integrability con-
ditions. This is controlled by a certain order, and the method is in fact a Gröbner
basis construction for a system of linear differential equations, althought there is
no hint in this direction. Our aim is to present consequently this point of view
here and to give some conclusions and examples.

2. Standardforms for Differential Operators

Here we will describe an algorithm, which transforms a system of linear
differential operators (or, respectively, the corresponding system of linear homo-
geneous differential equations) to a standardform. This is the noncommutative
Gröbner base construction corresponding to the algorithm of Reid mentioned
above. With respect to differential equations the method uses two basic steps
- addition of integrability conditions and reduction of equations by the system.
The situation here differs from other constructions introduced earlier for noncom-
mutative structures [1,2], since coefficients and basic monomials do not commute
i.g., but the algebras of operators regarded here in the first part are of course
solvable. Further, for simplicity we regard here only differential operators in two
variables x, y , but this restriction is not essential. The starting point for all fur-
ther constructions is the following fundamental theorem, which can be proved as
an analog to the Hilbert base theorem for polynomial ideals, the proof differs from
the classical proof only with respect to technical changes.
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Theorem 2.1. Let F denote a differential field of functions depending on two
variables x, y, and D the ring of all linear differential operators in x, y with
coefficients from F :

D = {D =
∑

i∈I,j∈J
aij

∂i+j

∂xi∂yj
| I, J finite, aij ∈ F}

Then D is a left-noetherian ring.

D is considered here rather as a pure algebraic object, the question of a
corresponding domain for the coefficient functions will be discussed later.

2.1. Basic notions

The analogue to the case of polynomial rings is obvious: Monomials are op-
erators of the form M = ∂i+j

∂xi∂yj
, every operator from D is then a linear combination

of monomials with coefficients from F .

Further one has to fix a term order, this is a total order “≤” in the set of
monomials satisfying 1 ≤ M , and M1 ≤ M2 ⇒ MM1 ≤ MM2 for all monomials
M,M1,M2 .

If {Mn} is a given sequence of monomials, one can regard the left ideals of
D generated by a finit number of this monomials. Using the above theorem, one
immediately gets the following two statements:

Lemma 2.2. Every decreasing sequence of monomials terminates.

Lemma 2.3. (Dickson’s Lemma) Let {Mn} be a sequence of monomials such
that for k ≤ n Mn is not divisible by Mk . Then {Mn} terminates.

In particular, every operator D ∈ D contains a highest monomial (the
leading derivative) which characterizes the size of D .

The notion of reduction concerns the simplification (with respect to the
chosen order) of one operator D by another operator D1 ; the result is an operator
D∗ . The symbolic formula D → D∗ modulo D1 for this procedure means that
there is an equation

D∗ = D − aMD1,

where a ∈ F and the monomial M are chosen such that the leading term of aMD1

cancels a term of D .

The reduction of an operator D by a system S = {D1, . . . , Dn} to an
operator D∗ then means, that there is a chain of subsequent reductions modulo
operators from S , which transforms D to D∗ . In general there are various
possibilities for the reductions of a given operator D modulo a given system S .
But every reduction of D leads to an operator which is less than D (with respect
to the monomial order, that means with respect to the monomials contained in D).
Therefore, from the above lemmata it easily follows, that any chain of reductions
must terminate. An operator D∗ is called a normal form of D (with respect to
S ) if D∗ is obtained by reductions modulo S from D and further reductions of
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D∗ are impossible. In general there are several normal forms of a given operator;
this is the central point for the definition of standard forms.

Definition. A system SF of operators from D is called standard form, if every
operator D ∈ D has exactly one normal form modulo SF . A reduced standard
form is a standard form SF , in which every operator is in normal form with
respect to the remaining operators of SF and has the highest coefficient 1.

For the construction of standard forms one needs further as analogue to the
classical case a second operation corresponding to the computation of integrability
conditions for linear differential equations.

Definition. Let D1, D2 denote differential operators from D. Then the operator

S(D1, D2) = M1D1 −
a1

a2
M2D2

is called the S-operator of D1, D2. Here a1, a2 ∈ F are the highest coefficients of
D1 and D2 , and the the monomials M1,M2 are chosen minimally such that the
leading monomials of M1D1 and M2D2 are equal.

The following theorem is fundamental for the existence and construction of
standard forms of differential operators:

Theorem 2.4. Let S = {D1, . . . , Dn} be a system of differential operators from
D. Then the following statements are equivalent:

(1) S is a standard form.

(2) Every S-operator S(Di, Dk) with Di, Dk ∈ S can be reduced modulo S to
zero.

(3) If L denotes the left ideal generated by S , then every operator D ∈ L can
be reduced modulo S to zero.

Remark. Statement (3) is not trivial, since reductions are closely related to
the order!

Indication of Proof. The essential part of the proof is that of the implication
(2)⇒ (3), the idea is sketched here only:

Let be D ∈ L. Then D has the form D = A1D1 + · · ·+AnDn with certain
operators Ai from D. One can regard the n-tupel (A1, . . . , An) as a (not uniquely
determined) representant for D , which characterizes the size of D . Then the
relations S(Di, Dk) → 0 mod S can be used to construct smaller representants
for the reductions of D so long as these are not equal to zero.

2.2. Construction of standard forms

The characterization of standard forms by Theorem 2.1 suggests the follow-
ing algorithm, which leads from a given System S = {D1, . . . , Dn} of differential
operators to a standard form.

Step 1: Input of S .
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Step 2: Form B := {(Di, Dj), Di, Dj ∈ S,Di 6= Dj}
Step 3: While B 6= Ø choose a pair (Di, Dj) from B and compute a normal form

D∗ modulo S of the corresponding S-operator.

Step 4: If D∗ = 0 then cancel (Di, Dj) in B .

If B = Ø then S is a standard form and the algorithm is finished else goto
Step 3.

If D∗ 6= 0 then form S := S ∪ {D∗} and goto Step 2.

The algorithm must terminate, the argument is the same as in the classical
case: Consider the leading monomials of the operators from S and the left ideals
which can be generated by this monomials subsequently in the various steps. The
sequence of these monomials must terminate. . . Some examples follow in section
3.2.

3. Standard forms of Differential Equations and Symmetry
Computation

3.1. Concept and Effects

Our aim is now to apply the Gröbner base constructions, or the standard
form algorithm for differential operators, to systems of linear differential equations.
Although the method is clear in principle, we have to make here some remarks with
respect to effects. At first, very important for Gröbner base constructions is the
chosen term order for monomials. The orders used in general are based on the
priorities 1. Total degree of derivatives, 2. Rank of functions, 3. Lexicographic
order of differentiation variables [11,13]. This makes sense with respect to the
classical methods in the analysis of differential equations and corresponds to the
aim “express higher derivatives by lower derivatives.”

But from a rather algebraic point of view, at first the properties “higher”
and “lower ” are declared by the abstract term order and , at second, with respect
to a certain analogue to algebraic equations and in order to get a block structure
with respect to the functions, it is more useful to start with an order determined
by the priorities

1. Rank of the functions,

2. Lexicographic order of the variables,

3. Degree of derivatives.

The advantages of corresponding standard forms of systems of linear differ-
ential equations are the following:

1. By ordering the differential equations with respect to the leading deriva-
tives, blocks are obtained with respect to the several functions. Especially, if it
is possible to derive differential equations with respect to only one function from
the system, then the standard form must contain such equations, with respect to
a suitable rank of functions, too.

2. One gets an analogue to the case of polynomials ore algebraic equations,
respectively:
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Systems of algebraic equations Systems of linear differential equations

Solvability Nontrivial Solvability
Finitely many solutions Finite-dimensional space of solutions
Univariate equations Ordinary differential equation

3. In particular, a system of linear differential equations for the functions
u1, . . . , um has only trivial solutions if and only if its standard form is

u1 = 0, . . . , um = 0,

this means, that these equations can be derived from the original system by using
only differentiations and forming linear combinations. The solution space is finite
dimensional iff for every function uj and every variable xi the standard form

contains an equation with a leading derivative of the form
∂kuj
∂xik

[11].

4. With respect to the order mentioned above it follows: If the space of
solutions is finite dimensional , then the last block (with the “lowest” leading
derivatives) of a standard form must be a block with only one function and the
last differential equation must be in fact an ordinary differential equation. Since
the dimension of the solution space is invariant, one can (with respect to other
ranks of functions and differentiation variables) derive certain ordinary differential
equations. This leads by solving to separation of variables and simplification of
the problem.

But to prove this effects one must leave the pure algebraic point of view.
At least it seems to be impossible to get a central statement without additional
analytical assumptions: The solution space determines the standard form. We will
discuss this problems in the following.

3.2. Algebraic and Analytic Background

Suppose that a system of linear differential equations for one function u is
given. We will write it in the form

D1(u) = 0, . . . , Dn(u) = 0,

where D1, . . . , Dn denote linear differential operators with coefficients from a
differential field F . Using these differential equations we can form new equations
and operators by differentiation and algebraic operations; the adding of this new
equations does not change the space of solutions. The problem concerning standard
forms can be formulated now as follows:

Let D be the ring of all linear differential operators with coefficients from F
and L a left ideal of D. Determine, with respect to a fixed order, a Gröbner base
of L.

This problem is solved by the standard form algorithm. If a system S
of linear differential equations for m functions u1, . . . , um is given, then every
equation can be written as

D1(u1) + · · ·+Dm(um) = 0,
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and, for a fixed function rank, in this way to every differential equation there
corresponds an m-tupel (D1, . . . , Dm) of differential operators from Dm . The
action of a differential operator D ∈ D on the above equation leads to the m-
tupel (DD1, . . . , DDm) ∈ Dm , and therefore we have to regard Dm as D-module
by muliplication of the components from the left by elements of D. The standard
form problem is then formulated as follows:

Suppose that Dm is regarded as D-left module in the way described above
and let M be a submodule of Dm . Determine, with respect to a given order, a
Gröbner base of M .

If the function rank has the highest priority in the term order, then the
standard form algorithm of Section 2 runs firstly with respect to the highest
function, then in the remaining block with respect to the following function etc.

We will now introduce additional analytic assumptions, which are needed
for the effects mentioned in the last section. Indeed, if one has a reduced standard
form for a given system of linear differential equations, this leads to a partition
of all derivatives into “evaluated” and “parametric” derivatives [11]. A derivative
(monomial) is called evaluated, if it can be obtained by differentiation from the
leading derivatives given by the standard form equations. All other derivatives
are called parametric. The intention is obvious: If the corresponding assump-
tions for existence and uniqueness of solutions are fullfilled—as in the theorem of
Cauchy-Kowalewski—then the values of the parametric derivatives can be chosen
arbitrarily and the values of the evaluated derivatives are obtained then by using
differentiation from the standard form equations. Especially, the dimension of the
space of solutions (regarded as germs at a particular point) is equal to the number
of parametric derivatives [11].

We will now formulate conditions, which are not very restrictive and ensure
the facts described above.

1. Let G be an open domain in Rn and F denote a differential field of functions,
which are meromorphic in G.

2. Let S be a system of linear homogeneous differential equations with coef-
ficients from F and SF denote the reduced standard form of S . A point
x ∈ G is called regular, if all coefficients of SF are analytic in x. The
statement “S has a finite dimensional solution space” then means, that for
every regular point x ∈ G the space of the solutions being analytic in x (as
germs) is finite dimensional.

With respect to the general situation the following theorem gives now a satisfactory
charactarization of standard forms from the local point of view.

Theorem 3.1. Let SF1 and SF2 denote two reduced standard forms with coef-
ficients being analytic in an open domain G such that for every x ∈ G the spaces
of solutions, which are analytic in x, coincide. Then SF1 and SF2 are identical
in G .

Idea of the Proof. The idea of the proof is to give firstly an invariant character-
ization of the sets of evaluated and parametric derivatives. If this sets coincide for
SF1 and SF2 , then it follows immediately, that equations with the same leading
derivative must coincide.
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Remark. Of course, the reduced standard form is determined uniquely in every
case by the original system—the argumentation is algebraic and similar to the
classical case—but this is not the essential point here.

In order to use this theorem we illustrate the consequences for the construc-
tion of ordinary differential equations from a given system

D1(u1) = 0, . . . , Dm(um) = 0

with a finite dimensional solution space. If um is chosen as the lowest function
und xn as the lowest variable, then the “um -parts” of the solutions form a finite
dimensional space and satisfy therefore an equation D(um) = 0, where D is a
differential operator with respect to xn only. Since the addition of D(um) = 0
to the original system does not change the solution space, the above theorem
implicates the reduction to zero of this equation by the standard form of the
above system. But the operator D can be reduced only by operators, which are
differential operators with respect to xn alone.

4. Symmetry Computation, Examples

We give as applications here some examples concerning the symmetry
computation for ordinary differential equations. If one starts with an Ansatz
∂ = ξ(x, y) ∂

∂x
+ η(x, y) ∂

∂y
for the symmetry generators, then a well known pro-

cedure leads to the so called determining equations, which form a system of linear
homogeneous differential equations for the functions ξ and η . Since the maximal
number of symmetries is 8 for second order equations and n+4 for nth-order equa-
tions (n ≥ 2) [9], the space of solutions (ξ, η) is finite dimensional. Therefore, by
applying standard forms, the problem of symmetry computation will be reduced
to solving linear homogeneous ordinary differential equations. If the procedure
of constructing the determining equations is regarded as algorithmic, the result
can be formulated as follows: The symmetry computation for ordinary differential
equation is algorithmic ”modulo” solving linear homogeneous ordinary differential
equations. This is a partial answer to a question of F.Schwarz [12].

In the following examples we give for some second order ordinary differential
equations the determining equations , its standard forms (with respect to a fixed
order) and the (generally 4) linear homogeneous ordinary differential equations
which can be derived on the first level from the standard form by changing the
order of functions and variables.

Example 1. Differential equation:

y′′ =
(y′2 + 1)

3
2 + 2(y′x− y)(y′2 + 1)

x2 + y2 + 1
.

Determining equations:

0 = −(x2 + y2 + 1)2ξyy − 2(x2 + y2 + 1)x(ξx − 2ηy)− 2(x2 + y2 + 1)yξy,

−2x2ξ − 4xyη + 2y2ξ + 2ξ,

0 = 2(x2 + y2 + 1)2(2ξxy − ηyy) + 2(x2 + y2 + 1)x(2ξy + 3ηx),
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−2(x2 + y2 + 1)yηy − 2x2η + 4xyξ + 2y2η − 2η,

0 = 2(x2 + y2 + 1)2(ξxx − 2ηxy) + 2(x2 + y2 + 1)xξx,

−2(x2 + y2 + 1)y(3ξy + 2ηx)− 2x2ξ − 4xyη + 2y2ξ + 2ξ,

0 = ξy + ηx,

0 = 2(x2 + y2 + 1)2ηxx − 2(x2 + y2 + 1)xηx + 2(x2 + y2 + 1)y(2ξx − ηy)
+2x2η − 4xyξ − 2y2η + 2η,

0 = (x2 + y2 + 1)(2ξx − ηy)− 2xξ − 2yη,

0 = (x2 + y2 + 1)(ξx − 2ηy) + 2xξ + 2yη.

Standard form:

0 = (x2 + y2 + 1)ηy − 2xξ − 2yη,

0 = (x2 + y2 + 1)ηyy + 2ηxx− 2η,

0 = (ηxyx− ηy)(x2 + y2 + 1)− 2ηxxy + yη,

0 = (x2 + y2 + 1)ηxx − 2ηxx+ 2η.

Ordinary differential equations which can be derived:

0 = (x2 + y2 + 1)ξyy − 2ξyy + 2ξ,

0 = ξxxx,

0 = ηyyy,

0 = (x2 + y2 + 1)ηxx − 2ηxx+ 2η.

The symmetry generators ∂ = ξ(x, y) ∂
∂x

+ η(x, y) ∂
∂y

are given by

ξ = αy + β(1 + x2 − y2) + 2γxy, η = −αx+ γ(1− x2 + y2) + 2βxy.

The differential equation has so(3)-symmetry.

Example 2. Differential equation:

y′′ = (1 + y′
2
)

3
2 eβatan(y′).

Determining equations:

0 = ξyy,

0 = 2ξxy − ηyy,
0 = ξxβ − 3ξy − 3ηx − ηyβ,
0 = ξx + ξyβ − 2ηy,

0 = ξxx − 2ηxy,

0 = 2ξx + ηxβ − ηy,
0 = ηxx,
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Standard form:

0 = ξy + ηx,

0 = ξx + ηxβ,

0 = ηxβ + ηy,

0 = ηxx.

The ordinary differential equations are

ξyy = ξxx = ηyy = ηxx = 0.

The symmetry generators are easily computed and form a three dimensional solv-
able Lie algebra.

Example 3. Differential equation:

y′′ =
yy′

x
+ y′

2
.

Determining equations:

0 = ξyy + ξy,

0 = 2ξxyx+ 2ξyy − ηyyx+ ηyx,

0 = ξxxx
2 + ξxxy − 2ηxyx

2 + 2ηxx
2 + xη − yξ,

0 = ηxxx− ηxy,

Standard form:

0 = ξy, 0 = ξxx− ξ, 0 = η.

These equations are ordinary differential equations. The original differential equa-
tion has one symmetry.

Example 4. Differential equation:

y′′ = 6y2 + x.

Determining equations:

0 = ξyy,

0 = 2ξxy − ηyy,
0 = ξxx + 3ξyx + 18ξyy

2 − 2ηxy,

0 = 2ξxx+ 12ξxy
2 − ηxx − ηyx− 6ηyy

2 + 12yη + ξ.

Standard form:

ξ = 0, η = 0.

(No symmetries). Here the determining equations are not difficult, and the result
of the standard form procedure is very simple, but the original algorithm itself
produces very many dates and computations!
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Example 5. Consider the linear differential equation

y′′ = ρ(x)y.

Here one can derive, for the functions ξ and η , the equations ξyy = 0 and ηyyy = 0.
By a corresponding separation Ansatz the standard form procedure leads to two
ordinary linear homogeneous differential equations, the original equation and the
third order equation

z′′′ − 4ρz′ − 2ρ′z = 0

Therefore symmetry computation is effective in this case only if there are known
solutions of this equation. Iteration of the whole procedure, that means to ask for
symmetries of this last equation, breaks off, since no other ordinary differential
equations than this equation itself are produced by the standard form procedure
for symmetry computation. Without the above Ansatz the ordinary differential
equations for ξ and η with respect to x are in a general form rather complicated,
for instance the equation for ξ is
0 = (3ρ′′ρ − 4ρ′2 + 9ρ3)ξxxxxx + (−3ρ′′′ρ + 5ρ′′ρ′ − 27ρ′ρ2)ξxxxx + (4ρ′′′ρ′ − 5ρ′′2 −
30ρ′′ρ2 + 56ρ′2ρ− 45ρ4)ξxxx + (12ρ′′′ρ2 − 50ρ′′ρ′ρ+ 40ρ′3 + 18ρ′ρ3)ξxx + (2ρ′′′ρ′ρ−
4ρ′′2ρ+ 2ρ′′ρ′2 + 2ρ′2ρ2 + 36ρ5)ξx + (−18ρ′′′ρ3 + 90ρ′′ρ′ρ2 − 80ρ′3ρ + 18ρ′ρ4)ξ.
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[3] Buchberger, B., Gröbner bases—an algorithmic method in polynomial ideal
theory, Ch. 6 in N. K. Bose (ed.) (Multidim. Systems Theory), D. Reidel
Publ. Comp., 1985.

[4] Buchberger, B., G. E. Collins, and R. Loos, “Computer Algebra,”
Springer, 1983.

[5] Czichowski, G., Behandlung von Differentialgleichungen mit LIE-Theorie
und Computer, Mitt. d. MGdDDR, Heft 3–4, (1988), 3–20.

[6] Czichowski, G.,LIE Theory of Differential Equations and Computer Alge-
bra, Seminar Sophus Lie (Heldermann Verlag Berlin), 2 (1991), 83–91.
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